
Assume-Guarantee Software Verification
Based on Game Semantics∗

Aleksandar Dimovski and Ranko Lazić

Department of Computer Science
University of Warwick

Coventry CV4 7AL, UK
{aleks, lazic}@dcs.warwick.ac.uk

Abstract. We show how game semantics, counterexample-guided ab-
straction refinement, assume-guarantee reasoning and the L∗ algorithm
for learning regular languages can be combined to yield a procedure for
compositional verification of safety properties of open programs. Game
semantics is used to construct accurate models of subprograms composi-
tionally. Overall model construction is avoided using assume-guarantee
reasoning and the L∗ algorithm, by learning assumptions for arbitrary
subprograms. The procedure has been implemented, and initial experi-
mental results show significant space savings.

1 Introduction

One of the most effective methods for automated software verification is model
checking [8]. A software system to be verified is modelled as a finite-state tran-
sition system and a property to be established is expressed as a temporal logic
formula. Given that the state explosion problem is particulary acute in soft-
ware model checking, the most desirable feature of this approach is scalability.
Compositional modelling and verification achieve scalability by breaking up a
larger software system in smaller systems which can be modelled and verified
independently. Hence, the properties of a program can be established from the
properties of its individually checked components without requiring to check the
whole program as an atomic “flat” entity.

Game semantics meets the first requirement for achieving scalability: composi-
tional modelling. Game semantics is denotational, i.e. defined recursively on the
syntax, therefore the model of a larger program is constructed from the models
of its subprograms, using a notion of strategy composition. The other benefits
that game semantics brings to software model checking, compared with classical
state-based approaches [6,17], are:

Modularity. There is a model for any open program, which enables verification
of program fragments which contain free variable and procedure names.

∗ We acknowledge support by the EPSRC (GR/S52759/01). The second author was
also supported by the Intel Corporation, and is also affiliated to the Mathematical
Institute, Serbian Academy of Sciences and Arts, Belgrade.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 529–548, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

530 A. Dimovski and R. Lazić

Correctness. The generated model is fully abstract (sound and complete), i.e.,
two programs have the same models if and only if they cannot be distin-
guished with respect to operational tests (such as abnormal termination)
in any program context. This means that the model can be used to deduce
properties of programs (soundness), and moreover every observable property
of programs is captured by the model (completeness).

Efficiency. Programs are modelled by how they interact with their environ-
ments. Details of their internal state during computations are not recorded,
which results in small models with a maximum level of abstraction.

Assume-guarantee reasoning addresses the second challenge: compositional
verification. To check that a property P is satisfied by a model M composed of
two components M1 and M2, it suffices to find an assumption A such that

1. the composition of M1 and A satisfies P , and
2. M2 is a refinement of A

If such an assumption A can be found and it is significantly smaller than M2,
then we can verify whether M satisfies P (by checking 1 and 2) without having
to build the whole M .

In this paper, we describe an automatic procedure which generates assump-
tions as above using the L∗ algorithm for learning a game strategy. L∗ iteratively
learns a minimal deterministic finite automaton, which represents the unknown
strategy, from membership and equivalence queries. In each iteration, L∗ pro-
duces a candidate assumption A which is used to check 1 and 2. Depending on
results of the checks, we may conclude that the required property is satisfied,
violated in which case a witness counterexample is reported, or the current A
needs to be revised. This procedure is set within an abstraction refinement loop
which automatically extracts a game-semantic model from a data-abstracted
program and refines the program if a spurious counterexample is found.

Programs are abstracted through approximating infinite integer data types by
partitionings. Any partitioning contains a finite number of partitions, i.e. sets of
integers, which are called abstracted integers. Abstracted programs operationally
behave like their concrete counterparts, but an abstracted integer argument in
any operation is nondeterministically replaced by some concrete integer from
its set of integers (partition), and the concrete integer result is replaced by the
abstracted integer (partition) to which it belongs. As shown in [11], this is a
conservative abstraction. By quotienting over abstracted integers, the models
become finite and can be model-checked. Whenever a spurious counterexample
is found, it is used to refine the partitionings of the program, by splitting some
of their partitions.

We have implemented this approach in the GameChecker tool [12]. We re-
port some initial experimental results, which indicate significant memory savings
compared to a non assume-guarantee approach.

The paper is organized as follows. After discussing related work, Section 2
introduces the programming language we are considering. Game semantics of the
language is presented in Section 3, followed by a description of the L∗ algorithm

Assume-Guarantee Software Verification Based on Game Semantics 531

in Section 4. Details of the verification framework are given in Section 5. Finally,
we present the implementation in Section 6, and conclude in Section 7.

1.1 Related Work

Game semantics emerged in the last decade as a potent framework for modelling
programming languages [2,3,16,18]. The first applications of game-semantic mod-
els to model checking were proposed in [14,1,10]. They were then extended by
adapting the counterexample-guided abstraction refinement technique to this
setting [11]. A tool (GameChecker) based on these ideas was presented in [12].

The assume-guarantee paradigm is the best studied approach to compositional
reasoning [20]. The primary difficulty in applying this approach to realistic sys-
tems is that, in general, the appropriate assumptions have to be constructed
manually.

The work presented in this paper is motivated by a recently proposed approach
[9], which uses learning algorithms to automate assume-guarantee reasoning. In
[9], a variant of Angluin’s L∗ algorithm [5,21] for learning a regular language is
used to generate appropriate assumptions. Compared to this approach, which is
applied at the design level of a software system, our work makes the following
contributions. Firstly, we apply the method at the implementation level, and
verify safety properties of open program fragments. Secondly, while in [9] the
method is used for verifying multi-threaded programs by building models and
checking their constituting threads independently, here we apply compositional
verification on sequential programs where individually checked components can
be arbitrary subprograms of the given input program. Then, the L∗ algorithm is
adapted to the specific game semantics setting for learning a game strategy. Fi-
nally, the method is integrated with a counterexample-guided abstraction refine-
ment style loop. We thus obtain a procedure which embodies both compositional
modelling and compositional verification.

The L∗ learning algorithm has found a number applications to automatic ver-
ification. For example, adaptive model checking [15] uses learning to compute an
accurate finite state model of an unknown system starting from an approximate
model; substitutability analysis of evolving software systems [7] verifies an up-
graded software system by learning; [4] uses a symbolic implementation of the
L∗ algorithm for compositional reasoning about symbolic modules, etc.

2 The Programming Language

The language which will be considered, Abstracted Idealized Algol (AIA), is an
expressive programming language combining usual imperative features, locally-
scoped variables and call-by-name procedures. It also incorporates data abstrac-
tion annotations, which enable the writing of abstracted programs in a syntax
similar to that of concrete programs.

The data types of AIA are booleans and abstracted integers (D ::= bool | intπ).
The phrase types are expressions, variables and commands (B ::= expD | varD |
com) plus functions (T ::= B | T → T).

532 A. Dimovski and R. Lazić

The abstractions π range over computable finite partitionings of the integers
Z. Any such partitioning consists of a finite number of partitions (i.e. sets of
integers). To say that m,n ∈ Z are in the same partition of π, we write m ≈π n.
In particular, we use the following abstractions:

[] = {Z} [n,m] = {<n, {n}, {n + 1}, . . . , {0}, . . . , {m − 1}, {m}, >m}
where <n = {n ′ | n ′ < n}, >n = {n ′ | n ′ > n}. Instead of {n}, we may
write just n. Abstractions are refined by splitting abstract values: [] to [0, 0] by
splitting Z, [n,m] to [n −1,m] by splitting <n, or to [n,m +1] by splitting >m.

We write Γ � M : T to indicate that term M with free identifiers in Γ has
type T . The syntax of the language is defined by the standard typing rules for
forming and applying functions (λ x .M ,MN), augmented with rules for logic and
arithmetic (M opN), branching (if B thenM elseN), iteration (whileB doM), se-
quencing (M ; N, expressions with side effects are also allowed), assignment
(M := N), de-referencing (!M), local variable declaration (newD x := M in N),
then “do nothing” command (skip), and a command which causes abnormal
termination (abort). The typing rules can be found in [11].

The operational semantics is defined as a big-step reduction relation M , s =⇒
K, where M is a term whose free identifiers are assignable variables (i.e. of type
var), s is a state which assigns data values to the free variables, and K is a final
configuration. The final configuration can be either a pair V , s ′ with V a value
(i.e. a language constant or an abstraction λ x : T .M) and s ′ a state, or a special
error configuration E .

The reduction rules are similar to those for IA, with two differences. First,
whenever an integer value n with data type intπ participates in an operation,
any other integer n ′ can be used nondeterministically so long as n ′ ≈π n.

N1, s1 =⇒ n1, s2 N2, s2 =⇒ n2, s n ′
i ≈πi ni , n ′ ≈π n ′

1 opn ′
2

N1 opN2, s1 =⇒ n ′, s
Assignment and de-referencing have similar non-deterministic rules.

Second, the abort program with any state reduces to E , and a composite
program reduces to E if a subprogram is reduced to E .

abort, s =⇒ E M , s =⇒ E
M opN , s =⇒ E

A term M of type com is said to terminate in state s if there exists configura-
tion K such that K = E , or K = skip, s ′ for some state s ′ such that M , s =⇒ K.
M is safe iff it cannot be reduced (from any state) to E .

Term Γ � M : T approximates term Γ � N : T , denoted by Γ � M �∼ N
if and only if for all contexts C[−] : com, i.e. terms with a hole such that �
C[M] : com and � C[N] : com are well formed closed terms of type com, if C[M]
may terminate abnormally (resp. successfully) then C[N] also may terminate
abnormally (resp. successfully). If two terms approximate each other they are
considered safe-equivalent, denoted by Γ � M ∼= N .

A context is safe if it does not include occurrences of the abort command. A
term is safe if for any safe context Csafe[−] program Csafe[M] is safe; otherwise
the term is unsafe.

Assume-Guarantee Software Verification Based on Game Semantics 533

3 Game Semantics of AIA

In this section we review the fundamental concepts of game semantics for call-
by-name programming languages [3].

Game semantics is denotational semantics which models types as games, com-
putation as plays of a game, and programs as strategies for a game. In this
approach, a kind of game is played by two participants. The first, Player, repre-
sents the program under consideration, while the second, Opponent, represents
the environment (context) in which the program is used. The two take turns to
make moves, each of which is either a question (a demand for information) or
an answer (the supply of information).

We now proceed by presenting game semantics formally. A game is played in
an arena which can be thought of as a playing area setting out basic rules and
conventions for the game.

Definition 1. An arena A is a triple 〈MA, λA, �A〉 where:

– MA is a countable set of moves
– λA : MA → {O, P}×{Q, A} is a labelling function which indicates whether a

move is by Opponent(O) or Player(P), and whether it is a question(Q) or an
answer(A). We write λOP

A for the composite of λA with the left projection,
so that λ

OP
A (m) = O if λA(m) = OQ or λA(m) = OA. λ

QA
A is defined as

λA followed by the right projection in a similar way. We denote by λA the

labelling with O/P part reversed, i.e. λ
OP
A (m) = O iff λ

OP
A (m) = P.

– �A is a binary relation between MA +{∗} (∗ �∈ MA) and MA, called enabling
(if m �A n we say that m enables move n), which satisfies the following
conditions:

• Initial moves (a move enabled by ∗ is called initial) are Opponent ques-
tions, and they are not enabled by any other moves besides ∗;

• Answer moves can only be enabled by question moves;
• Two participants always enable each others moves, never their own (i.e.

an Opponent move can only enable a Player move and vice versa).

A justified sequence in arena A is a finite sequence of moves of A together
with a pointer from each non-initial move n to an earlier move m such that
m �A n. We say that n is (explicitly) justified by m. A legal play is a justified
sequence with some additional constraints: alternation (Opponent and Player
moves strictly alternate), well-bracketed condition (when an answer is given, it
is always to the most recent question which has not been answered), visibility
condition (a move to be played depends upon a certain subsequence of the play
so far, rather than on all of it), and haltness (no moves can follow an abort
move). The set of all legal plays in arena A is denoted by LA.

We say that n is hereditarily justified by a move m in a legal play s if there
is a subsequence of s starting with m and ending in n such that every move
is justified by the preceding move in it. We write s�m for the subsequence of
s containing all moves hereditarily justified by m. We similarly define s�I for

534 A. Dimovski and R. Lazić

a set I of initial moves in s to be the subsequence of s consisting of all moves
hereditarily justified by a move of I .

Definition 2. A game is a structure A = 〈MA, λA, �A,PA〉 where 〈MA, λA, �A〉
is an arena, and PA is a non-empty, prefix-closed subset of LA, called the valid
plays, such that for s ∈ PA and I a set of initial moves of s we have s�I ∈ PA.

Example 1. The simplest game is the empty game I = 〈∅, ∅, ∅, ε〉, where ε is the
empty sequence. The base types are interpreted by the following games:

M�expD� = {q, abort ,n | n ∈ D}
λ(q) = OQ, λ(n, abort) = PA

∗ ��expD� q; q ��expD� n, abort
P�expD� = {ε, q, q · abort , q · n | n ∈ D}

M�com� = {run, done, abort}
λ(run) = OQ, λ(done, abort) = PA

∗ ��com� run; run ��com� done, abort
P�com� = {ε, run, run · done, run · abort}

M�varD� = {read ,n,write(n), ok , abort | n ∈ D}
λ�varD�(read ,write(n)) = OQ, λ�varD�(n, ok , abort) = PA

∗ ��varD� read ,write(n); read ��varD� n, abort ; write(n) ��varD� ok , abort

P�varD� =
{
ε, read ,write(n), read · {n, abort},write(n) · {ok , abort} | n ∈ D

}

Thus in the game �expD�, there is an initial move q (a question: “What is the
value of the expression?”) and corresponding to it a value from D or abort 1

(an answer to the question). In the game �com�, there is an initial move run to
initiate a command, an answer move done to signal successful termination of a
command, and abort to signal abnormal termination. In the game �varD�, for
each n ∈ D there is an initial move write(n), representing an assignment. There
are two possible responses to this move: ok , which signals successful completion
of the assignment, and abort . For dereferencing, there is an initial move read , to
which Player may respond with any element of D or abort . ��

Given games A and B , we define new games A × B and A � B as follows:

MA×B = MA + MB (disjoint union)
λA×B = [λA, λB]

∗ �A×B n ⇔ ∗ �A n ∨ ∗ �B n
m �A×B n ⇔ m �A n ∨ m �B n
PA×B = PA + PB

MA�B = MA + MB

λA�B = [λA, λB]
∗ �A�B n ⇔ ∗ �B n
m �A�B n ⇔ m �A n ∨ m �B n ∨

[∗ �B m ∧ ∗ �A n]
PA�B = {s | s � A ∈ PA, s � B ∈ PB}

where s � A is the subsequence of s consisting of moves from MA. A valid play
of A × B is either a play from A or a play from B . Valid plays of A � B are
interleavings of single plays from A and B , and each such play has to begin in
B and only Player can switch between the interleaved plays.
1 Since expressions with side effect are allowed in AIA, evaluating an expression may

indeed abort.

Assume-Guarantee Software Verification Based on Game Semantics 535

Given a game A, we define the game !A as follows: M!A = MA, λ!A = λA,
�!A=�A and P!A = {s ∈ L!A | for each initial move m, s�m ∈ PA}. Hence, legal
plays of !A are interleavings of a finite number of plays from PA. Finally, the
arena A ⇒ B is defined as !A � B . From now on, we work with (well-opened)
games where initial moves can only happen at the first move.

Definition 3. A strategy σ for a game A (written as σ : A) is a prefix-closed
non-empty set of even-length plays in PA.

A strategy specifies what options Player has at any given point of a play, and
it does not restrict the Opponent moves. We say that a play in σ is complete
if either the opening question is answered, or the special move abort has been
played.

Example 2. The only strategy for the empty game I is the empty strategy
⊥= {ε}. For the game �expint�, there is the empty strategy, and one strategy in-
terpreting each natural number n, namely {ε, q ·n}. A strategy which interprets
the successor function succ : N → N is as follows:

�expint� ⇒ �expint�

O q

P q

������������

O n
��

P n + 1

��

Here Opponent begins a play by asking for output of succ, and Player replies
asking for input. When Opponent provides input n (which can be any number
since a strategy does not restrict O moves), Player will give output (n + 1).
The above strategy can be represented as a regular language (pointers are dis-
regarded)

∑

n∈int

q · q · n · (n + 1), where suitable closure operator is applied. �

The notion of composition of strategies is central to game semantics: just as small
programs can be put together to form large ones, so strategies can be composed
to form new strategies. Strategies compose in a way which is reminiscent of the
two stage process of “parallel composition plus hiding” in CSP [22].

Given a strategy σ : A ⇒ B , we define its promotion σ† : !A � !B , which can
play several interleaved copies of σ, by:

σ† = {s ∈ L!A�!B | for all initialm, s�m ∈ σ}

Let σ : A ⇒ B and τ : B ⇒ C are two strategies. Then the composition
σ o

9 τ : A ⇒ C is defined as σ†; τ , where ; is linear composition of strategies.
Given strategies σ : A � B and τ : B � C , the linear composition σ; τ :

A � C is defined in the following way. For a sequence u of moves from games
A, B , C with justification pointers, we define u � B ,C to be the subsequence of
u consisting of all moves from B and C (if a pointer from one of these points

536 A. Dimovski and R. Lazić

to a move of A, delete that pointer). Similarly define u � A,B . We say that u is
an interaction sequence of A, B , C if u � A,B ∈ PA�B and u � B ,C ∈ PB�C .
The set of all such sequences is written as int(A,B ,C).

The parallel composition is defined by

σ ‖ τ = {u ∈ int(A,B ,C) | u � A,B ∈ σ, u � B ,C ∈ τ}

So σ ‖ τ consists of sequences generated by playing σ and τ in parallel, making
them synchronize on moves in B .

Suppose u ∈ int(A,B ,C). Define u � A,C to be the subsequence of u con-
sisting of all moves from A and C , but where there was a pointer from a move
mA ∈ MA to an initial move m ∈ IB extend the pointer to the initial move in C
which was pointed to from m. Thus, we complete the definition of composition
by hiding the interaction between σ and τ in B .

σ; τ = {u � A,C | u ∈ σ ‖ τ}

The identity strategy idA : A ⇒ A for a game A is defined by

{s ∈ PA⇒A | ∀ s ′ �even s . s ′ � Al = s ′ � Ar}

where we use the l and r tags to distinguish between the two occurrences of A
and s ′ �even s means that s ′ is an even-length prefix of s . So, in any identity
strategy idA, a move by Opponent in either occurrence of A is immediately
copied by Player to the other occurrence.

A term Γ � M : T , where Γ = x1 : T1, . . . , xn : Tn , is interpreted by a
strategy �Γ � M : T � for the game:

�Γ � T � = �T1� × . . . × �Tn� ⇒ �T �

Language constants and constructs are interpreted by strategies and com-
pound terms are modelled by composition of the strategies that interpret their
constituents. For example, some of the strategies [16] are: �n : expint� = {ε, q ·n},
�skip : com� = {ε, run · done}, �abort : com� = {ε, run · abort}, free identifiers are
interpreted by identity strategies, etc.

Using standard game-semantic techniques, it has been shown in [11] that this
model is fully abstract for AIA.

Theorem 1 (Full abstraction). For any terms Γ � M ,N : T, we have Γ �
M ∼= N iff �Γ � M : T � = �Γ � N : T �.

We say that a play is safe if it does not terminate in abort, and a strategy if
it consists only of safe plays; otherwise, we will call plays and strategies unsafe.
From the full abstraction result, it follows that:

Corollary 1 (Safety). Γ � M : T is safe iff �Γ � M : T � is safe.

This result ensures that, for any term, model-checking its strategy for safety
(i.e. for unreachability of the abort move) is equivalent to proving the safety of
a term.

Assume-Guarantee Software Verification Based on Game Semantics 537

In the rest of the paper, we work with the 2nd-order recursion-free fragment
of AIA (i.e., AIA2). The 2nd-order restriction means that the function types are
restricted to T ::= B | B → T . Also, without loss of generality, we only consider
terms in β-normal form. For this language fragment, terms define strategies for
which justification pointers are uniquely determined by plays, and they can be
disregarded. Thus, it has been shown in [11] that:

Proposition 1. For any finitely abstracted AIA2 term Γ � M : T, the strategy
�Γ � M : T � is a regular language.

Example 3. Consider the term 2

f : com → com � newint x := 0 in
f (x := x + 1) ;
if (x == 0) then abort;

in which x is a local block-allocated variable and f is a non-local (safe) procedure.
The procedure-call mechanism is by-name, so every call to the first argument of
f increments x .

The strategy interpreting this term is shown in Fig 1, where dashed edges
indicate moves of the Opponent and solid edges moves of the Player. Accept-
ing states are designated by an interior circle. The states whose interior circles
are filled in, correspond to complete plays in the strategy. We use subscripts to
indicate the component of the context (�Γ �), i.e. the free identifier, to which a
move belongs to. For example, the subscript ‘f , 1’ denotes that a move corre-
sponds to the first argument of the procedure f . The model illustrates only the
possible behaviors of this term: if the non-local procedure f does not evaluate
its argument at all then the term terminates abnormally; otherwise if f calls its
argument, one or more times, then the term terminates successfully. Notice that
no references to the variable x appear in the model because it is locally defined
and so not visible from the outside of the term. ��

runf,1

donef,1

run runf

donef

done

abort

runf,1

donef,1 donef

Fig. 1. A strategy as a finite automaton

Definition 4. If σ and τ are strategies for a game A, we define a binary rela-
tion, refinement, ≤ as: σ ≤ τ ⇔ σ ⊆ τ

2 This is actually an IA2 term since no data-abstractions are applied to x .

538 A. Dimovski and R. Lazić

4 The Learning Algorithm

Central to our compositional verification procedure is an algorithm for learning
strategies, which can be represented as regular languages (see Proposition 1).
The algorithm is an adaptation of the L∗ algorithm introduced by Angluin [5]
which learns an unknown regular language. Since L∗ needs to learn strategies,
the adaptation will consider only non-empty prefix-closed sets of even-length
sequences (words) in which Opponent and Player moves alternate, thus achieving
greater efficiency.

Let A = 〈MA, λA, �A,PA〉 be a game. Let OA = {m ∈ MA | λOP
A (m) = O}

and PA = {m ∈ MA | λ
OP
A (m) = P} denote the sets of Opponent and Player

moves in A, respectively. Since λA is a total function, {OA, PA} is a partition of
MA. Given that the sequences from a strategy for a game A are valid and satisfy
the alternation condition, it follows that they are sequences from (OAPA)∗.

Let σ be an unknown strategy for a game A. L∗ iteratively learns the structure
of σ using assistance from a Teacher who can answer two kinds of questions about
σ:

Membership query. Given a sequence s from (OAPA)∗, the Teacher answers
true if s ∈ σ, and false otherwise.

Equivalence query. Given a DFA (Deterministic Finite Automaton) D , the
Teacher replies that D is either correct, when L(D) = σ, or incorrect, and in
the latter case gives a counterexample which is a sequence in the symmetric
difference of L(D) and σ.

The basic data structure of the L∗ algorithm is a two-dimensional table, called
observation table (S ,E ,T), which keeps information about a finite collection of
sequences over (OAPA)∗, classified as members or non-members of σ. S is a
prefix-closed set of even-length sequences, E ⊆ (OAPA)∗ is a suffix-closed set
of even-length sequences, and T is a function mapping (S ∪ S · OAPA) · E →
{true, false}, such that:

∀ s ∈ S ∪ S · OAPA. ∀ e ∈ E : T (s , e) = true ⇔ s · e ∈ σ

The rows of the table are the elements of (S ∪ S · OAPA), while the columns
are the elements of E . Finally T denotes the table entries.

Let us define a function row(s) for any s ∈ S ∪ S · OAPA as follows:

∀ e ∈ E : row(s)(e) = T (s , e)

A table is closed if for each s ·mOmP ∈ S ·OAPA such that T (s , ε) = true, there
is some s ′ ∈ S such that row(s ′) = row(s · mOmP). A table is consistent if for
each s , s ′ ∈ S such that row(s) = row(s ′), either T (s , ε) = T (s ′, ε) = false, or
for each mOmP ∈ OAPA, we have that row(s · mOmP) = row(s ′ · mOmP).

We define an equivalence relation ≡ over sequences in S ∪ S ·OAPA such that
s ≡ s ′ iff row(s) = row(s ′). Denote by [s] the equivalence class which includes
s . Given a closed and consistent table (S ,E ,T), L∗ constructs a candidate DFA

Assume-Guarantee Software Verification Based on Game Semantics 539

D = (Q , q0, OAPA, δ) as follows: Q = {[s] | s ∈ S ,T (s , ε) = true}, q0 = [ε], and
for every s ∈ S and mOmP ∈ OAPA, the transition from [s] on input mOmP

is enabled iff T (s · mOmP , ε) = true and then δ([s],mOmP) = [s · mOmP]. The
facts that the table is closed and consistent guarantee that the transition relation
is well-defined. All states in the automaton are accepting, since the language we
learn is prefix closed. Note that every transition in this automaton is labelled by
two-letters sequence: an Opponent and a Player move.

let L∗(S ,E) be
repeat :

Update T using queries
while (S ,E ,T) is not consistent or not closed do

if (S ,E ,T) is not consistant then
find s ∈ S , mOmP ∈ OAPA, e ∈ E :

row(s) = row(s ′) and T (s · mOmP , e) �= T (s ′ · mOmP , e)
E = E ∪ {mOmP · e}
Update T using queries

if (S ,E ,T) is not closed then
find s ∈ S , mOmP ∈ OAPA

s · mOmP �∈ [t], for all t ∈ S
S = S ∪ {s · mOmP}
Update T using queries

D = MakeAutomaton(S ,E ,T)
if D is correct then

return D
else

let c be reported counterexample
foreach (s ∈ even prefix(c) and s �∈ S) S = S ∪ {s}

Fig. 2. L∗ algorithm

Fig. 2 contains the L∗ algorithm. Each iteration of this algorithm starts with
either a table with S = E = {ε}, or a table which was prepared in the previous
step. Then T is updated using membership queries until the table is consistent
and closed. Next a candidate automaton D is proposed and an equivalence query
with D is made. If the answer for the equivalence query is true, L∗ terminates
and returns the automaton D . Otherwise, L∗ analyzes the counterexample c
reported by the Teacher and adds all even-length prefixes of c to S . Then, a new
iteration is started.

L∗ is guaranteed to construct a minimal DFA equivalent to the unknown
strategy using at most n −1 equivalence queries where n is the number of states
in the minimal DFA, and in time polynomial in n and the length of the longest
counterexample provided by the Teacher.

Each new call to L∗ starts normally with S = E = {ε}. But in cases where a
previously learned candidate exists, we want to start the algorithm by reusing
the information proposed in the previous table. Thus with this dynamic version

540 A. Dimovski and R. Lazić

of L∗, we try to speed up the learning by reusing the previously inferred sets S
and E for strategy σ, to learn a new modified strategy σ′ which differs slightly
from σ. We apply this optimisation using the fact that if L∗ starts with any non-
empty valid table (i.e. valid function T) then it will terminate with a correct
result [7]. A table is said to be valid if the answers to the membership queries
for all sequences in the table are correct with respect to the unknown language
which is learned by L∗.

We can apply some further optimizations to the L∗ algorithm specific for the
languages we learn. Since the sequences from an strategy are valid plays, we test
for membership only valid plays. All other sequences are certainly not in the
strategy, and they are marked as false without any checks. Then, a prefix closed
language has the property that extensions of rejected sequences are rejected, i.e.,
if s �∈ σ, then no extension of s is in σ. Therefore, since the language we learn is
prefix closed, before any membership query s ∈ σ, we first test whether it is an
extension of a sequence already observed to be rejected. If so, we add the result
immediately to the table.

5 Compositional Verification

In this section we describe in detail the compositional verification procedure
which combines assume-guarantee reasoning and abstraction refinement.

5.1 Overview

We first examine how the game semantics of β-normal AIA2 terms Γ � M : B
is obtained. Since terms are interpreted recursively over the typing rules, con-
sider a derivation tree of such a term Γ � M : B . At the leaves, we have base
subterms, which are language constants and free identifiers, and are interpreted
by appropriate constant and identity strategies. At each node, there is a sub-
term obtained by a language construct c from some children subterms M1, . . . ,
Mn . Then, c(M1, . . . ,Mn) is interpreted by composing the interpretations of the
subterms and of the construct σc:

�c(M1, . . . ,Mn)� = (�M1�, . . . , �Mn�) o
9 σc = (�M1�

†, . . . , �Mn�†) ; σc

We also note that † is applied only to strategies σ for games of the form
�Γ � ⇒ �B ′�, where B ′ are base types. The games �B ′� are flat, i.e. all their
questions are initial and Player moves can only be answers. So σ† consists of
iterated plays of σ, such that a new play of σ can be started only when the
previous one is completed. Basically, σ† contains plays of the form s1 . . . sk sk+1
where each si is a play of σ and s1, . . . , sk are complete. That is a regular
language operation.

Now, for any strategies σ1, . . . , σn and τ , we have
(
(σ†

1, . . . , σ
†
n) ; τ

)† =
(σ†

1, . . . , σ
†
n) ; τ† [3]. By thus distributing † over ; , we conclude that the game

semantics of Γ � M : B can be obtained by repeatedly applying ; to promoted

Assume-Guarantee Software Verification Based on Game Semantics 541

strategies for base subterms and language constructs. In other words, † does not
need to be applied to any composite strategy.

By the same argument, if Γ ′ � N : B ′ is a subterm of Γ � M : B , the game
semantics of Γ � M : B is given by:

�Γ � M [N] : B� = �Γ � M [−] : B�(�Γ ′ � N : B ′�†)

where �Γ � M [−] : B�(σ) is an operator on regular languages, which is obtained
from the game semantic definitions for Γ � M : B by replacing the promoted
interpretation of the subterm Γ ′ � N : B ′ by σ, and in which only ; is applied
to languages obtained from σ.

To check safety of �Γ � M [N] : B�, we use the concept of assume-guarantee
(AG) reasoning. We define an assumption for a game A as a prefix-closed non-
empty set of even-length sequences from (OAPA)∗.

Let σ be an assumption for �Γ ′� ⇒ !�B ′�. We use the following AG rule:

�Γ � M [−] : B�(σ) is SAFE
�Γ ′ � N : B ′�† ≤ σ

�Γ � M [N] : B� is SAFE

The rule states that if there is an assumption σ for �Γ ′� ⇒ !�B ′�, such that
�Γ � M [−] : B�(σ) is safe and σ is an abstraction of �Γ ′ � N : B ′�†, then
�Γ � M [N] : B� is safe. Our goal is to construct such an assumption σ.

Theorem 2. The AG rule is sound and complete.

Proof. By monotonicity of composition of strategies with respect to the ≤ or-
dering, we have that if σ ≤ σ′ then �Γ � M [−] : B�(σ) ≤ �Γ � M [−] : B�(σ′).
To establish soundness, we use the fact that if σ′ is safe and σ ≤ σ′ then σ is
also safe. Completeness follows by taking σ = �Γ ′ � N : B ′�†. ��

For any operator �Γ � M [−] : B�, where the hole − is in the place of a subterm
of type Γ ′ � B ′, we define the weakest safe strategy σW : �Γ ′� ⇒!�B ′� as follows.
Given an even-length play s of �Γ ′� ⇒!�B ′�, let τs be the strategy consisting of
s and all its even-length prefixes. Let σW consist of all s such that �Γ � M [−] :
B�(τs) is safe.

Proposition 2. For any AIA2 term with a hole Γ � M [−] : B, σW is a regular
language.

By the definitions of �Γ � M [−] : B� and ; , we have that, for any strategy
σ : �Γ ′� ⇒!�B ′�,

�Γ � M [−] : B�(σ) =
⋃

{�Γ � M [−] : B�(τs) | s ∈ σ}

Hence, �Γ � M [−] : B�(σ) is safe if and only σ ≤ σW . For this strategy σW , the
AG rule is guaranteed to return conclusive results: either the resulting term is
safe or unsafe, and in the latter case a counterexample is reported. We use the
L∗ algorithm to learn σW .

542 A. Dimovski and R. Lazić

The verification procedure CompVer which uses the AG rule is presented
in Fig. 3. Given two terms Γ � M [−] : B and Γ ′ � N : B ′, it checks safety
of Γ � M [N] : B . The procedure uses an AGCheck algorithm, and iteratively
performs the following steps:

1. Let �Γ1 � M1[−] : B1� and �Γ ′
1 � N1 : B ′

1� be obtained by data abstraction,
and S 1

1 = E1
1 = {ε}.

2. Apply AGCheck on �Γi � Mi [−] : Bi� and �Γ ′
i � Ni : B ′

i �, using S 1
i and

E1
i . If the result is true, then terminate with answer SAFE. Otherwise, a

counterexample c is returned as well as updated values of S k
i and E k

i .
3. If c is a nondeterministic (i.e. spurious) play, obtain �Γi+1 � Mi+1[−] : Bi+1�

and �Γ ′
i+1 � Ni+1 : B ′

i+1� by refining the abstractions in the current terms
which were involved in causing the nondeterminism in c. Set S 1

i+1 = S k
i and

E1
i+1 = E k

i
3, and repeat from 2.

4. Otherwise, c is deterministic (i.e. genuine) and the procedure terminates with
answer UNSAFE.

L*

(S E ,T)i

k k k
, i i

� � ��� []- � ����’ ’�

[]� �i i� []- []�� i�’i

Data Abstraction

AGCheck

Assump �i
k
[]� � �i i� []-)(i

k
SAFE ?

[]� 	 �� i i
k

?�’i
�

true

false c

true

SAFE

[]� �i i� []- ()
c SAFE ?
false c

true

false c’
c’ is genuine?

UNSAFEtrue

Refinement
i:=i+1

S =S , E =E

k:=1

1 k 1 k

i i i i

false

Fig. 3. The compositional verification procedure CompVer

We say that a play is nondeterministic if it contains a special marker move nd ,
which identifies points in plays at which abstraction gives rise to nondeterminism.
This happens when an arithmetic/logic operation produces more than one result.
3 If some sequences in S k

i (E k
i) contain abstract values whose abstractions are refined,

we replace them with sequences which are compatible with newly refined abstrac-
tions.

Assume-Guarantee Software Verification Based on Game Semantics 543

We continue by describing the AGCheck algorithm. Details of the data ab-
straction procedure and the abstraction refinement process are beyond the scope
of this paper and can be found in [11].

5.2 Assume-Guarantee Algorithm

The AGCheck algorithm takes as inputs �Γi � Mi [−] : Bi� and �Γ ′
i � Ni : B ′

i � as
well as S 1

i and E1
i , and returns as answer true or a counterexample. AGCheck is

actually the L∗ algorithm given in Fig. 2, where the membership and equivalence
queries are answered using model checking. AGCheck proceeds as follows:

1. Generate a candidate assumption σk
i using L∗.

2. If �Γi � Mi [−] : Bi�(σk
i) is not safe, then return a counterexample to the L∗

algorithm, set k := k + 1 and repeat from 1.
3. If �Γ ′

i � Ni : B ′
i �

† ≤ σk
i is true, terminate with answer true.

4. Otherwise, among the even-length counterexamples from �Γ ′
i � Ni : B ′

i �
†,

report a deterministic one, c. If such one does not exist, then report a non-
deterministic one, c.

5. Generate a strategy τc from the sequence c which contains c and all its even-
length prefixes. If �Γi � Mi [−] : Bi�(τc) is safe, then report c to L∗, set
k := k + 1 and repeat from 1.

6 Otherwise, terminate reporting a deterministic counterexample c′. If such one
does not exist, report a nondeterministic play c′.

If in Step 2 a counterexample c is returned to L∗, then c ∈ σk
i \σW , i.e. the

current assumption σk
i is too weak and it has to be strengthened by removing

some sequences from it. Similarly, if in Step 5 a counterexample c is reported
to L∗, then c ∈ σW \σk

i , i.e. the current σk
i must be weakened by adding some

sequences.
In the above procedure, L∗ iteratively learns the strategy σW , but the proce-

dure terminates as soon as conclusive results are obtained. This is often before
the weakest safe strategy σW is computed by L∗. The Teacher which interacts
with L∗ is implemented using model checking. To answer a membership query
for a sequence s , the Teacher first builds a strategy τs = {s ′ | s ′ �even s}. The
Teacher then model checks �Γ � M [−]�(τs) for safety. If true is returned, then
s ∈ σW and the Teacher answers true, otherwise it answers false. An equiva-
lence query is answered by model-checking two premises of the AG rule in Steps
2 and 3. If both checks succeed, then the answer is true, otherwise either a
counterexample is reported to L∗ or an unsafe counterexample is found.

Theorem 3. Given �Γi � Mi [−] : Bi� and �Γ ′
i � Ni : B ′

i �, the AGCheck
algorithm terminates with either true or an unsafe play from �Γi � Mi [Ni] : Bi�.

Proof. The algorithm returns true when both premises of the AG rule return
true, and therefore correctness is guaranteed by the AG rule. An unsafe play
is returned when there is a sequence s of (�Γ ′

i � Ni�)† which, when applied to
�Γi � Mi [−]� produces an unsafe play, which implies that �Γi � Mi [Ni] : Bi� is
not safe.

544 A. Dimovski and R. Lazić

(b)

ndrun run
� done

�

done

abortreadx Zx ; ; cell� x,0

(a)

run
runf,1

done

donef

runf

readx

donef,1

writeZxZx okx

Fig. 4. Strategies at AR iteration 1: (a) �f � M [−]�(σ) (b) �f , x � f (x := x + 1)�

Termination of AGCheck algorithm is implied by the termination of the L∗

algorithm. At any iteration, AGCheck either terminates or provides a coun-
terexample to L∗. Thus, L∗ will eventually produce σW at some iteration and
the algorithm will return conclusive results and terminate. ��
Theorem 4. If CompVer terminates, its answer is correct.

Proof. This follows from the correctness of the abstraction refinement procedure,
which was shown in [11], and Theorem 3. ��

5.3 Example

Consider the term
f : com → com � newint x := 0 in

f (x := x + 1) ;
if (x == 0) then abort;

in which x is a local variable, and f is a non-local (safe) function. We want to
check whether this term is safe from terminating abnormally for all safe instan-
tiations of f . The program is not safe if function f does not use its argument at
all.

We start with applying the coarsest abstraction [] to x , which means that x
can only have the value Z (i.e. a nondeterministic choice over all integers).

Let the arbitrary subterm N be f (x := x + 1). The model of the whole term
is obtained by composing the model for the scope of variable declaration with
the strategy cellx ,0, which is used for remembering the initial (0) or the most
recently written value into the variable x . This strategy ensures “good variable”
behavior of x .

In Fig. 4 are shown the models �f � M [−]�(σ) and �f , x � f (x := x + 1)� at
the first Abstraction Refinement iteration. The nd move 4 in the first strategy
4 It is neither Opponent nor Player, but a special marker move.

Assume-Guarantee Software Verification Based on Game Semantics 545

T 1
1 E1

1

ε

ε true
S1

1 run · done false
run · done false
run · readx true

S1 · OAPA run · writeZx true
run · runf true

run readx

run runf

run writeZx

Fig. 5. Observation table and assumption at AR iteration 1

; ; cell� x,0

(a)

run run
� done

�

done

abort

readx

0x

(>0)x

(<0)x

(b)

done

run
runf,1

donef

runf

readx

donef,1

write>0x

0x

okx

(>0)x

(<0)x

nd

write0x

write<0x

Fig. 6. Strategies at AR iteration 2: (a) �f � M [−]�(σ) (b) �f , x � f (x := x + 1)�

run readx

run runf

run {write>0 ,write0 ,write<0 }x xx

Fig. 7. Assumption at AR iteration 2

marks that nondeterminism has occurred due to abstraction. In this case, the
guard of ‘if’ command has been evaluated nondeterministically to true or false,
since the value of x might be any integer.

546 A. Dimovski and R. Lazić

At each iteration, L∗ updates its observation table and constructs a candidate
assumption whenever the table becomes consistent and closed. The first such
table produced and its associated assumption are given in Fig. 5. Note that in
observation tables we list only sequences from S · OAPA which are valid plays,
and all other sequences are false by default. The equivalence query is then asked.
The second AG premise fails and the Teacher returns a negative answer with a
counterexample s = 〈run · runf · donef · done〉, which is not safe when applied to
�f � M [−]�. Thus, AGCheck reports s ′ = 〈run · runf · donef · nd · abort〉. Since
this play is nondeterministic, our procedure decides to refine abstractions that
caused the nondeterminism in s ′ and to continue. In this case, the abstraction
of x is refined to [0, 0], which contains three possible values: < 0, 0 and > 0.

At the second abstraction refinement iteration, the strategies �f � M [−]�(σ)
and �f , x � f (x := x + 1)� are given in Fig. 6.

Since we use a dynamic version of L∗, it starts with an observation table
where S 1

2 and E1
2 are the same as in the previous table T 1

1 . The next candidate
assumption is shown in Fig. 7. The second AG rule premise fails giving s =
〈run · runf · donef · done〉. Now, AGCheck reports a genuine counterexample
s ′ = 〈run · runf · donef · abort〉, and the procedure terminates informing that the
input term is not safe.

6 Implementation

We implemented the compositional verification procedure in the GameChecker

tool [12]. GameChecker compiles an abstracted open program into a process
in the CSP process algebra (e.g. [22]), whose finite traces set represents the
game-semantic model of the program. Membership and equivalence queries are
answered using the FDR refinement checker [13]. If a counterexample is reported
by the procedure, GameChecker is used to analyse the counterexample and
do abstraction refinement.

Consider the following implementation of a stack of maximum size n (a meta
variable). After implementing the stack by a sequence of local declarations, we
export the functions push(x) and pop by calling ANALYSE with arguments
push(p) and pop. In effect, the model contains all interleavings of calls to push(p)
and pop, corresponding to all possible behaviours of the non-local expression p
and non-local function ANALYSE.

empty : com, overflow : com, p : exp int,
ANALYSE(com, exp int) : com �
new int buffer[n] := 0 in new int top := 0 in
let com push(int x) {

if (top == n) then overflow else {buffer[top] := x ; top := top + 1}} in
let exp int pop {

if (top == 0) then empty else {top := top − 1; return buffer[top + 1]}} in
ANALYSE(push(p), pop)

Assume-Guarantee Software Verification Based on Game Semantics 547

Table 1. Experimental results for checking a stack implementation

empty overflow
n Direct AG Direct AG
3 271 107 286 147

10 306 135 937 441
15 331 155 1462 651
25 381 195 2662 1071

By replacing the free identifier empty (resp. overflow) with the abort command,
we can check the safety property that there are no reads from empty stacks (resp.
writes to full stacks). Both errors are present for any n. For the ‘empty’ error,
a genuine counterexample is reported after refining the abstraction of top to
[0, 0]. For the ‘overflow’ error, the abstraction is [0,n]. The counterexamples
correspond to a single call of the pop method (resp. n + 1 consecutive calls of
the push method) after which abort is executed. We applied the AG procedure
by learning an appropriate assumption for the push (resp. pop) method. In both
cases, we obtain conclusive assumptions with 0 states, since counterexamples are
reported for all valid plays of the subterms we learn.

Table 1 contains the experimental results for checking the two properties
by using the AG procedure and the direct verification procedure without AG
reasoning [12]. We list the size of the largest generated transition system in each
case for different values of n.

7 Conclusion

This paper presents a fully compositional approach for verifying safety proper-
ties of open programs. Game semantics is used for compositional modelling of
programs and an automated assume-guarantee procedure with learning is used
for compositional verification.

Important topics for future work are extending data abstractions to arbitrary
predicates, dealing with concurrent programs, and using assume-guarantee rea-
soning for verifying liveness properties.

References

1. S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Applying Game
Semantics to Compositional Software Modeling and Verification. In Proceedings
of TACAS, LNCS 2988, (2004), 421–435.

2. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF. Infor-
mation and Computation, 163(2), (2000).

3. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions. In P.W.O’Hearn and
R.D.Tennent, editors, Algol-like languages. (Birkhaüser, 1997).

4. R. Alur, P. Madhusudan, and W. Nam. Symbolic Compositional Verification by
Learning Assumptions. In Proceedings of CAV, LNCS 3576, (2005), 548–562.

548 A. Dimovski and R. Lazić

5. D. Angluin. Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation, 75(2), (1987), 87–106.

6. T. Ball and S. K. Rajamani. Automatically Validating Temporal Safety Properties
of Interfaces. In Proceedings of SPIN, LNCS 2057, (2001), 103–122.

7. S. Chaki, E. Clarke, N. Sharygina, and N. Sinha. Dynamic Component Sub-
stiutability Analysis. In Proceedings of FM, LNCS 3582, (2005), 512–528.

8. E.M. Clarke, O. Grumberg and D. Peled, Model Checking. (MIT Press, 2000).
9. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning Assumptions

for Compositional Verification. In Proceedings of TACAS, LNCS 2619, (2003),
331–346.

10. A. Dimovski and R. Lazic. CSP Representation of Game Semantics for Second-
Order Idealized Algol. In Proceedings of ICFEM, LNCS 3308, (2004), 146–161.

11. A. Dimovski, D. R. Ghica, and R. Lazic. Data-Abstraction Refinement: A Game
Semantic Approach. In Proceedings of SAS, LNCS 3672, (2005), 102–117.

12. A. Dimovski, D. R. Ghica, and R. Lazic. A Counterexample-Guided Refinement
Tool for Open Procedural Programs. In Proceedings of SPIN, LNCS 3925, (2006).

13. Formal Systems (Europe) Ltd (http://www.fsel.com), Failures-Divergence Refine-
ment: FDR2 Manual, 2000.

14. D. R. Ghica and G. McCusker. The Regular-Language Semantics of Second-order
Idealized Algol. Theoretical Computer Science 309 (1–3), (2003), 469–502.

15. A. Groce, D. Peled, and M. Yannakakis. Adaptive Model Checking. In Proceedings
of TACAS, LNCS 2280, (2002), 357–370.

16. R. Harmer. Games and Full Abstraction for Nondeterministic Languages. PhD
thesis, Imperial College, 1999.

17. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification with
BLAST. In Proceedings of SPIN, LNCS 2648, (2003), 235–239.

18. J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I, II, and III.
Information and Computation 163, (2000), 285–400.

19. J. Laird. A Fully Abstract Game Semantics of Local Exceptions. In Proceedings
of LICS, (2001), 105–114.

20. A. Pnueli. In Transition from Global to Modular Temporal Reasoning about Pro-
grams. Logic and Models of Concurrent Systems 13, (1984), 123–144.

21. R.L. Rivest and R.E. Schapire. Inference of finite automata using homing se-
quences. Information and Computation, 103(2), (1993), 299–347.

22. A. W. Roscoe. Theory and Practice of Concurrency. (Prentice-Hall, 1998).

	Introduction
	Related Work

	The Programming Language
	Game Semantics of AIA
	The Learning Algorithm
	Compositional Verification
	Overview
	Assume-Guarantee Algorithm
	Example

	Implementation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

