
ar
X

iv
:1

80
9.

06
33

6v
1

 [
cs

.P
L

]
 1

7
Se

p
20

18

Verification of High-Level Transformations with
Inductive Refinement Types

Ahmad Salim Al-Sibahi
IT University of Copenhagen
University of Copenhagen

Skanned.com
Denmark

ahmad@{di.ku.dk,skanned.com}

Thomas P. Jensen
Inria Rennes

France
thomas.jensen@inria.fr

Aleksandar S. Dimovski
IT University of Copenhagen

Denmark
Mother Teresa University, Skopje

Macedonia
aleksandar.dimovski@unt.edu.mk

Andrzej Wąsowski
IT University of Copenhagen

Denmark
wasowski@itu.dk

Abstract

High-level transformation languages like Rascal include ex-
pressive features formanipulating large abstract syntax trees:
first-class traversals, expressive patternmatching, backtrack-
ing and generalized iterators. We present the design and
implementation of an abstract interpretation tool, Rabit, for
verifying inductive type and shape properties for transfor-
mations written in such languages. We describe how to per-
form abstract interpretation based on operational semantics,
specifically focusing on the challenges arising when analyz-
ing the expressive traversals and pattern matching. Finally,
we evaluate Rabit on a series of transformations (normal-
ization, desugaring, refactoring, code generators, type in-
ference, etc.) showing that we can effectively verify stated
properties.

CCS Concepts • Theory of computation → Program

verification; Program analysis; Abstraction; Functional
constructs; Program schemes; Operational semantics; Control
primitives; • Software and its engineering→Translator

writing systems and compiler generators; Semantics;

Keywords transformation languages, abstract interpreta-
tion, static analysis

ACM Reference Format:

Ahmad SalimAl-Sibahi, Thomas P. Jensen, Aleksandar S. Dimovski,
and Andrzej Wąsowski. 2018. Verification of High-Level Transfor-
mations with Inductive Refinement Types. In Proceedings of the

GPCE ’18, November 5–6, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 17th ACM SIGPLAN International Conference on Gen-

erative Programming: Concepts and Experiences (GPCE ’18), November 5–6,

2018, Boston, MA, USA, h�ps://doi.org/10.1145/3278122.3278125.

17thACMSIGPLAN International Conference onGenerative Program-

ming: Concepts and Experiences (GPCE ’18), November 5–6, 2018,

Boston,MA, USA.ACM,NewYork,NY, USA, 19 pages. h�ps://doi.org/10.1145/3278122.3278125

1 Introduction

Transformations play a central role in software development.
They are used, amongst others, for desugaring, model trans-
formations, refactoring, and code generation. The artifacts
involved in transformations—e.g., structured data, domain-
specific models, and code—often have large abstract syn-
tax, spanning hundreds of syntactic elements, and a corre-
spondingly rich semantics. Thus, writing transformations
is a tedious and error-prone process. Specialized languages
and frameworks with high-level features have been devel-
oped to address this challenge of writing and maintaining
transformations. These languages include Rascal [31], Strat-
ego/XT [11], TXL [15], Uniplate [34] forHaskell, and Kiama [46]
for Scala. For example, Rascal combines a functional core
language supporting state and exceptions, with constructs
for processing of large structures.

1 public Script flattenBlocks(Script s) {

2 solve(s) {

3 s = bottom-up visit(s) {

4 case stmtList: [*xs,block(ys),*zs] =>

5 xs + ys + zs

6 }

7 }

8 return s;

9 }

Figure 1. Transformation in Rascal that flattens all nested
blocks in a statement

http://arxiv.org/abs/1809.06336v1
https://doi.org/10.1145/3278122.3278125
https://doi.org/10.1145/3278122.3278125

GPCE ’18, November 5–6, 2018, Boston, MA, USA A. S. Al-Sibahi, T. P. Jensen, A. S. Dimovski and A. Wąsowski

Figure 1 shows an example Rascal transformation program
taken from a PHP analyzer.1 This transformation program
recursively flattens all blocks in a list of statements. The pro-
gram uses the following core Rascal features:

• A visitor (visit) to traverse and rewrite all statement
lists containing a block to a flat list of statements. Visi-
tors support various strategies, like the bottom-up strat-
egy that traverses the abstract syntax tree starting from
leaves toward the root.
• An expressive pattern matching language is used to
non-deterministically find blocks inside a list of state-
ments. The starred variable patterns *xs and *zsmatch
arbitrary number of elements in the list, respectively
before and after the block(ys) element. Rascal sup-
ports non-linearmatching, negativematching and spec-
ifying patterns that match deeply nested values.
• The solve-loop (solve) performing the rewrite until a
fixed point is reached (the value of s stops changing).

To rule out errors in transformations, we propose a static
analysis for enforcing type and shape properties, so that tar-
get transformations produce output adhering to particular
shape constraints. For our PHP example, this would include:

• The transformation preserves the constructors used
in the input: does not add or remove new types of PHP
statements.
• The transformation produces flat statement lists, i.e.,
lists that do not recursively contain any block.

To ensure such properties, a verification techniquemust rea-
son about shapes of inductive data—also inside collections
such as sets and maps—while still maintaining soundness
and precision. It must also track other important aspects,
like cardinality of collections, which interact with target lan-
guage operations including pattern matching and iteration.
In this paper, we address the problem of verifying type

and shape properties for high-level transformations written
in Rascal and similar languages.We show how to design and
implement a static analysis based on abstract interpretation.
Concretely, our contributions are:

1. An abstract interpretation-based static analyzer—Rascal
ABstract Interpretation Tool (Rabit)—that supports in-
ferring types and inductive shapes for a large subset
of Rascal.

2. An evaluation of Rabit on several program transfor-
mations: refactoring, desugaring, normalization algo-
rithm, code generator, and language implementation
of an expression language.

3. A modular design for abstract shape domains, that
allows extending and replacing abstractions for con-
crete element types, e.g. extending the abstraction for
lists to include length in addition to shape of contents.

1h�ps://github.com/cwi-swat/php-analysis

1 data Nat = zero() | suc(Nat pred);

2 data Expr = var(str nm) | cst(Nat vl)

3 | mult(Expr el, Expr er);

4

5 Expr simplify(Expr expr) =

6 bottom-up visit (expr) {

7 case mult(cst(zero()), y) => cst(zero())

8 case mult(x, cst(zero())) => cst(zero())

9 };

Figure 2. The running example: eliminating multiplications
by zero from expressions

4. Schmidt-style abstract operational semantics [43] for
a significant subset of Rascal adapting the idea of trace
memoization to support arbitrary recursive calls with
input from infinite domains.

Together, these contributions show feasibility of applying
abstract interpretation for constructing analyses for expres-
sive transformation languages and properties.
We proceed by presenting a running example in Sect. 2.

We introduce the key constructs of Rascal in Sect. 3. Sec-
tion 4 describes themodular construction of abstract domains.
Sections 5 to 8 describe abstract semantics. We evaluate the
analyzer on realistic transformations, reporting results in
Sect. 9. Sections 10 and 11 discuss related papers and con-
clude.

2 Motivation and Overview

Verifying types and state properties such as the ones stated
for the program of Fig. 1 poses the following key challenges:

• The programs use heterogeneous inductive data types,
and contain collections such as lists, maps and sets,
and basic data such as integers and strings. This com-
plicates construction of the abstract domains, since
one shall model interaction between these different
types while maintaining precision.
• The traversal of syntax trees depends heavily on the
type and shape of input, on a complex program state,
and involves unbounded recursion. This challenges the
inference of approximate invariants in a procedure
that both terminates and provides useful results.
• Backtracking and exceptions in large programs intro-
duce the possibility of state-dependent non-local jumps.
This makes it difficult to statically calculate the con-
trol flow of target programs and have a compositional
denotational semantics, instead of an operational one.

Figure 2 presents a small pedagogical example using visitors.
The program performs expression simplification by travers-
ing a syntax tree bottom-up and reducingmultiplications by
constant zero. We now survey the analysis techniques con-
tributed in this paper, explaining them using this example.

https://github.com/cwi-swat/php-analysis

Verification of High-Level Transformations ... GPCE ’18, November 5–6, 2018, Boston, MA, USA

Inductive refinement types Rabit works by inferring an
inductive refinement type representing the shape of possi-
ble output of a transformation given the shape of its input.
It does this by interpreting the simplification program ab-
stractly, considering all possible paths the program can take
for values satisfying the input shape (any expression of type
Expr in this case). The result of running Rabit on this case
is:

success cst (Nat) ≀ var (str) ≀mult (Expr′, Expr′)

fail cst (Nat) ≀ var (str) ≀mult (Expr′, Expr′)

where Expr′ = cst (suc (Nat)) ≀ var (str) ≀mult (Expr′, Expr′).
We briefly interpret how to read this type. The bar ≀ de-

notes a choice between alternative constructors. If the input
was rewritten during traversal (success, the first line) then
the resulting syntax tree contains nomultiplications by zero.
All multiplications may only involve Expr′, which disallows
the zero constant at the top level. Observe this in the last al-
ternative mult (Expr′, Expr′) that contains only expressions
of type Expr′, which in turn only allows multiplications by
constants constructed using suc (Nat) (that is ≥ 1). If the
traversal failed to match (fail, the second line), then the in-
put did not contain any multiplication by zero to begin with
and so does not the output, which has not been rewritten.
The success and failure happen to be the same for our ex-

ample, but this is not necessarily always the case. Keeping
separate result values allows retaining precision throughout
the traversal, better reflecting concrete execution paths. We
now proceed discussing how Rabit can infer this shape us-
ing abstract interpretation.

Abstractly interpreting traversals The core idea of ab-
stractly executing a traversal is similar to concrete execu-
tion: we recursively traverse the input structure and rewrite
the values that match target patterns. However, because of
abstraction wemust make sure to take into account all appli-
cable paths. Figure 3 shows the execution tree of the traver-
sal on the simplification example (Fig. 2) when it starts with
shapemult (cst (Nat) , cst (Nat)). Since there is only one con-
structor, it will initially recurse down to traverse the con-
tained values (children) creating a new recursion node (yel-
low, light shaded) in the figure (ii) containing the left child
cst (Nat), and then recurse again to create a node (iii) con-
taining Nat. Observe here that Nat is an abstract type with
two possible constructors (zero, suc (·)), and it is unknown at
time of abstract interpretation, which of these constructors
we have. When Rabit hits a type or a choice between alter-
native constructors, it explores each alternative separately
creating new partition nodes (blue, darker). In our example
we partition the Nat type into its constructors zero (node
iv) and suc (Nat) (node v). The zero case now represents the
first case without children and we can run the visitor oper-
ations on it. Since no pattern matches zero it will return a
fail zero result indicating that it has not been rewritten. For

mult (cst (Nat) , cst (Nat))
i

cst (Nat)
ii

recur
se

· · ·

recurse

Nat
iii

recurse

zero
iv

suc (Nat)
v

part
ition partition

fail z
ero

Nat
vi

recurse

.

.

.
.
.
.

parti
tion partition

Figure 3. Naively abstractly interpreting the sim-
plification example from Fig. 2 with initial input
mult (cst (Nat) , cst (Nat)). The procedure does not ter-
minate because of infinite recursion on Nat.

the suc (Nat) case it will try to recurse down to Nat (node
vi) which is equal to (node iii). Here, we observe a problem:
if we continue our traversal algorithm as is, we will not ter-
minate and get a result. To provide a terminating algorithm
we will resort to using trace memoization.

Partition-driven trace memoization The idea is to de-
tect the paths where execution recursively meets similar in-
put, merging the new recursive node with the similar previ-
ous one, thus creating a loop in the execution tree [41, 43].
This loop is then resolved by a fixed-point iteration.

In Rabit, we propose partition-driven trace memoization,
which works with potentially unbounded input like the in-
ductive type refinements that are supported by our abstrac-
tion. We detect cycles by maintaining a memoization map

which for each type—used for partitioning—stores the last
traversed value (input) and the last result produced for this
value (output). This memoization map is initialized to map
all types to the bottom element (⊥) for both input and out-
put. The evaluation is modified to use the memoization map,
so it checks on each iteration the input i against the map:

• If the last processed refinement type representing the
input i ′ is greater than the current input (i ′ ⊒ i), then
it uses the corresponding output; i.e., we found a hit
in the memoization map.
• Otherwise, it will merge the last processed and cur-
rent input refinement types to a new value i ′′ = i ′∇i ,
update the memoization map and continue execution
with i ′′. The operation ∇ is called a widening; it en-
sures that the result is an upper bound of its inputs,
i.e., i ′ ⊑ i ′′ ⊒ i and that the merging will eventually
terminate for the increasing chain of values. Themem-
oization map is updated to map the general type of i ′′

(not refined, for instance Nat) to map to a pair (i ′′,o),
where the first component denotes the new input i ′′

refinement type and the second component denotes

GPCE ’18, November 5–6, 2018, Boston, MA, USA A. S. Al-Sibahi, T. P. Jensen, A. S. Dimovski and A. Wąsowski

the corresponding output o refinement type; initially,
o is set to ⊥ and then changed to the result of execut-
ing input i ′′ repeatedly until a fixed-point is reached.

We demonstrate the trace memoization and fixed-point iter-
ation procedures on Nat in Fig. 4, beginning with the left-
most tree. The expected result is fail Nat, meaning that no
pattern has matched, no rewrite has happened, and a value
of type Nat is returned, since the simplification program
only introduces changes to values of type Expr.
We show the memoization map inside a framed orange

box. The result of the widening is presented below the mem-
oization map. In all cases the widening in Fig. 4 is trivial,
as it happens against ⊥. The final line in node 1 stores the
value oprev produced by the previous iteration of the traver-
sal, to establish whether a fixed point has been reached (⊥
initially).

Trace partitioning We partition [39] the abstract value
Nat along its constructors: zero and suc (·) (Fig. 4). This par-
titioning is key to maintain precision during the abstract
interpretation. As in Fig. 3, the left branch fails immediately,
since no pattern in Fig. 2 matches zero. The right branch
descends into a new recursion over Nat, with an updated
memoization table. This run terminates, due to a hit in the
memoizationmap, returning⊥. After returning, the value of
suc (Nat) should be reconstructed with the result of travers-
ing the child Nat, but since the result is ⊥ there is no value
to reconstruct with, so ⊥ is just propagated upwards. At the
return to the last widening node, the values are joined, and
widen the previous iteration result oprev (the dotted arrow
on top). This process repeats in the second and third iter-
ations, but now the reconstruction in node 3 succeeds: the
child Nat is replaced by zero and fail suc (zero) is returned
(dashed arrow from 3 to 1). In the third iteration, we join and
widen the following components (cf.oprev and the dashed ar-
rows incoming into node 1 in the rightmost column):

[zero ≀ suc (zero) ∇ (zero ⊔ suc (zero≀suc (zero)))] = Nat

Here, the used widening operator [17] accelerates the con-
vergence by increasing the value to represent the entire type
Nat. It is easy to convince yourself, by following the same
recursion steps as in the figure, that the next iteration, us-
ing oprev = Nat will produce Nat again, arriving at a fixed
point. Observe, how consulting the memoization map, and
widening the current value accordingly, allowed us to avoid
infinite recursion over unfoldings of Nat.

Nestingfixed point iterations. When inductive shapes (e.g.,
Expr) refer to other inductive shapes (e.g., Nat), it is neces-
sary to run nested fixed-point iterations to solve recursion
at each level. Figure 5 returns to the more high-level frag-
ment of the traversal ofExpr starting withmult (cst (Nat) , cst (Nat))

as in Fig. 3.We follow the recursion tree along nodes 5, 6, 7, 8,
9, 10, 9, 6 with the same rules as in Fig. 4. In node 10 we run

a nested fixed point iteration on Nat, already discussed in
Fig. 4, so we just include the final result.

Type refinement. The output of the first iteration in node
6 is fail cst (Nat), which becomes the new oprev, and the sec-
ond iteration begins (to the right). After the widening the in-
put is partitioned into e (node 7) and cst (Nat)(node elided).
When the second iteration returns to node 7 we have the fol-
lowing reconstructed value:mult (cst (Nat) , cst (Nat)). Con-
trast this with lines 6-7 in Fig. 2, to see that running the
abstract value against this pattern might actually produce
success. In order to obtain precise result shapes, we refine
the input values when they fail to match a pattern. Our ab-
stract interpreter produces a refinement of the type, by run-
ning it through the pattern matching, giving:

success cst (Nat)

fail mult (cst (suc (Nat)) , cst (suc (Nat)))

The result means, that if the pattern match succeeds then it
produces an expression of type cst (Nat). More interestingly,
if the matching failed neither the left nor the right argument
ofmult (·, ·) could have contained the constant zero—the in-
terpreter captured some aspect of the semantics of the pro-
gram by refining the input type. Naturally, from this point
on the recursion and iteration continues, but we shall aban-
don the example, and move on to formal developments.

3 Formal Language

The presented technique is meant to be general and applica-
ble to many high-level transformation languages. However,
to keep the presentation concise, we focus on few key con-
structs from Rascal [31], relying on the concrete semantics
from Rascal Light [2].
We consider algebraic data types (at) and finite sets (set〈t〉)

of elements of type t . Each algebraic data type at has a set of
unique constructors. Each constructor k(t) has a fixed set of
typed parameters. The language includes sub-typing, with
void and value as bottom and top types respectively.

t ∈ TypeF void | set〈t〉 | at | value

Weconsider the following subset of Rascal expressions: From
left to right we have: variable access, assignments, sequenc-
ing, constructor expressions, set literal expressions, match-
ing failure expression, and bottom-up visitors:

e F x ∈ Var | x = e | e; e | k(e) | {e} | fail | visit e cs

cs F case p ⇒ e

Visitors are a key construct in Rascal. A visitor visit e cs tra-
verses recursively the value obtained by evaluating e (any
combination of simple values, data type values and collec-
tions). During the traversal, case expression cs are applied
to the nodes, and the values matching target patterns are
rewritten. We will discuss a concrete subset of patterns p

Verification of High-Level Transformations ... GPCE ’18, November 5–6, 2018, Boston, MA, USA

input: Nat

Nat 7→⊥, ⊥

widen:⊥∇Nat = Nat

oprev = ⊥
1

zero
2 suc (Nat)

3

pa
rt
.

part.fa
il
ze
ro

input: Nat

Nat 7→Nat, ⊥
4

recurse
hit:⊥

n
o
re
co
n
st
ru
ct
io
n
:
⊥

recurse

input: Nat

Nat 7→⊥, ⊥

widen:⊥∇Nat = Nat

oprev = fail zero
1

output:

fail⊥∇(zero⊔⊥) = fail zero

zero
2 suc (Nat)

3

pa
rt
.

partition

fa
il
ze
ro

input: Nat

Nat 7→Nat, fail zero
4

recursehit:

fail zero

re
co
n
st
ru
ct
io
n
:

fa
il
su
c
(z
er
o
)

input: Nat

Nat 7→⊥, ⊥

widen:⊥∇Nat = Nat

oprev = fail zero ≀ suc (zero)
1

output:

fail zero∇(zero⊔suc (zero)) = fail zero ≀ suc (zero)

zero suc (Nat)
3

pa
rt.

part.fa
il
ze
ro

input: Nat

Nat 7→Nat, fail zero≀suc (zero)
4

recurse

hit:fail zero

≀ suc (zero) re
co
n
st
ru
ct
io
n
:

fa
il
su
c
(z
er
o
≀s
u
c
(z
er
o
))

2

· · · fail Nat

Figure 4. Three iterations of a fixed point computation for input Nat. Iterations are separated by dotted arrows on top

input: e = mult (cst (Nat) , cst (Nat))

Expr 7→⊥, ⊥

Nat 7→⊥, ⊥

widen:⊥∇e = e

oprev = ⊥
5

input: cst (Nat)

Expr 7→e, ⊥

Nat 7→⊥, ⊥

widen: e∇cst (Nat) = e ≀ cst (Nat)

oprev = ⊥
6

re
cu
rs
e

· · ·

recurse

e
7

cst (Nat)
9

p
ar
t.

partition
input: cst (Nat)

Expr 7→e ≀ cst (Nat) , ⊥

Nat 7→⊥, ⊥
8

re
cu
rs
e

hi
t:
⊥

no
reconstr.: ⊥

input:

Nat
10

fail N
at

re
co
n
st
ru
ct
io
n
:

fa
il
cs
t
(N

at
)

input: cst (Nat)

Expr 7→e, ⊥

Nat 7→⊥, ⊥

widen: e∇cst (Nat) = e ≀ cst (Nat)

oprev = fail cst (Nat)
6

output:

fail⊥∇(⊥ ⊔ cst (Nat)) = fail cst (Nat)

e
7

· · ·

p
ar
t.

part.

input: cst (Nat)

Expr 7→e ≀ cst (Nat) , fail cst (Nat)

Nat 7→⊥, ⊥
8

input: cst (Nat)

Expr 7→e ≀ cst (Nat) , fail cst (Nat)

Nat 7→⊥, ⊥
11

re
cu
rs
e recurse

hit
:

fai
l cs

t (N
at)

hit: fail cst (Nat)

reconstruction:

mult (cst (Nat) , cst (Nat))

type

refinement

Figure 5. A prefix of the abstract interpreter run for e = mult (cst (Nat) , cst (Nat)). Fragments of two iterations involving
node 6 are shown, separated by a dotted arrow.

further in Sect. 6. For brevity, we only discuss the bottom-
up visitors in the paper. However, Rabit (Sect. 9) supports
all visitor strategies of Rascal.

Notation We write (x ,y) ∈ f to denote the pair (x ,y) such
that x ∈dom f and y= f (x). Abstract semantic components,
sets, and operations are marked with a hat: â. A sequence of
e1, . . . , en is contracted using an underlining e . The empty
sequence is written by ε , and concatenation of sequences e1
and e2 is written e1, e2. Notation is lifted to sequences in an
intuitive manner: for example given a sequencev , the value
vi denotes the ith element in the sequence, and v :t denotes
the sequence v1 :t1, . . . ,vn :tn .

4 Abstract Domains

Our abstract domains are designed to allow modular com-
position. Modularity is key for transformation languages,
which manipulate a large variety of kinds of values. The
design allows easily replacing abstract domains for particu-
lar types of values, as well as adding support for new value
types. We want to construct an abstract value domain v̂s ∈
�ValueShape which captures inductive refinement types of

form:

atr = k1(v̂s1) ≀ · · · ≀ kn(v̂sn)

where each value v̂si can possibly recursively refer to atr .
Below, we define abstract domains for sets, data types and
recursively defined domains.

GPCE ’18, November 5–6, 2018, Boston, MA, USA A. S. Al-Sibahi, T. P. Jensen, A. S. Dimovski and A. Wąsowski

The modular domain design generalizes parameterized
domains [16] to follow a design inspired by themodular con-
struction of types and domains [7, 14, 44]. The idea is to de-
fine domains parametrically—i.e. in the form F̂(̂E)—so that
abstract domains for subcomponents are taken as parame-
ters, and explicit recursion is handled separately. We use
standard domain combinators [52] to combine the various
domains into our target abstract value domain.

Set shape domain Let Set(E) denote the domain of sets
consisting of elements taken from E. We define abstract fi-
nite sets using abstract elements {ê}[l ;u] from a parameter-
ized domain �SetShape(̂E). The component from the param-
eter domain (̂e ∈ Ê) represents the abstraction of the shape
of elements, and a non-negative interval component [l ;u] ∈
�Interval+ is used to abstract over the cardinality (so l ,u ∈ R

+

and l ≤ u). The abstract set element acts as a reduced prod-
uct between ê and [l ;u] and thus the lattice operations fol-
low directly.
Given a concretization function for the abstract content

domain γ
Ê
∈ Ê → ℘ (E), we can define a concretization

function for the abstract set shape domain to possible finite

sets of concrete elements γ
ŜS
∈ �SetShape(̂E) → ℘ (Set (E)):

γ
ŜS
({ê}[l ;u]) =

{
es

�� es ⊆ γ
Ê
(̂e) ∧ |es | ∈ γ̂

I
([l ;u])

}

Example 4.1. Let �Interval be a domain of intervals of in-
tegers (a standard abstraction over integers). We can con-

cretize abstract elements from �SetShape(�Interval) to a set
of possible sets of integers from ℘ (Set (Z)) as follows:

γ
ŜS
({[42; 43]}[1;2]) = {{42}, {43}, {42, 43}}

Data shape domain Inductive refinement types are de-
fined as a generalization of refinement types [23, 42, 54] that
inductively constrain the possible constructors and the con-
tent in a data structure. We use a parameterized abstraction
of data types �DataShape(̂E), whose parameter Ê abstracts
over the shape of constructor arguments:

d̂∈ �DataShape(̂E) =

{⊥
D̂S
} ∪ {k1(e1)≀ . . . ≀kn(en) | ei∈Ê} ∪ {⊤D̂S}

Wehave the least element⊥
D̂S

and top element⊤
D̂S

elements—
respectively representing no data types value and all data
type values—and otherwise a non-empty choice between
unique (all different) constructors of the same algebraic data
type k1(e1)≀· · ·≀kn(en) (shortened k(e)).We can treat the con-
structor choice as a finite map [k1 7→ e1, . . . ,kn 7→ en], and
then directly define our lattice operations point-wise.
Given a concretization function for the concrete content

domain γ
Ê
∈ Ê → ℘ (E), we can create a concretization

function for the data shape domain

γ
D̂S
∈ �DataShape(̂E) → ℘ (Data(E))

whereData(E) =
{
k(v)

�� ∃ a type at . k(v) ∈ JatK ∧ v ∈ E
}
The

concretization is defined as follows:

γ
D̂S
(⊥

D̂S
) = ∅ γ

D̂S
(⊤

D̂S
) = Data(E)

γ
D̂S
(k1(e1) ≀ · · · ≀ kn(en)) =

{
ki (v)

��� i ∈ [1, n] ∧ v ∈ γÊ(ei)
}

Example 4.2. Wecan concretize abstract data elements �DataShape(�Interval)
to a set of possible concrete data values ℘ (Data(Z)). Con-
sider values from the algebraic data type:

data errorloc = repl() | linecol(int, int)

We can concretize abstracting elements as follows:

γ
D̂S
(repl() ≀ linecol([1; 1], [3; 4])) =

{repl(), linecol(1, 3), linecol(1, 4)}

Recursive shapes Weextend our abstract domains to cover
recursive structures such as lists and trees. Given a type ex-
pression F(X) with a variable X , we construct the abstract
domain as the solution to the recursive equationX = F(X) [44,
47, 52], obtained by iterating the induced map F over the
empty domain 0 and adjoining a new top element to the
limit domain. The concretization function of the recursive
domain follows directly from the concretization function of
the underlying functor domain.

Example 4.3. We can concretize abstract elements of the
refinement type from our running example:

γ
D̂S
(Expre) =

2︷ ︸︸ ︷
cst(suc(suc(zero))),mult(2, 2),

mult(mult(2, 2), 2), . . .

where Expre = cst(suc(suc(zero))) ≀ mult(Expre , Expre) In
particular, our abstract element represents the set of all mul-
tiplications of the constant 2.

Value domains We presented the required components
for abstracting individual types, and now all that is left is
putting everything together. We construct our value shape
domain using choice and recursive domain equations:

�ValueShape =

�SetShape(�ValueShape) ⊕ �DataShape(�ValueShape)

Similarly, we have the corresponding concrete shape domain:

Value = Set (Value) ⊎ Data(Value)

We then have a concretization functionγ
V̂S
∈ �ValueShape→

℘ (Value), which follows directly from the previously de-
fined concretization functions.

Abstract state domains

We now explain how to construct abstractions of states and
results when executing Rascal programs.

Verification of High-Level Transformations ... GPCE ’18, November 5–6, 2018, Boston, MA, USA

Abstract store domain Tracking assignments of variables
is important since matching variable patterns depends on
the value being assigned in the store:

σ̂ ∈ �Store = Var→ {ff,�} × �ValueShape

For a variable x we get σ̂ (x) = (b, v̂s) where b is true if x
might be unassigned, and false otherwise (when x is defi-
nitely assigned). The second component, v̂s is a shape ap-
proximating a possible value of x .
We lift the orderings and lattice operations point-wise

from the value shape domain to abstract stores. We define
the concretization function γ�Store ∈

�Store→ ℘ (Store) as:

γ�Store(σ̂) =

σ

�������

∀x ,b, v̂s. σ̂ (x) = (b, v̂s) ⇒

(¬b ⇒ x ∈ dom σ)

∧ (x ∈ dom σ ⇒ σ (x) ∈ γ
V̂
(v̂s))

Abstract result domain Traditionally, abstract control flow
is handled using a collecting denotational semantics with
continuations, or by explicitly constructing a control flow
graph. These methods are non-trivial to apply for a rich lan-
guage like Rascal, especially considering backtracking, ex-
ceptions and data-dependent control flow introduced by vis-
itors. A nice side-effect of Schmidt-style abstract interpreta-
tion is that it allows handling abstraction of control flow
directly.
Wemodel different type of results—successes, patternmatch

failures, errors directly in a �ResSet domainwhich keeps track
of possible results with each its own separate store. Keeping
separate stores is important to maintain precision around
different paths:

rest ∈ �ResTypeF success | exres

exres F fail | error r̂esv ∈ �ResValF · | v̂s
R̂es ∈ �ResSet = �ResType⇀ �ResVal ×�Store

The lattice operations are lifted directly from the target value
domains and store domains. We define the concretization
function γ

R̂S
∈ �ResultSet→ ℘ (Result × Store):

γ
R̂S
(R̂es) =

{
(rest resv,σ)

�����
(rest, (r̂esv, σ̂)) ∈ R̂es ∧

resv ∈ γ
R̂V
(r̂esv) ∧ σ ∈ γ�Store(σ̂)

}

5 Abstract Semantics

A distinguishing feature of Schmidt-style abstract interpre-
tation is that the derivation of abstract operational rules
from a given concrete operational semantics is systematic
and to a large extent mechanisable [9, 43]. The creative work
is therefore reduced to providing abstract definitions for con-
ditions and semantic operations such as pattern matching,
and defining tracememoization strategies for non-structurally
recursive operational rules, to finitely approximate an infi-
nite number of concrete traces and produce a terminating
static analysis.

e ; σ ===⇒
expr

rest resv ; σ ′ e ; σ̂ ====⇒
a-expr R̂es

same syntax

abstracts input store

abstracts over sets of result values and stores

Figure 6. Relating concrete semantics (left) to abstract se-
mantics (right).

Figure 6 relates the concrete evaluation judgment (left) to
the abstract evaluation judgment (right) for Rascal expres-
sions. Both judgements evaluate the same expression e . The
abstract evaluation judgment abstracts the initial concrete
store σ with an abstract store σ̂ . The result of the abstract
evaluation is a finite result set R̂es, abstracting over possibly
infinitely many concrete result values rest resv and stores σ ′.
R̂es maps each result type rest to a pair of abstract result
value r̂esv and abstract result store σ̂ ′, i.e.:

R̂es = [rest1 7→ (�resv1, σ̂1), . . . , restn 7→ (�resvn, σ̂n)]
There is an important difference in how the concrete and
abstract semantic rules are used. In a concrete operational
semantics a language construct is usually evaluated as soon
as the premises of a rule are satisfied. When evaluating ab-
stractly, we must consider all applicable rules, to soundly
over-approximate the possible concrete executions. To this
end,we introduce a special notation to collect all derivations
with the same input i into a single derivation with outputO
equal to the join of the individual outputs:

{|i ⇒ O|} , O =
⊔
{o |i ⇒ o}

Let’s use the operational rules for variable accesses to illus-
trate the steps in Schmidt-style translation of operational
rules. The concrete semantics contains two rules for vari-
able accesses, E-V-S for successful lookup, and E-V-Er for
producing errors when accessing unassigned variables:

E-V-S
x ∈ dom σ

x ;σ ===⇒
expr

success σ (x);σ

E-V-Er
x < dom σ

x ;σ ===⇒
expr

error;σ

We follow three steps, to translate the concrete rules to ab-
stract operational rules:

1. For each concrete rule, create an abstract rule that
uses a judgment for evaluation of a syntactic form,
e.g., AE-V-S and AE-V-Er for variables.

2. Replace the concrete conditions and semantic opera-
tions with the equivalent abstract conditions and se-
mantic operations for target abstract values, e.g. x ∈
dom σ with σ̂ (x) = (b, v̂s) and a check on b. We ob-
tain two execution rules:

GPCE ’18, November 5–6, 2018, Boston, MA, USA A. S. Al-Sibahi, T. P. Jensen, A. S. Dimovski and A. Wąsowski

AE-V-S
σ̂ (x) = (b, v̂s)

x ; σ̂ =====⇒
a-expr-v

[success 7→ (v̂s, σ̂)]

AE-V-ER
σ̂ (x) = (�, v̂s)

x ; σ̂ =====⇒
a-expr-v

[error 7→ (·, σ̂)]

Observe whenb is true, both a success and failuremay
occur, and we need rules to cover both cases.

3. Create a rule that collects all possible evaluations of
the syntax-specific judgment rules, e.g. AE-V for vari-
ables:

AE-V

{|x ; σ̂ =====⇒
a-expr-v

R̂es
′
|}

x ; σ̂ ====⇒
a-expr

R̂es
′

The possible shapes of the result value depend on the pair
assigned to x in the abstract store. If the value shape of x is⊥,
we drop the success result from the result set. The following
examples illustrate the possible outcome result shapes:

Assigned Value Result Set Rules

σ̂ (x) = (ff,⊥
V̂S
) [] AE-V-S

σ̂ (x) = (ff, [1; 3]) [success 7→ ([1; 3], σ̂)] AE-V-S

σ̂ (x) = (�,⊥
V̂S
) [error 7→ (·, σ̂)] AE-V-S, AE-V-Er

σ̂ (x) = (�, [1; 3])
[success 7→ ([1; 3], σ̂),

error 7→ (·, σ̂)]
AE-V-S, AE-V-Er

It is possible to translate the operational semantics rules
for other basic expressions using the presented steps (see
Appendix B). The core changes are the ones moving from
checks of definiteness to checks of possibility. For example:

• Checking that evaluation of e has succeeded, re-
quires that the abstract semantics uses e; σ̂ ====⇒

a-expr
R̂es

and (success, (v̂s, σ̂ ′)) ∈ R̂es, as compared to
e;σ ===⇒

expr
success v ;σ ′ in the concrete semantics.

• Typing is now done using abstract judgments
v̂s :̂ t and t <̂: t ′. In particular, type t is an abstract sub-
type of type t ′ (t <̂: t ′) if there is a subtype t ′′ of t
(t ′′ <: t) that is also a subtype of t ′ (t ′′ <: t ′). This
implies that t <̂: t ′ and t ≮̂: t ′ are non-exclusive.
• To check whether a particular constructor is possible,
we use the abstract auxiliary function �unfold(v̂s, t)
which produces a refined value of type t if possible—
splitting alternative constructors for data type
values—and additionally produces error if the value
is possibly not an element of t .

6 Pattern Matching

Expressive patternmatching is key feature of high-level trans-
formation languages. Rabit handles the full Rascal pattern
language including type-based matching and deep pattern

matching. For brevity, we discuss a subset, including vari-
ables x , constructor patterns k(p), and set patterns {⋆p}:

p F x | k(p) | {⋆p} ⋆p F p | ⋆x

Rascal allows non-linear matching where the same variable
x can be mentioned more than once: all values matched
against x must have equal values for the match to succeed.
Each set pattern contains a sequence of sub-patterns ⋆p;
each sub-pattern in the sequence is either an ordinary pat-
ternp matched against a single set element, or a star pattern
⋆x to be matched against a subset of elements. Star patterns
can backtrack when pattern matching fails because of non-
linear variable references, or when explicitly triggered by
the fail expression.
This expressiveness poses challenges for developing an

abstract interpreter that is not only sound, but is also suf-
ficiently precise to prove interesting properties. The key as-
pects of Rabit in handling pattern matching is howwe main-
tain precision by refining input values on pattern matching
successes and failures.

6.1 Satisfiability semantics for patterns

We begin by defining what it means that a (concrete/ab-
stract) value matches a pattern. Figure 7a shows the con-
crete semantics for patterns. In the figure, ρ is a binding
environment:

ρ ∈ BindingEnv = Var⇀ Value

A value v matches a pattern p (v |= p) iff there exists a bind-
ing environment ρ that maps the variables in the pattern
to values in dom ρ = vars(p) so that v is accepted by the
satisfiability semantics v |=ρ p as defined in Fig. 7a.
Constructor patternsk(p) accept anywell-typed valuek(v)

of the same constructor whose subcomponentsv match the
sub-patternsp consistently in the same binding environment
ρ. A variable x matches exactly the value it is bound to in
the binding environment ρ. A set pattern {⋆p} accepts any

set of values {v} such that an associative-commutative ar-
rangement of the sub-valuesv matches the sequence of sub-
patterns ⋆p under ρ.

A value sequencev matches a pattern sequence⋆p (v |=⋆

⋆p) if there exists a binding environment ρ such thatdom ρ =

vars(⋆p) and v |=⋆ρ ⋆p. An empty sequence of patterns ε ac-
cepts an empty sequence of values ε . A sequence starting
p,⋆p ′ with an ordinary pattern p matches any non-empty
sequence of values v,v ′ where v matches p and v ′ matches
⋆p ′ consistently under the same binding environment ρ. A
sequence ⋆x ,⋆p ′ works analogously but it splits the value
sequence in two v and v ′, such that x is assigned to v in ρ

and v ′ matches⋆p ′ consistently in ρ.

Example 6.1. We revisit the running example to under-
stand how the data type values are matched. We consider

Verification of High-Level Transformations ... GPCE ’18, November 5–6, 2018, Boston, MA, USA

k(v) |=ρ k(p) iff t are parameter types of k
and v : t ′ and t ′ <: t
and v |=⋆ρ p

v |=ρ x iff ρ(x) = v

{v} |=ρ {⋆p} iff v |=⋆ρ ⋆p

ε |=⋆ρ ε always

v,v ′ |=⋆ρ p,⋆p ′ iff v |=ρ p and v ′ |=⋆ρ ⋆p
′

v,v ′ |=⋆ρ ⋆x, ⋆p
′ iff ρ(x) = {v} and v ′ |=⋆ρ ⋆p

′

(a) Concrete (v |=ρ p reads: v matches p with ρ)

k(v̂s) |̂=ρ̂ k(p) iff t are parameter types of k

and v̂s :̂ t ′ and t ′ <̂: t and v̂s |̂=
⋆

ρ̂ p

v̂s |̂=ρ̂ x iff ρ̂(x) ⊑ v̂s

{v̂s}[l ;u] |̂=ρ̂ {⋆p} iff v̂s, [l ;u] |̂=
⋆

ρ̂ ⋆p

v̂s, [0;u] |̂=
⋆

ρ̂ ε always

v̂s, [l ;u] |̂=
⋆

ρ̂ p,⋆p ′ iff u > 0 and v̂s |̂=ρ̂ p

and v̂s, [l − 1;u − 1] |̂=
⋆

ρ̂ p,⋆p ′

v̂s, [l ;u] |̂=
⋆

ρ̂ ⋆ x,⋆p
′ iff ρ̂(x) = {v̂s′}[l ′;u′]

and l ′ ≤ l and u ′ ≤ u and v̂s′ ⊑ v̂s

and v̂s, [l − u ′;u − l ′] |̂=
⋆

ρ̂ ⋆p
′

(b) Abstract (v̂s |̂=ρ̂ p̂ reads: v̂s may match p̂ with ρ̂)

Figure 7. Satisfiability semantics for pattern matching

matching the following set of expression values:

{

v
︷ ︸︸ ︷
mult (cst (zero) , cst (suc (zero))) , cst (zero)}

against the pattern p = {mult (x ,y) ,⋆w, x} in the environ-
ment ρ = [x 7→ cst (zero) ,y 7→ cst (suc (zero)) ,w 7→ {}].
The matching argument is as follows:

{v} |=ρ p iff v |=⋆ρ mult (x ,y) ,⋆w, x

iff mult (cst (zero) , cst (suc (zero))) |=ρ mult (x ,y)

and cst (zero) |=⋆ρ ⋆w, x

We see that the first conjunct matches as follows:

mult (cst (zero) , cst (suc (zero))) |=ρ mult (x ,y)

iff cst (zero) , cst (suc (zero)) |=⋆ρ x ,y

iff ρ(x) = cst (zero) and ρ(y) = cst (suc (zero))

Similarly, the second matches as follows:

cst (zero) |=⋆ρ ⋆w, x iff ρ(w) = {} and ρ(x) = cst (zero)

The abstract pattern matching semantics (Fig. 7b) is analo-
gous, but with a few noticeable differences. First, an abstract

value v̂s matches a pattern p (v̂s |̂= p) if there exists a more
precise value v̂s′ (so v̂s′ ⊑ v̂s) and an abstract binding en-

vironment ρ̂ with dom ρ̂ = vars(p) so that v̂s′ |̂=ρ̂ p. The
reason for using a more precise shape is the potential loss
of information during over-approximation—a more precise
value might have matched the pattern, even if the relaxed
value does not necessarily. Second, sequences are abstracted
by shape–lengths pairs, which needs to be taken into ac-
count by sequence matching rules. This is most visible in
the very last rule, with a star pattern ⋆x , where we accept
any assignment to a set abstraction v̂s which has a more
precise shape and a smaller length.

6.2 Computing pattern matches

The declarative satisfiability semantics of patterns, albeit
quite clean, is unfortunately not directly computable. In Ra-
bit, we rely on an abstract operational semantics (see ap-
pendix A), translated from the concrete operational pattern
matching semantics [2], using similar technique to the one
presented in Sect. 5. The interesting ideas are in the refining
semantic operators used, which we will discuss further.

Semantic operators with refinement Since Rascal sup-
ports non-linear matching, it becomes necessary to merge
environments computedwhenmatching sub-patterns to check
whether a match succeeds or not. In abstract interpretation,
we can refine the abstract environments when merging for
each possibility. Consider when merging two abstract envi-
ronments, where some variable x is assigned to v̂s in one,
and v̂s′ in the other. If v̂s′ is possibly equal to v̂s, we re-
fine both values using this equality assumption v̂s =̂ v̂s′.
Here, we have that abstract equality is defined as the great-
est lower bound if the value is non-bottom, i.e. v̂s =̂ v̂s′ ,

{v̂s′′ |v̂s′′ = v̂s ⊓ v̂s′ , ⊥}. Similarly, we can also refine both
values if they are possibly non-equal v̂s ,̂ v̂s′. Here, abstract
inequality is defined using relative complements:

v̂s ,̂ v̂s′ ,

{
(v̂s′′, v̂s′)|v̂s′′ = v̂s \ (v̂s ⊓ v̂s′) , ⊥

}
∪

{
(v̂s, v̂s′′)|v̂s′′ = v̂s′ \ (v̂s ⊓ v̂s′) , ⊥

}

In our abstract domains, the relative complement (\) is lim-
ited. We heuristically define it for interesting cases, and oth-
erwise it degrades to identity in the first argument (no re-
finement). There are however useful cases, e.g., for exclud-
ing unary constructors suc (Nat) ≀ zero \ zero = suc (Nat) or
at the end points of a lattice [1; 10] \ [1; 2] = [3; 10].
Similarly, for matching against a constructor pattern k(p),

the core idea is that we should be able to partition our value

GPCE ’18, November 5–6, 2018, Boston, MA, USA A. S. Al-Sibahi, T. P. Jensen, A. S. Dimovski and A. Wąsowski

space into two: the abstract values that match the construc-
tor and those that do not. For those values that possibly
match k(p), we produce a refined value with k as the only
choice, making sure that the sub-values in the result are re-
fined by the sub-patterns p.
Otherwise, we excludek from the refined value. For a data

type abstraction exclusion removes the pattern constructor
from the possible choices

�exclude(k(v̂s) ≀k1(v̂s1) ≀ · · · ≀kn(v̂sn),k) = k1(v̂s1) ≀ . . . ≀kn(v̂sn)

and does not change the input shape otherwise.

7 Traversals

First-class traversals are a key feature of high-level transfor-
mation languages, since they enable effectively transform-
ing large abstract syntax trees. We will focus on the chal-
lenges for bottom-up traversals, but they are shared amongst
all strategies supported in Rascal. The core idea of a bottom-
up traversal of an abstract value v̂s, is to first traverse chil-

dren of the value �children(v̂s) possibly rewriting them, then
reconstruct a new value using the rewritten children and
finally traversing the reconstructed value. The main chal-
lenge is handling traversal of children, whose representa-
tion and thus execution rules depend on the particular ab-
stract value.
Concretely, the �children(v̂s) function returns a set of pairs
(v̂s′, ĉvs)where the first component v̂s′ is a refinement of v̂s
that matches the shape of children ĉvs in the second com-
ponent. For data type values the representation of children
is a heterogeneous sequence of abstract values v̂s′′, while
for set values (and the top element) the representation of
children is a pair (v̂s′′, [l ;u])with the first component repre-
senting the shape of elements and the second representing
their count. For example,

�children(mult (Expr, Expr) ≀ cst (suc (Nat))) =
{
(mult (Expr, Expr) , (Expr, Expr)),

(cst (suc (Nat)) , suc (Nat))

}

and �children({Expr}[1;10]) = {({Expr}[1;10], (Expr, [1; 10]))}.
Note how the �children function maintains precision by par-
titioning the alternatives for data-types, when traversing
each corresponding sequence of value shapes for the chil-
dren.

Traversing children The shape of execution rules depend
on the representation of children; this is consistent with the
requirements imposed by Schmidt [43]. For heterogeneous
sequences of value shapes v̂s, the execution rules iterate
through the sequence recursively traversing each element.
Due to over-approximation we may re-traverse the same or
a more precise value on recursion, and so we need to use
trace memoization (Sect. 8) to terminate. For example the

children of an expression Expr refer to itself:

�children(Expr) =
{
(mult (Expr, Expr) , (Expr, Expr)),

(cst (Nat) ,Nat), (var (str) , str)

}

Traversing children represented by a shape-length pair, is
directed by the length interval [l ;u]. If 0 is a possible value
of the length interval, then traversal can finish, refining the
input shape to be empty. Otherwise, we perform another tra-
versal recursively on the shape of elements and recursively
on a new shape-length pair which decreases the length, fi-
nally combining their values. Note, that if the length is un-
bounded, e.g. [0;∞], then the value can be decreased for-
ever and trace memoization is also needed here for termi-
nation. This means that trace memoization must here be
nested breadth-wise (when recursing on an unbounded se-
quence of children), in addition to depth-wise (when recurs-
ing on children); this can be computationally expensive, and
we will discuss in Sect. 9 how our implementation handles
that.

8 Trace Memoization

Abstract interpretation and static program analysis in gen-
eral performfixed-point calculation for analysing unbounded
loops and recursion. In Schmidt-style abstract interpreta-
tion, the main technique to handle recursion is trace mem-

oization [41, 43]. The core idea of trace memoization is to
detect non-structural re-evaluation of the same program el-
ement, i.e., when the evaluation of a program element is re-
cursively dependent on itself, like a while-loop or traversal.
Themain challengewhen recursing over inputs from infi-

nite domains, is to determinewhen to merge recursive paths
together to correctly over-approximate concrete executions.
We present an extension that is still terminating, sound and,
additionally, allows calculating results with good precision.
The core idea is to partition the infinite input domain using
a finite domain of elements, and on recursion degrade in-
put values using previously met input values from the same
partition. We assume that all our domains are lattices with
a widening operator. Consider a recursive operational se-
mantics judgment i =⇒ o, with i being an input from do-
main �Input, and o being the output from domain �Output.
For this judgment, we associate a memoization map M̂ ∈
�PInput→ �Input×�Outputwhere �PInput is a finite partition-
ing domain that has a Galois connection with our actual in-

put, i.e. �Input −−−−−→←−−−−−
α
P̂ I

γ
P̂ I �PInput. The memoization map keeps

track of the previously seen input and corresponding output
for values in the partition domain. For example, for input

from our value domain �Value we can use the correspond-
ing type from the domain Type as input to the memoization
map.2 So for values 1 and [2; 3] we would use int, while for
mult(Expr, Expr) we would use the defining data type Expr.

2Provided that we bound the depth of type parameters of collections.

Verification of High-Level Transformations ... GPCE ’18, November 5–6, 2018, Boston, MA, USA

We perform a fixed-point calculation over the evaluation of
input i . Initially, the memoization map M̂ is λpi.(⊥,⊥), and
during evaluation we check whether there was already a
value from the same partition as i , i.e., αP̂ I (i) ∈ dom M̂ . At
each iteration, there are then two possibilities:

Hit The corresponding input partition key is in the memo-
izationmap and a less precise input is stored, so M̂(αP̂ I (i)) =
(i ′,o′) where i ⊑�Input i

′. Here, the output value o that
is stored in the memoization map is returned as result.

Widen The corresponding input partition key is in themem-
oization map, but an unrelated or more precise input
is stored, i.e., M̂(α

P̂ I
(i)) = (i ′′,o′′)where i @�Input i

′′. In
this case we continue evaluation but with a widened
input i ′ = i ′′∇�Input(i

′′ ⊔ i) and an updated map M̂ ′ =

[αP̂ I (i) 7→ (i
′,oprev)]. Here, oprev is the output of the

last iteration for the fixed-point calculation for input
i ′, and is assigned ⊥ on the initial iteration.

Intuitively, the technique is terminating because the par-
titioning is finite, and widening ensures that we reach an
upper bound of possible inputs in a finite number of steps,
eventually getting a hit. The fixed-point iteration also uses
widening to calculate an upper bound, which similarly fin-
ishes in a number of steps. The technique is sound because
we only use output for previous input that is less precise;
therefore our function is continuous and a fixed-point ex-
ists.

9 Experimental Evaluation

We demonstrate the ability of Rabit to verify type and induc-
tive shape properties, using five transformation programs
across various applications. Three programs are classic ex-
amples, and two are extracted from open source projects.

Negation Normal Form (NNF) transformation [27, Sec-
tion 2.5] is a classical rewrite of a propositional formula to
combination of conjunctions and disjunctions of literals, so
negations appear only next to atoms. An implementation of
this transformation should guarantee the following:

P1 Implication is not used as a connective in the result
P2 All negations in the result are in front of atoms

Rename Struct Field (RSF) refactoring changes the name
of a field in a struct, and that all corresponding field access
expressions are renamed correctly as well:

P3 Structure should not define a field with the old field name
P4 No field access expression to the old field

DesugarOberon-0 (DSO) transformation [6, 53], translates
for-loops and switch-statements to while-loops and nested
if-statements, respectively.

P5 for should be correctly desugared to while

P6 switch should be correctly desugared to if

P7 No auxiliary data in output

Code Generation for Glagol (G2P) a DSL for REST-like
web development, translated to PHP for execution.3 We are
interested in the part of the generator that translates Glagol
expressions to PHP, and the following properties:

P8 Output only simple PHP expressions for simple Glagol
expression inputs

P9 No unary PHP expressions if no sign marks or negations
in Glagol input

MiniCalculational Language (MCL) a programming lan-
guage text-book [45] implementation of a small expression
language, with arithmetic and logical expressions, variables,
if-expressions, and let-bindings. The implementation con-
tains an expression simplifier (larger version of running ex-
ample in Fig. 2), a type inference procedure, an interpreter
and a compiler.

P10 Simplification procedure produces a simplified expres-
sion with no additions with 0, multiplications with 1
or 0, subtractions with 0, logical expressions with con-
stant Boolean operands, and if-expressions with con-
stant Boolean conditions.

P11 Arithmetic expressions with no variables have type int
and no type errors

P12 Interpreting expressions with no integer constants and
let’s gives only Boolean values

P13 Compiling expressions with no if’s produces no goto’sand
if instructions

P14 Compiling expressions with no if’s produces no labels
and does not change label counter

All these transformations satisfy the following criteria:

1. They are formulated by an independent source,
2. They can be translated in relatively straightforward

manner to our subset of Rascal, and
3. They exercise important constructs, including visitors

and the expressive pattern matching

We have ported all these programs to Rascal Light.

Threats to validity. The programs are not selected randomly,
thus it is hard to generalize the results for other transforma-
tions. We mitigated this by selecting transformations that
are realistic and vary in authors, programming style and
purpose.While translating the programs to Rascal Light, we
strived to minimize the amount of changes, but generally
bias cannot be ruled out entirely.

Implementation. We have implemented the abstract inter-
preter in a prototype tool, Rabit, for all of Rascal Light fol-
lowing the process described in sections 5 to 8. This required
handling additional aspects, not discussed in the paper:

1. Possibly undefined values
2. Extended result statewithmoreControl flow constructs,

backtracking, exceptions, loop control, and

3h�ps://github.com/BulgariaPHP/glagol-dsl

https://github.com/BulgariaPHP/glagol-dsl

GPCE ’18, November 5–6, 2018, Boston, MA, USA A. S. Al-Sibahi, T. P. Jensen, A. S. Dimovski and A. Wąsowski

3. Fine-tuning memoization strategies to the different loop-
ing constructs and recursive calls

By default, we use the top element ⊤ for the types specified
as input. The user can specify the initial data-type refine-
ments, store and parameters, to get a more precise result
for target function to be abstractly interpreted. The output
of the tool is the abstract result value set of abstractly inter-
preting target function, the resulting store state and the set
of relevant inferred data-type refinements.
The implementation extends standard regular tree gram-

mar operations [1, 17], to handle the recursive equations
for the expressive abstract domains, including base values,
collections and heterogeneous data types. We use a more
precise partitioning strategy for trace memoization when
needed, which also takes the set of available constructors
into account for data types. The source code of our imple-
mentation, including subject transformations, is freely avail-
able. 4

Results. We ran the experiments using Scala 2.12.2 on a
2012 Core i5 MacBook Pro. Table 1 summarizes the size of
the programs, the runtime of the abstract interpreter, and
whether the properties have been verified. Since we verify
the results on the abstract shapes, the programs then are
shown to be correct for all possible concrete inputs satisfy-
ing the given properties. We remark that all programs use
the high-level expressive features of Rascal and are thus sig-
nificantly more succinct than comparable code in general
purpose languages.
The runtime, varying from single seconds to less than

a minute, is reasonable. All, but two, properties were suc-
cessfully verified. The reason that our tool runs slower on

4 h�ps://github.com/itu-square/Rascal-Light

Table 1. Time and success rate for analyzing programs and
properties presented earlier this section. Time is the median
of five runs. If the same time is reported for multiple prop-
erties, then they could be verified on the same input

Transformation LOC Runtime [s] Property Verified

P1 ✓
NNF 15 7.3

P2 ✓

P3 ✗
RSF 35 6.0

P4 ✓

P5 ✓

P6 ✓DSO 125 25.0
P7 ✗

1.6 P8 ✓
G2P 350

3.5 P9 ✓

1.6 P10 ✓

0.7 P11 ✓

0.6 P12 ✓

P13 ✓

MCL
298

0.9
P14 ✓

Figure 8. Initial and inferred refinement types for NNF

1 data FIn = and(FIn, FIn) | atom(str) | neg(FIn)

2 | imp(FIn, FIn) | or(FIn, FIn)

3

4 data FOut = and(FOut, FOut) | atom(str)

5 | neg(atom(str)) | or(FOut, FOut)

the DSO transformation than those with more lines of code
(G2P andMCL), is that it contains many nested traversals ex-
pressed as function calls: our analysis is interprocedural but
handles function calls by inlining which can lead to some
overhead during analysis.
Lines 1–2 in Fig. 8 show the input refinement type FIn for

the normalization procedure. The inferred inductive output
type FOut (lines 4–5) specifies that the implication is not
present in the output (P1), and negation only allows atoms
as subformulae (P2). In fact, Rabit inferred a precise char-
acterization of negation normal form as an inductive data
type.

10 Related Work

We start with discussing techniques that could be used to
make Rabit infer more precise shapes and verify properties
like P3 and P7. To verify P3, we need to be able to relate
field names to their corresponding definitions in the field
definition map of a class, which is not possible using the pre-
sented non-relational abstract domains. Relational abstract
interpreteration [35] allows specifying such constraints that
relate values across different variables, and even inside and
across substructures [13, 26, 33]. For a concrete input of P7,
we know that the number of auxiliary data elements de-
creases on each iteration, but this information is lost in our
abstraction of data structures. A possible solution could be
to allow abstract attributes that extract additional informa-
tion about the abstracted structures [10, 37, 49]. For P7, a
generalization of themultiset abstraction [36] for data types,
could be useful to track e.g., the auxiliary statement count,
and show that they decrease using multiset-ordering [22]
like in term rewriting. Other techniques [4, 13, 51] support
inferring inductive relational properties for general data-types—
e.g, binary tree property—but require a pre-specified struc-
ture to indicate the places where refinement can happen.
Cousot and Cousot [18] present a general framework for

modularly constructing program analyses, but it requires a
language with a compositional control flow which Rascal
does not have. Toubhans, Rival and Chang [40, 50] develop a
modular domain design for pointer-manipulating programs
supporting a rich set of fixed data abstractions, whereas our
domain construction focuses on providing automated infer-
ence of inductive refinement types based on pure heteroge-
neous data-structures.

https://github.com/itu-square/Rascal-Light

Verification of High-Level Transformations ... GPCE ’18, November 5–6, 2018, Boston, MA, USA

There are similarities between our work and verification
techniques based on program transformation (e.g., [21, 32])
like partial evaluation [29] and supercompilation [48]. Our
systematic exploration of execution rules for abstraction is
similar to unfolding, and our use of widening is similar to
folding. The main difference between the two techniques
is that abstract interpretation mainly focuses on capturing
rich domains and performingwidening at syntactic program
points, whereas program transformation based techniques
often rely on symbolic inputs and perform folding dynami-
cally on the semantic execution graph during specialization.
We believe that there could benefits for the communities, to
explore combinations of these two approaches in the future.
Definitional interpreters have been suggested as a tech-

nique for building compositional abstract interpreters [20].
The idea is to rely on a monad transformer stack to share the
implementation of the concrete and abstract interpreters.
We believe that our interpreter would benefit by being writ-
ten in such style5, which complements our modular domain
constructionwell. To ensure termination they rely on a caching
algorithm, similar to ordinary finite input trace memoiza-

tion [41]. Similarly, Van Horn and Might [28] present a sys-
tematic framework to abstract higher-order functional lan-
guages with effects and complex control flow. They rely on
store-allocated continuations within abstract machines to
handle recursion, which is then kept finite during abstrac-
tion to ensure a terminating analysis. Our technique focused
on providing a more precise widening based on the abstract
input value, which was necessary for verifying the required
properties in our evaluation. We believe that it could be
useful to look into abstract machine-based abstractions in
the future, in the case that higher-order transformation lan-
guages need to be handled.
Garrigue [24, 25] presents algorithms for typing pattern

matching on polymorphic variant types in OCaml, where
the set of constructors for a data type is not fixed in advance.
The theory is useful since it supports inferring simple recur-
sive shapes of programs, but it has its limitations: inference
is syntactic and exact, and it is unclear how to generalize it
to work with the rich pattern matching constructs and het-
erogeneous visitors. Haskell supports analysing coverage
of its pattern matching language, that includes generalized
algebraic data types (GADTs) and Boolean constraints [30].
While generalHaskell function calls can occur in the Boolean
constraints, the analysis treats them shallowly as function
symbols; some covering pattern matches that depend on
particular semantics of called functions, will bemarked falsely
as non-exhaustive. Modern SMT solvers supports reasoning
with inductive functions defined over algebraic data-types [38].
The properties they can verify are very expressive, and in-
clude inductive semantic properties. The exact techniques
employed are not very scalable, and encoding a complex

5We only learned about this related work at a late stage

transformation directly would not finish verifying even sim-
ple properties within reasonable time. Possible constructor
analysis [5] has been used to calculate the actual dependen-
cies of a predicate and make flow-sensitive analyses more
precise. This is a type of shape analysis that workswith com-
plex data-types and arrays, but only captures the prefix of
the target structures.
Techniques for model transformation verification based

on static analysis [19] have been suggested, but are currently
focused on verification of rule errors based on types and un-
definedness. Symbolic execution has previously been sug-
gested [3] as a way to validate high-level transformation
programs. However, thatwork targets test generation rather
than verification of properties. Semantic typing [8, 12] has
been used to infer recursive type and shape properties for
language with high-level constructs for querying and iter-
ation. The languages considered are however small calculi
compared to the supported subset of Rascal we consider, and
our evaluation is significantly more extensive.

11 Conclusion

Our goal was to use abstract interpretation to give a solid se-
mantic foundation for analyzing programs in modern high-
level transformation languages. To this endwe have designed
and formalized a Schmidt-style abstract interpreter, includ-
ing partition-driven trace memoization which works with in-
finite input domains. This worked well for a language like
Rascal with complex control flow, and can be adapted work
for similar languages that have an operational semantics.
Theproposedmodular construction of abstract domainswas
vital for handling a language of this scale and complexity.

We implemented the interpreter as a tool, Rabit, which
supports a non-trivial subset of Rascal, containing key fea-
tures: several traversal strategies, expressive pattern match-
ing, backtracking, exceptions and control operators, and gen-
eralized looping constructs. We evaluated Rabit on classical
transformations and on examples selected from open source
projects, showing it allows verification of a series of sophis-
ticated type and shape properties for these transformations.

A Operational Pattern Matching

Computing Pa�ern Matching The judgements are pre-
sented in Fig. 9 for both the concrete and abstract rules. Con-
sider the concrete (top-left) judgement: a value v matches a
pattern p, given a store σ , producing a sequence of bind-
ing environments ρ. The binding environments form a se-
quence, since multiple concrete environments, say ρ1 and
ρ2, can make v match against p, i.e., v |=ρ1 p and v |=ρ2 p.
Backtracking using the fail-expression, allows the program-
mer to explore a different assignment from the sequence of
environments, until no possible assignment is left.
For an ordinary pattern p (top) the abstraction relation

is direct: an abstract store σ̂ abstracts a concrete store σ

GPCE ’18, November 5–6, 2018, Boston, MA, USA A. S. Al-Sibahi, T. P. Jensen, A. S. Dimovski and A. Wąsowski

and a value shape v̂s abstracts a concrete value v . The no-
table change is that the abstract semantics uses a set of ab-

stract binding environments ϱ̂ ⊆ �Store × �ValueShape ×
�BindingEnv⊥ that not only abstracts over the sequence of

concrete binding environments ρ, but also, for each abstract
binding environment stores the corresponding refinement
of the input abstract store σ̂ and the corresponding refine-
ment of thematched value shape v̂s according to thematched
pattern.
For sequences of set sub-patterns⋆p, the sequence of con-

crete values v is abstracted by two components: the shape
of values v̂s and an interval approximating the length of the
value sequence [l ;u]. Both of these values are refined as a
result of the matching, which is captured by the abstract
binding environment ϱ̂ (of the same type as for the simple
patterns), since we treat the value refined as the abstract
set containing the values of the given shape and of given
cardinality. The concrete semantics of set sub-patterns also
contains a backtracking state V which is not used in the ab-
stract semantics, because the abstraction of set elements is
coarse and we thus abstractly consider all possible subset
assignments at the same time (joining instead of backtrack-
ing).

Operational Rules We will show how refinement is cal-
culated by the abstract operational semantics by presenting
some of key rules for abstract pattern matching. Rascal also
allows non-linear pattern matching against assigned store
variables, and it is possible to use this information for refin-
ing the input store and abstract value. In theAP-V-U rule we
match the variable to the value shape and restrict the shape
abstraction for the variable value to match the pattern. The
binding environment does not change as the name is already
bound in the store. In theAP-V-F rule, thematching fails (⊥),
and then we learn that the value shape in the store should
be refined to something that does not match.

AP-V-U

σ̂ (x) = (b, v̂s′) v̂s′ , ⊥
V̂S

v̂s′′ ∈ (v̂s=̂v̂s′) σ̂ ′ = σ̂ [x 7→ (ff, v̂s′′)]

σ̂ ⊢ x
?
≔ v̂s =======⇒

a-match-v
(σ̂ ′, v̂s′′, [])

AP-V-F

σ̂ (x) = (b, v̂s′) v̂s′ , ⊥
V̂S

(v̂s
′′
, v̂s
′′′
) ∈ (v̂s,̂v̂s

′
) σ̂ ′ = σ̂ [x 7→ (ff, v̂s

′′′
)]

σ̂ ⊢ x
?
≔ v̂s =======⇒

a-match-v
(σ̂ ′, v̂s′′,⊥)

We also show the AP-V-B (abstract pattern-variable-bind)
rule which simply binds the variable in the binding environ-
ment, assuming that it is possibly not assigned in the store
(a free name).

AP-V-B
σ̂ (x) = (�, v̂s′)

σ̂ ⊢ x
?
≔ v̂s =======⇒

a-match-v
(σ̂ [x 7→ (�,⊥

V̂S
)], v̂s, [x 7→ v̂s])

If our matched abstract value possibly contains the pat-
tern constructork (AP-C-S rule: abstract pattern-constructor-
success) we produce an abstract value with k containing the
sub-values refined against constructor sub-patterns:

AP-C-S

data at = · · · | k(t) | . . .

(success k(v̂s′)) ∈ �unfold(v̂s, at)
σ̂ ⊢ p1

?
≔ v̂s′1 =====⇒

a-match
ϱ̂1 . . . σ̂ ⊢ pn

?
≔ v̂s′n =====⇒

a-match
ϱ̂n

(σ̂ ′1, v̂s
′
1, ρ̂

?
1) ∈ ϱ̂1 . . . (σ̂

′
n, v̂s

′
n, ρ̂

?
n) ∈ ϱ̂n

σ̂ ⊢ k(p)
?
≔ v̂s =========⇒

a-match-cons
(
d

i σ̂i ,k(v̂s
′
),�merge(ρ̂?))

The total function �merge unifies assignments from two bind-
ing environments point-wise by names, taking the greatest
lower bound of shapes to combine bindings for a name. It
yields bottom for the entire result if at least one of the point-
wise meets yields bottom (shapes for at least one name are
not reconcilable). Otherwise, we try to refine the matched
value to exclude the pattern constructor in theAP-C-F rules:

AP-C-F1

data at = · · · | k(t) | . . .

(success k ′(v̂s
′
)) ∈ �unfold(v̂s, at) k ′ , k

σ̂ ⊢ k(p)
?
≔ v̂s =========⇒

a-match-cons
(σ̂ ,�exclude(v̂s,k),⊥)

AP-C-F2
data at = · · · | k(t) | . . . error ∈ �unfold(v̂s, at)

σ̂ ⊢ k(p)
?
≔ v̂s =========⇒

a-match-cons
(σ̂ ,�exclude(v̂s,k),⊥)

For set patterns, the refinement happens by pattern match-
ing set sub-patterns.

AP-S-S

success {v̂s′}[l ;u] ∈ �unfold(v̂s, set〈value〉)
σ̂ ⊢ ⋆p

?
≔ v̂s, [l ;u] ======⇒

a-match⋆
ϱ̂

σ̂ ⊢ {⋆p}
?
≔ v̂s ========⇒

a-match-set
ϱ̂

For example, when it is possible that the abstracted value
sequence (v̂s, [l ;u]) is empty (l = 0) and patterned matched
against an empty set sub-pattern sequence, we can refine
the result to be the empty abstract set {⊥}0 (rule APL-E-B).

APL-E-B
l ≤ u l = 0

σ̂ ⊢ ε
?
≔ v̂s, [l ;u] ========⇒

a-match⋆-1
(σ̂ , {⊥

V̂S
}0, {[]})

Amore complex example is the one where we try to pattern
match a potentially non-empty value sequence against a set
sub-pattern sequence p,⋆p ′ starting with an ordinary pat-

tern (APL-M-P). Here we pattern match against p and the
rest of the sequence ⋆p ′ and combine the refined results of
these matches producing a refinement of the containing set
value by combining the refined shapes and increasing the

Verification of High-Level Transformations ... GPCE ’18, November 5–6, 2018, Boston, MA, USA

refinement of the length by the set sub-pattern sequence by
one.

APL-M-P

l ≤ u u , 0 σ̂ ⊢ p
?
≔ v̂s =====⇒

a-match
ϱ̂R
′

σ̂ ⊢ ⋆p
?
≔ v̂s, [l − 1;u − 1] ======⇒

a-match⋆
ϱ̂R
′′

(σ̂ ′, v̂s′, ϱ̂ ′) ∈ ϱ̂R
′
(σ̂ ′′, {v̂s′′}[l ′′;u′′], ϱ̂

′′
) ∈ ϱ̂R

′′

ϱ̂R
′′′
=

{
(σ̂ ′ ⊓ σ̂ ′′, {v̂s′ ⊔ v̂s′′}[l ′′+1,u′′+1],

�merge(ϱ̂ ′, ϱ̂ ′′))

}

σ̂ ⊢ p,⋆p
?
≔ v̂s, [l ;u] ========⇒

a-match⋆-1
ϱ̂R
′′′

B Abstract Semantic Rules

Figures 11 and 12 shows the formal rules for executing the
bottom-up visit-expression; we have omitted the collecting
rules and some error handling rules to avoid presenting un-
necessary details. We will further discuss the ideas behind
the rules in a high-level fashion.

Executing visitors The evaluation rule for the visit-expression
itself is mainly concerned with evaluating the target expres-
sion e to be traversed to a value, and then using a separate
traversal relation to rewrite the value recursively with the
sequence of cases cs. The main item to notice is how it uses
the value refined by the case patterns in case of failure (AE-
Vt-F), turning the result into successful execution (like in our
running example in Sect. 2).

Evaluating Cases During traversal, the target value will
be rewritten with a sequence of cases. The evaluation of a
case sequence is straight-forward, iterating through the pos-
sible cases, pattern matching against each pattern and exe-
cuting the corresponding expression when applicable. The
main idea is that, when the abstract value fails to match a
pattern, the refined value is used to match against the rest
of the cases (ACS-M-F). This ensures that the order of patterns
influences the refinement, leading to a more precise abstract
shape that better matches the set of concrete shapes during
execution.

Acknowledgments

We would like to thank Paul Klint, Tijs van der Storm, Jur-
gen Vinju and Davy Landman for discussions on Rascal and
its semantics.Wewould further like to thank RasmusMøgel-
berg and JanMidtgaard for discussions on correctness of our
recursive shape abstractions. We would like the anonymous
reviewers for their comments, especially the one who pre-
sented us the link between our style of abstract interpreta-
tion and verification techniques in program transformation.

This material is based upon work supported by the Dan-
ish Council for Independent Research under Grant No. 0602-
02327B and Innovation FundDenmark under GrantNo. 7039-
00072B. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the au-
thor and do not necessarily reflect the views of the funding
agencies.

References
[1] Alexander Aiken and Brian R. Murphy. 1991. Implement-

ing Regular Tree Expressions. In FPLCA 1991. 427–447.
h�ps://doi.org/10.1007/3540543961_21

[2] Ahmad Salim Al-Sibahi. 2017. The Formal Semantics of Rascal Light.
CoRR abs/1703.02312 (2017). h�p://arxiv.org/abs/1703.02312

[3] Ahmad Salim Al-Sibahi, Aleksandar S. Dimovski, and Andrzej Wa-
sowski. 2016. Symbolic execution of high-level transformations. In
SLE 2016. 207–220. h�p://dl.acm.org/citation.cfm?id=2997382

[4] Aws Albarghouthi, Josh Berdine, Byron Cook, and Zachary
Kincaid. 2015. Spatial Interpolants. In ESOP 2015. 634–660.
h�ps://doi.org/10.1007/978-3-662-46669-8_26

[5] Oana Fabiana Andreescu, Thomas Jensen, and Stéphane Les-
cuyer. 2015. Dependency Analysis of Functional Specifica-
tions with Algebraic Data Structures. In ICFEM 2015. 116–133.
h�ps://doi.org/10.1007/978-3-319-25423-4_8

[6] Bas Basten, Jeroen van den Bos, Mark Hills, Paul Klint, Arnold
Lankamp, Bert Lisser, Atze van der Ploeg, Tijs van der Storm, and
Jurgen J. Vinju. 2015. Modular language implementation in Ras-
cal - Experience Report. Sci. Comput. Program. 114 (2015), 7–19.
h�p://dx.doi.org/10.1016/j.scico.2015.11.003

[7] Marcin Benke, Peter Dybjer, and Patrik Jansson. 2003. Universes for
Generic Programs and Proofs in Dependent Type Theory. 10, 4 (2003),
265–289.

[8] Véronique Benzaken, Giuseppe Castagna, Kim Nguyen, and Jérôme
Siméon. 2013. Static and dynamic semantics of NoSQL languages. In
POPL 2013. 101–114. h�ps://doi.org/10.1145/2429069.2429083

[9] Martin Bodin, Thomas Jensen, and Alan Schmitt. 2015. Certified Ab-
stract Interpretation with Pretty-Big-Step Semantics. In CPP 2015. 29–
40. h�ps://doi.org/10.1145/2676724.2693174

[10] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela
Sighireanu. 2012. Abstract Domains for Automated Reasoning about
List-Manipulating Programs with Infinite Data. In VMCAI 2012. 1–22.
h�ps://doi.org/10.1007/978-3-642-27940-9_1

[11] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. 2008. Stratego/XT 0.17. A language and toolset for pro-
gram transformation. Sci. Comput. Program. 72, 1-2 (2008), 52–70.
h�ps://doi.org/10.1016/j.scico.2007.11.003

[12] Giuseppe Castagna and Kim Nguyen. 2008. Typed iterators for XML.
In ICFP 2008. 15–26. h�ps://doi.org/10.1145/1411204.1411210

[13] Bor-Yuh Evan Chang and Xavier Rival. 2008. Rela-
tional Inductive Shape Analysis. In POPL 2008. 247–260.
h�ps://doi.org/10.1145/1328438.1328469

[14] James Chapman, Pierre-Évariste Dagand, Conor McBride, and Pe-
ter Morris. 2010. The gentle art of levitation. In ICFP 2010. 3–14.
h�ps://doi.org/10.1145/1863543.1863547

[15] James R. Cordy. 2006. The TXL source transformation
language. Sci. Comput. Program. 61, 3 (2006), 190–210.
h�ps://doi.org/10.1016/j.scico.2006.04.002

[16] Patrick Cousot. 2003. Verification by Abstract Interpreta-
tion. In Verification: Theory and Practice, Essays Dedicated to

Zohar Manna on the Occasion of His 64th Birthday. 243–268.
h�ps://doi.org/10.1007/978-3-540-39910-0_11

https://doi.org/10.1007/3540543961_21
http://arxiv.org/abs/1703.02312
http://dl.acm.org/citation.cfm?id=2997382
https://doi.org/10.1007/978-3-662-46669-8_26
https://doi.org/10.1007/978-3-319-25423-4_8
http://dx.doi.org/10.1016/j.scico.2015.11.003
https://doi.org/10.1145/2429069.2429083
https://doi.org/10.1145/2676724.2693174
https://doi.org/10.1007/978-3-642-27940-9_1
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1145/1411204.1411210
https://doi.org/10.1145/1328438.1328469
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1007/978-3-540-39910-0_11

GPCE ’18, November 5–6, 2018, Boston, MA, USA A. S. Al-Sibahi, T. P. Jensen, A. S. Dimovski and A. Wąsowski

σ ⊢ p
?
≔ v ====⇒

match
ρ σ̂ ⊢ p

?
≔ v̂s =====⇒

a-match
ϱ̂

σ ⊢ ⋆p
?
≔ v | V =====⇒

match⋆
ρ σ̂ ⊢ ⋆p

?
≔ v̂s , [l ;u] ======⇒

a-match⋆
ϱ̂

same pattern

abstracts store

abstracts binding environment sequence

abstracts input value

refines abstract store

refines abstract value

same pattern

abstracts store

abstracts binding environment sequence

abstracts shape of input value sequence

abstracts length of input value sequence

refines abstract store

refines shape

refines length

Figure 9. Relating abstract operational semantics (left) to the concrete operational semantics (right).

[17] Patrick Cousot and Radhia Cousot. 1995. Formal Lan-
guage, Grammar and Set-Constraint-Based Program Anal-
ysis by Abstract Interpretation. In FPCA 1995. 170–181.
h�p://doi.acm.org/10.1145/224164.224199

[18] Patrick Cousot and Radhia Cousot. 2002. Modu-
lar Static Program Analysis. In CC 2002. 159–178.
h�ps://doi.org/10.1007/3-540-45937-5_13

[19] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2017. Static
Analysis of Model Transformations. IEEE Trans. Software Eng. 43, 9
(2017), 868–897. h�ps://doi.org/10.1109/TSE.2016.2635137

[20] David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van
Horn. 2017. Abstracting definitional interpreters (functional pearl).
PACMPL 1, ICFP (2017), 12:1–12:25. h�ps://doi.org/10.1145/3110256

[21] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi,
and Maurizio Proietti. 2014. Program verification via iter-
ated specialization. Sci. Comput. Program. 95 (2014), 149–175.
h�ps://doi.org/10.1016/j.scico.2014.05.017

[22] Nachum Dershowitz and Zohar Manna. 1979. Proving Termina-
tion with Multiset Orderings. Commun. ACM 22, 8 (1979), 465–476.
h�ps://doi.org/10.1145/359138.359142

[23] Timothy S. Freeman and Frank Pfenning. 1991. Refinement Types for
ML. In PLDI 1991. 268–277. h�p://doi.acm.org/10.1145/113445.113468

[24] Jacques Garrigue. 1998. Programming with polymorphic variants. In
ML Workshop, Vol. 13.

[25] Jacques Garrigue. 2004. Typing deep pattern-matching in presence
of polymorphic variants. In JSSST Workshop on Programming and Pro-

gramming Languages.
[26] Nicolas Halbwachs and Mathias Péron. 2008. Discovering prop-

erties about arrays in simple programs. In PLDI 2008. 339–348.
h�ps://doi.org/10.1145/1375581.1375623

[27] John Harrison. 2009. Handbook of Practical Logic and Automated Rea-

soning. Cambridge University Press.
[28] David Van Horn and Matthew Might. 2010. Abstracting abstract ma-

chines. In Proceeding of the 15th ACM SIGPLAN international confer-

ence on Functional programming, ICFP 2010, Baltimore, Maryland, USA,

September 27-29, 2010, Paul Hudak and StephanieWeirich (Eds.). ACM,
51–62. h�ps://doi.org/10.1145/1863543.1863553

[29] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial

evaluation and automatic program generation. Prentice Hall.
[30] Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis, and Si-

mon L. Peyton Jones. 2015. GADTs meet their match: pattern-
matching warnings that account for GADTs, guards, and laziness. In

ICFP 2015, Kathleen Fisher and John H. Reppy (Eds.). ACM, 424–436.
h�ps://doi.org/10.1145/2784731.2784748

[31] Paul Klint, Tijs van der Storm, and Jurgen Vinju. 2011. EASY
Meta-programming with Rascal. In GTTSE III, JoãoM. Fernan-
des, Ralf Lämmel, Joost Visser, and João Saraiva (Eds.). 222–289.
h�ps://doi.org/10.1007/978-3-642-18023-1_6

[32] Alexei P. Lisitsa and Andrei P. Nemytykh. 2015. Finite Coun-
termodel Based Verification for Program Transformation (A Case
Study). In Proceedings of the Third International Workshop on

Verification and Program Transformation, VPT@ETAPS 2015, Lon-

don, United Kingdom, 11th April 2015. (EPTCS), Alexei Lisitsa, An-
drei P. Nemytykh, and Alberto Pettorossi (Eds.), Vol. 199. 15–32.
h�ps://doi.org/10.4204/EPTCS.199.2

[33] Jiangchao Liu and Xavier Rival. 2017. An array content static analysis
based on non-contiguous partitions. Computer Languages, Systems &

Structures 47 (2017), 104–129. h�ps://doi.org/10.1016/j.cl.2016.01.005

[34] Neil Mitchell and Colin Runciman. 2007. Uniform boilerplate
and list processing. In Haskell 2007, Freiburg, Germany. 49–60.
h�ps://doi.org/10.1145/1291201.1291208

[35] Alan Mycroft and Neil D. Jones. 1985. A relational framework
for abstract interpretation. In Programs as Data Objects. 156–171.
h�ps://doi.org/10.1007/3-540-16446-4_9

[36] Valentin Perrelle and Nicolas Halbwachs. 2010. An Anal-
ysis of Permutations in Arrays. In VMCAI 2010. 279–294.
h�ps://doi.org/10.1007/978-3-642-11319-2_21

[37] Tuan-Hung Pham and Michael W. Whalen. 2013. An Improved
Unrolling-Based Decision Procedure for Algebraic Data Types. In
VSTTE 2013. 129–148. h�ps://doi.org/10.1007/978-3-642-54108-7_7

[38] Andrew Reynolds and Viktor Kuncak. 2015. In-
duction for SMT Solvers. In VMCAI 2015. 80–98.
h�ps://doi.org/10.1007/978-3-662-46081-8_5

[39] Xavier Rival and Laurent Mauborgne. 2007. The trace partitioning
abstract domain. ACM Trans. Program. Lang. Syst. 29, 5 (2007), 26.
h�ps://doi.org/10.1145/1275497.1275501

[40] Xavier Rival, Antoine Toubhans, and Bor-Yuh Evan Chang. 2014. Con-
struction of Abstract Domains for Heterogeneous Properties. In ISoLA
2014. 489–492. h�ps://doi.org/10.1007/978-3-662-45231-8_40

[41] Mads Rosendahl. 2013. Abstract Interpretation as a Programming Lan-
guage. In Semantics, Abstract Interpretation, and Reasoning about Pro-

grams: Essays Dedicated to David A. Schmidt on the Occasion of his

Sixtieth Birthday. 84–104. h�ps://doi.org/10.4204/EPTCS.129.7

http://doi.acm.org/10.1145/224164.224199
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1109/TSE.2016.2635137
https://doi.org/10.1145/3110256
https://doi.org/10.1016/j.scico.2014.05.017
https://doi.org/10.1145/359138.359142
http://doi.acm.org/10.1145/113445.113468
https://doi.org/10.1145/1375581.1375623
https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1145/2784731.2784748
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.4204/EPTCS.199.2
https://doi.org/10.1016/j.cl.2016.01.005
https://doi.org/10.1145/1291201.1291208
https://doi.org/10.1007/3-540-16446-4_9
https://doi.org/10.1007/978-3-642-11319-2_21
https://doi.org/10.1007/978-3-642-54108-7_7
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1145/1275497.1275501
https://doi.org/10.1007/978-3-662-45231-8_40
https://doi.org/10.4204/EPTCS.129.7

Verification of High-Level Transformations ... GPCE ’18, November 5–6, 2018, Boston, MA, USA

Expressions (General)

AE-A

{|x = e ; σ̂ =========⇒
a-expr-asgn

R̂es|}

x = e ; σ̂ =====⇒
a-expr

R̂es
AE-Sq

{|e1; e2; σ̂ ========⇒
a-expr-seq

R̂es|}

e1; e2; σ̂ =====⇒
a-expr

R̂es
AE-C

{|k(e); σ̂ =========⇒
a-expr-cons

R̂es|}

k(e); σ̂ =====⇒
a-expr

R̂es

AE-St

{|{e}; σ̂ ========⇒
a-expr-set

R̂es|}

{e}; σ̂ =====⇒
a-expr

R̂es
AE-Fl

fail; σ̂ =====⇒
a-expr

[fail 7→ (·, σ̂)]
AES

{|e; σ̂ ========⇒
a-expr⋆-1

R̂es|}

e ; σ̂ ======⇒
a-expr⋆

R̂es

Assignment Expression

AE-A-S

local t x ∨ global t x e ; σ̂ =====⇒
a-expr

R̂es

(success, (v̂s, σ̂ ′)) ∈ R̂es v̂s :̂ t ′ t ′ <̂: t

x = e ; σ̂ =========⇒
a-expr-asgn

[success 7→ (v̂s, σ̂ ′[x 7→ (ff, v̂s)])]

AE-A-Er

local t x ∨ global t x e ; σ̂ =====⇒
a-expr

R̂es

(success, (v̂s, σ̂ ′)) ∈ R̂es v̂s :̂ t ′ t ′ ≮̂: t

x = e ; σ̂ =========⇒
a-expr-asgn

[error 7→ (·, σ̂ ′)]
AE-A-Ex

e ; σ̂ =====⇒
a-expr

R̂es (exres, (r̂esv, σ̂ ′)) ∈ R̂es

x = e ; σ̂ =========⇒
a-expr-asgn

[exres 7→ (r̂esv, σ̂ ′)]

Sequencing Expression

AE-Sq-S

e1, e2; σ̂ ======⇒
a-expr⋆

�Res⋆

(success, ((v̂s1, v̂s2), σ̂
′)) ∈�Res⋆

e1; e2; σ̂ ========⇒
a-expr-seq

[success 7→ (v̂s2, σ̂
′)]

AE-Sq-Ex

e1, e2; σ̂ ======⇒
a-expr⋆

�Res⋆

(exres, (r̂esv, σ̂ ′)) ∈�Res⋆
e1; e2; σ̂ ========⇒

a-expr-seq
[exres 7→ (r̂esv, σ̂ ′)]

Constructor Expression

AE-C-S

data at = . . . |k(t)| . . . e; σ̂ ======⇒
a-expr⋆

�Res⋆

(success, (v̂s, σ̂ ′)) ∈�Res⋆ v̂s :̂ t ′ t ′ <̂: t

k(e); σ̂ =====⇒
a-expr

[success 7→ (k(v̂s), σ̂ ′)]

AE-C-Er

data at = . . . |k(t)| . . . e ; σ̂ ======⇒
a-expr⋆

�Res⋆

(success, (v̂s, σ̂ ′)) ∈�Res⋆ v̂s :̂ t ′ ∃i .t ′i ≮̂: ti

k(e); σ̂ =====⇒
a-expr

[error 7→ (·, σ̂ ′)]
AE-C-Ex

e ; σ̂ ======⇒
a-expr⋆

�Res⋆ (exres, (r̂esv, σ̂ ′)) ∈�Res⋆

k(e); σ̂ =====⇒
a-expr

[exres 7→ (r̂esv, σ̂ ′)]

Set Expression

AE-St-S

e ; σ̂ ======⇒
a-expr⋆

�Res⋆

(success, (vs, σ̂ ′)) ∈�Res⋆
{e}; σ̂ ========⇒

a-expr-set
[success 7→ ({

⊔
i v̂si }[0; |vs |], σ̂

′)]
AE-St-Ex

e ; σ̂ ======⇒
a-expr⋆

�Res⋆

(exres, (r̂esv, σ̂ ′)) ∈�Res⋆
{e}; σ̂ ========⇒

a-expr-set
[exres 7→ (r̂esv, σ̂ ′)]

Expression Sequences

AES-Em
ε ; σ̂ ========⇒

a-expr⋆-1
[success 7→ (ε, σ̂)]

AES-Mr

e ; σ̂ =====⇒
a-expr

R̂es (success, (v̂s, σ̂ ′′)) ∈ R̂es

e ′; σ̂ ′′ ======⇒
a-expr⋆

�Res⋆′ (success, (v̂s ′, σ̂ ′)) ∈�Res⋆′

e, e ′; σ̂ ========⇒
a-expr⋆-1

[success 7→ ((v̂s, v̂s ′), σ̂ ′)]

AES-Ex

e ; σ̂ =====⇒
a-expr

R̂es (exres, (r̂esv, σ̂ ′)) ∈ R̂es

e, e ′; σ̂ ========⇒
a-expr⋆-1

[exres 7→ (r̂esv, σ̂ ′)]
AES-Ex

e ; σ̂ =====⇒
a-expr

R̂es (success, (v̂s, σ̂ ′′)) ∈ R̂es

e ′; σ̂ ′′ ======⇒
a-expr⋆

�Res⋆′ (exres, (r̂esv, σ̂ ′)) ∈�Res⋆′

e, e ′; σ̂ ========⇒
a-expr⋆-1

[exres 7→ (r̂esv, σ̂ ′)]

Figure 10. Abstract Operational Semantics Rules for Basic Expressions

GPCE ’18, November 5–6, 2018, Boston, MA, USA A. S. Al-Sibahi, T. P. Jensen, A. S. Dimovski and A. Wąsowski

Visit Expression

AE-Vt-S

e ; σ̂ =====⇒
a-expr

R̂es (success, (v̂s, σ̂ ′′)) ∈ R̂es

cs; v̂s; σ̂ ′′ ========⇒
a−bu−visit

R̂es
′
(success, (v̂s′, σ̂ ′)) ∈ R̂es

′

visit e cs; σ̂ =========⇒
a-expr-visit

[success 7→ (v̂s′, σ̂ ′)]
AE-Vt-F

e ; σ̂ =====⇒
a-expr

R̂es (success, (v̂s, σ̂ ′′)) ∈ R̂es

cs; v̂s; σ̂ ′′ ========⇒
a−bu−visit

R̂es
′
(fail, (v̂s′, σ̂ ′)) ∈ R̂es

′

visit e cs; σ̂ =========⇒
a-expr-visit

[success 7→ (v̂s′, σ̂ ′)]

AE-Vt-Ex1

e ; σ̂ =====⇒
a-expr

R̂es (exres, (r̂esv, σ̂ ′)) ∈ R̂es

visit e cs; σ̂ =========⇒
a-expr-visit

[exres 7→ (r̂esv, σ̂ ′)]
AE-Vt-Ex2

e ; σ̂ =====⇒
a-expr

R̂es (success, (v̂s, σ̂ ′′)) ∈ R̂es

cs; v̂s; σ̂ ′′ ========⇒
a−bu−visit

R̂es
′
(error, (r̂esv, σ̂ ′)) ∈ R̂es

′

visit e cs; σ̂ =========⇒
a-expr-visit

[error 7→ (r̂esv, σ̂ ′)]

Bottom-up Traversal of Single Value

ABU-S

(v̂s′′, ĉvs) ∈ �children(v̂s) cs; ĉvs; σ̂ ==========⇒
a−bu−visit⋆

�Res⋆ (success, (ĉvs′, σ̂ ′)) ∈�Res⋆

�recons v̂s′′ using ĉvs′ to �RCRes (success, v̂s′) ∈�RCRes cs; v̂s′; σ̂ ′ ======⇒
a−cases

R̂es
′

cs; v̂s; σ̂ ===========⇒
a−bu−visit−go

R̂es
′

ABU-F

(v̂s′′, ĉvs) ∈ �children(v̂s) cs; ĉvs; σ̂ ==========⇒
a−bu−visit⋆

�Res⋆

(fail, (ĉvs′, σ̂ ′)) ∈�Res⋆ �recons v̂s′′ using ĉvs′ to [success 7→ v̂s′] cs; v̂s′; σ̂ ′ ======⇒
a−cases

R̂es
′

cs; v̂s; σ̂ ===========⇒
a−bu−visit−go

R̂es
′

Bottom-up Traversal of Children

ABUC-E
cs; ε ; σ̂ =============⇒

a−bu−visit⋆−go
[fail 7→ (ε, σ̂)]

ABUC-M

cs; v̂s; σ̂ ========⇒
a−bu−visit

R̂es (�vfres, (v̂s′′, σ̂ ′′)) ∈ R̂es

cs; v̂s′; σ̂ ′′ ==========⇒
a−bu−visit⋆

�Res⋆′ (�vfres′, (v̂s′′′, σ̂ ′)) ∈�Res⋆′

R̂es
′′
= �vcombine(�vfres, v̂s′′,�vfres′, v̂s′′′, σ̂ ′)

cs; v̂s, v̂s′; σ̂ =============⇒
a−bu−visit⋆−go

R̂es
′′

ABUS-E
cs; (v̂s, [0;u]); σ̂ =============⇒

a−bu−visit⋆−go
[fail 7→ ((⊥, 0), σ̂)]

ABUS-M

u > 0 cs; v̂s; σ̂ ========⇒
a−bu−visit

R̂es (�vfres, (v̂s′′, σ̂ ′′)) ∈ R̂es cs; (v̂s, [l − 1;u − 1]); σ̂ ′′ ==========⇒
a−bu−visit⋆

�Res⋆′

(�vfres′, ((v̂s′′′, [l ′;u ′]), σ̂ ′)) ∈�Res⋆′ R̂es
′′
= �vcombine(�vfres, v̂s′′,�vfres′, (v̂s′′′, [l ′;u ′]), σ̂ ′)

cs; (v̂s, [l ;u]); σ̂ =============⇒
a−bu−visit⋆−go

R̂es
′′

Figure 11. Selected Abstract Operational Semantics Rules for Traversal

[42] John M. Rushby, Sam Owre, and Natarajan Shankar. 1998. Subtypes
for Specifications: Predicate Subtyping in PVS. IEEE Trans. Software

Eng. 24, 9 (1998), 709–720. h�ps://doi.org/10.1109/32.713327

[43] David A. Schmidt. 1998. Trace-Based Abstract Interpretation of Oper-
ational Semantics. Lisp and Symbolic Computation 10, 3 (1998), 237–
271.

[44] Dana S. Scott. 1976. Data Types as Lattices. SIAM J. Comput. 5, 3
(1976), 522–587. h�p://dx.doi.org/10.1137/0205037

[45] Peter Sestoft and Niels Hallenberg. 2017. Programming language con-

cepts. Springer.
[46] AnthonyM. Sloane. 2011. Lightweight Language Processing

in Kiama. In GTTSE III, JoãoM. Fernandes, Ralf Lämmel,
Joost Visser, and João Saraiva (Eds.). Lecture Notes in Com-
puter Science, Vol. 6491. Springer Berlin Heidelberg, 408–425.
h�ps://doi.org/10.1007/978-3-642-18023-1_12

[47] Michael B. Smyth and Gordon D. Plotkin. 1982. The Category-
Theoretic Solution of Recursive Domain Equations. SIAM J. Comput.

11, 4 (1982), 761–783. h�p://dx.doi.org/10.1137/0211062

[48] Morten Heine Sørensen, Robert Glück, and Neil D. Jones. 1996. A
Positive Supercompiler. J. Funct. Program. 6, 6 (1996), 811–838.
h�ps://doi.org/10.1017/S0956796800002008

[49] Philippe Suter, Mirco Dotta, and Viktor Kuncak. 2010. Decision
procedures for algebraic data types with abstractions. In POPL 2010,
Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 199–210.
h�ps://doi.org/10.1145/1706299.1706325

[50] Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival. 2013. Re-
duced Product Combination of Abstract Domains for Shapes. In VM-

CAI 2013. 375–395. h�ps://doi.org/10.1007/978-3-642-35873-9_23

https://doi.org/10.1109/32.713327
http://dx.doi.org/10.1137/0205037
https://doi.org/10.1007/978-3-642-18023-1_12
http://dx.doi.org/10.1137/0211062
https://doi.org/10.1017/S0956796800002008
https://doi.org/10.1145/1706299.1706325
https://doi.org/10.1007/978-3-642-35873-9_23

Verification of High-Level Transformations ... GPCE ’18, November 5–6, 2018, Boston, MA, USA

Case Sequence

ACS-E
ε ; v̂s; σ̂ =========⇒

a−cases−go
[fail 7→ (v̂s, σ̂)]

ACS-M-O

σ̂ ⊢ p
?
≔ v̂s ======⇒

a-match
ϱ̂ (v̂s′, σ̂ ′, ρ̂?) ∈ ϱ̂

ρ̂?; e ; σ̂ ′ =====⇒
a−case

R̂es (rest, (r̂esv, σ̂ ′′)) ∈ R̂es rest , fail

case p ⇒ e, cs; v̂s; σ̂ =========⇒
a−cases−go

[rest 7→ (r̂esv, σ̂ ′′)]

ACS-M-F

σ̂ ⊢ p
?
≔ v̂s ======⇒

a-match
ϱ̂ (v̂s′, σ̂ ′, ρ̂?) ∈ ϱ̂

ρ̂?; e ; σ̂ ′ =====⇒
a−case

R̂es (fail, (r̂esv, σ̂ ′′)) ∈ R̂es cs; v̂s′; σ̂ ′ =========⇒
a−cases−go

R̂es
′

case p ⇒ e, cs; v̂s; σ̂ =========⇒
a−cases−go

R̂es
′

Case

AC-E
⊥; e ; σ̂ ========⇒

a−case−go
[fail 7→ (·, σ̂)]

AC-M-O

σ̂ ρ̂; e =====⇒
a-expr

R̂es (rest, (r̂esv, σ̂ ′′)) ∈ R̂es rest , fail

ρ̂; v̂s; σ̂ ========⇒
a−case−go

[rest 7→ (r̂esv, σ̂ ′′)]

AC-M-F

σ̂ ρ̂; e =====⇒
a-expr

R̂es (fail, (r̂esv, σ̂ ′′)) ∈ R̂es

ρ̂; v̂s; σ̂ ========⇒
a−case−go

[fail 7→ (r̂esv, σ̂)]

Figure 12. Selected Abstract Operational Semantic Rules for Traversal (Cont.)

[51] Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala.
2013. Abstract Refinement Types. In ESOP 2013. 209–228.
h�ps://doi.org/10.1007/978-3-642-37036-6_13

[52] Glynn Winskel. 1993. Information Systems. MIT Press, Chapter 12.
[53] Niklaus Wirth. 1996. Compiler Construction. Addison-Wesley.

[54] Hongwei Xi and Frank Pfenning. 1998. Eliminating Array
Bound Checking Through Dependent Types. In PLDI 1998. 249–257.
h�ps://doi.org/10.1145/277650.277732

https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/277650.277732

	Abstract
	1 Introduction
	2 Motivation and Overview
	3 Formal Language
	4 Abstract Domains
	5 Abstract Semantics
	6 Pattern Matching
	6.1 Satisfiability semantics for patterns
	6.2 Computing pattern matches

	7 Traversals
	8 Trace Memoization
	9 Experimental Evaluation
	10 Related Work
	11 Conclusion
	A Operational Pattern Matching
	B Abstract Semantic Rules
	Acknowledgments
	References

