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Abstract
Many software systems are today variational. They can pro-
duce a potentially large variety of related programs (variants)
by selecting suitable configuration options (features) at com-
pile time. Specialized variability-aware (lifted, family-based)
static analyses allow analyzing all variants of the family, si-
multaneously, in a single run without generating any of the
variants explicitly. In effect, they produce precise analysis
results for all individual variants. The elements of the lifted
analysis domain represent tuples (i.e. disjunction of proper-
ties), which maintain one property from an existing single-
program analysis domain per variant. Nevertheless, explicit
property enumeration in tuples, one by one for all variants,
immediately yields to combinatorial explosion given that the
number of variants can grow exponentially with the num-
ber of features. Therefore, such lifted analyses may be too
costly or even infeasible for families with a large number of
variants.

In this work, we propose a more efficient lifted static anal-
ysis where sharing is explicitly possible between analysis el-
ements corresponding to different variants. This is achieved
by giving a symbolic representation of the lifted analysis do-
main, which can efficiently handle disjunctive properties in
program families. The elements of the new lifted domain are
binary decision diagrams where decision nodes are labeled
with features, and the leaf nodes belong to an existing single-
program analysis domain. We have developed a lifted static
analysis which uses APRON and BDDAPRON libraries for
implementing the new lifted analysis domain. The APRON
library, used for the leaves, is a widely accepted API for
numerical abstract domains (e.g. polyhedra, octagons, in-
tervals), while the BDDAPRON is an extension of APRON
which adds the power domain of Boolean formulae and any
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gram families, we show that our new BDD-based approach
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1 Introduction
Variability is becoming increasingly common in today’s soft-
ware systems. Many software projects adopt the Software
Product Line (SPL) methodology [10] for building a family of
similar systems, known as variants or valid products, from a
common code base. Each variant is specified in terms of spe-
cially defined Boolean variables called features (or, statically
configured options), which are selected (switched on) for
that particular variant. The SPL methodology is frequently
seen in the development of the embedded software (e.g., cars,
phones, avionics), system level software (e.g. Linux kernel),
many web solutions (e.g. Drupal, Wordpress), etc. Many in-
dustrial SPLs are typically implemented using annotative
approaches such as conditional compilation (e.g., #ifdef-s
from the C-preprocessor [30]).

In many of the application domains, a rigourous verifica-
tion and analysis of program families is of paramount im-
portance. Among the methods included in current practices,
static program analysis by abstract interpretation [11, 35]
is a powerful technique for automatic verification of soft-
ware systems. Unfortunately, static analysis of program fam-
ilies is hard because the number of possible variants can be
very large (often huge). Hence, the simplest brute-force ap-
proach that uses a preprocessor to generate all variants of a
family and then applies an existing single-program analysis
to each individual variant, one-by-one, is very inefficient.
This approach has to compile (preprocess and build control
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flow graph) and execute the fixed point iterative algorithm
once for each possible variant. To overcome this problem,
variability-aware (lifted, family-based) static analyses have
been proposed [4, 33], which are able to handle programs
involving Boolean features and numerical variables. They
work on the family level, analyzing all variants of the family
simultaneously, without generating any of them explicitly.
The lifted approaches compile and execute the fixed point it-
erative algorithm only once per family. They take as input the
common code base, which encodes all variants of a program
family, and produce precise disjunctive analysis results cor-
responding to all variants by using a lifted analysis domain,
which represents n-fold product of a single-program analysis
domain used for expressing program properties (where n is
the number of valid configurations). That is, the lifted analy-
sis domain maintains one property element per valid variant
in tuples. This explicit property enumeration in tuples can
be a bottleneck when dealing with families that have high
variability. The problem is that this enumeration becomes
computationally intractable with larger program families
because the number of variants grows exponentially with
the number of features. 1 This is known as configuration
space explosion problem.

In this work, we show how to speed up the lifted analysis
by improving the representation of the lifted analysis domain.
The key for this is the proper handling of disjunctions of prop-
erties that arise in the analysis due to the variability-specific
constructs of the language (e.g. Boolean features, #ifdef-s,
etc). One possible solution is to enable weak forms of dis-
junctions in order to improve expressivity while minimizing
the cost of the analysis [7, 14, 38]. In particular, we propose
a novel lifted analysis domain that enables an explicit inter-
action (sharing) between analysis elements corresponding
to different variants. The lifted analysis domain is given as
a binary decision diagram domain functor, where (Boolean)
features are organized in decision nodes and leaf nodes con-
tain a particular analysis property. Binary decision diagrams
(BDDs) represent an instance of the reduced cardinal power
of domains [12, Sect. 10.2], which map the values of Boolean
features (represented in decision nodes) to an analysis prop-
erty (represented in leaf nodes) for the variant specified by
the values of features along the path leading to the leave.
These decision diagram domains are particularly well suited
for representing disjunctive properties (which is the key as-
pect of a lifted analysis domain). The lifted analysis domain
is parametric in the choice of the abstract domain for the
leaf nodes, and so it can be used for inference of different
program properties. The efficiency of BDDs comes from the
opportunity to share equal subtrees, in case some properties
are independent from the value of some features.

1For example, the Linux kernel currently provides more than 10, 000 con-
figurable features, which leads up to 210,000 distinct variants.

On the practical side, we have developed a prototype lifted
analyzer which uses the BDDAPRON library [28] to imple-
ment the binary decision diagram domain. BDDAPRON uses
any property domain from the APRON library [29] for the
leaf nodes. For example, APRON provides a common high-
level API to the most common numerical property domains,
such as intervals, octagons, and polyhedra. We have imple-
mented a forward reachability analysis of C program fami-
lies for the automatic inference of invariants in all program
points. The tool computes a set of possible invariants, thanks
notably to the design of numerical property domains, which
allow to represent the information about the possible values
of individual variables (by using interval domain, which is
non-relational), as well as relations between variables: con-
straints between two variables (by using octagon domain,
which is weakly relational), and constraints between all vari-
ables (by using polyhedra domain, which is fully relational).
The precision of numerical property domains increases from
non-relational (interval) to fully relational domains (polyhe-
dra), but so does the computational complexity. We can use
the implemented lifted static analyzer to prove the absence
of runtime errors in C program families, which represent
majority of industrial embedded code. In particular, we are
able to check invariance properties, such as assertions, buffer
overflows, division by zero, etc [13]. This work makes several
contributions:

• We propose a new lifted analysis domain based on
BDDs, which is well suited for handling the disjunctive
properties that come from the variability.

• We develop a lifted static analyzer in which the lifted
analysis domains are instantiated to numerical prop-
erty domains from the APRON library. Hence, we can
use it for program verification and proving program
invariants of C program families.

• Finally, we evaluate our approach for lifted static anal-
ysis of C program families by comparing implemen-
tations which use the tuple-based lifted domain and
BDD-based lifted domain.

2 Motivating Example
To better illustrate the issues we are addressing in this work,
we now present a motivating example based on the following
program family P :

1○ int x := 10, y := 0;
2○ while (x != 0) {
3○ x := x-1;
4○ #if (A) y := y+1; #endif
5○ #if (B) y := y+1; #endif
6○ } 7○

The set of (Boolean) features in the above program fam-
ily P is F = {A,B} and the set of valid configurations is
K = {A ∧ B,A ∧ ¬B,¬A ∧ B,¬A ∧ ¬B}. The family P con-
tains two #if statements, which increase the variable y by 1,
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depending on which features from F are enabled. For each
configuration from K a different variant (single program)
can be generated by appropriately resolving #if-s. For ex-
ample, the variant corresponding to the configuration A ∧ B
will have both features A and B enabled (set to true), so that
both assignments y := y+1 in program points 4○ and 5○ will
be included in this variant. On the other hand, the variant
for configuration ¬A ∧ ¬B will have both features A and B
disabled (set to false), so the above assignments in program
points 4○ and 5○ will not be included in it. There are |K| = 4
generated variants in total, which are shown in Fig. 3.
Assume that we want to perform lifted analyses on the

family P using the numerical property domains: intervals,
octagons, and polyhedra. The standard lifted analysis domain
from [4, 33] is defined as cartesian product of K copies of the
basic domain, which corresponds to the client analysis we
want to perform. Thus, the lifted domain will have elements
which are tuples containing one component for every valid
configuration of K. The lifted analyses results in the final
program point 7○ of P obtained using the lifted interval,
octagon, and polyhedra analyses are the 4-sized tuples shown
in Fig. 1a, Fig. 1b, and Fig. 1c, respectively. Note that the first
component of a tuple in Fig. 1 corresponds to configuration
A∧B, the second toA∧¬B, the third to¬A∧B, and the fourth
to ¬A ∧ ¬B. From the analyses results in Fig. 1, we can see
that the interval analysis discovers imprecise (approximative)
results about the variable y for configurations A∧ B, A∧¬B
and ¬A∧ B, that is y ≥ 0, since it is not able to reason about
the relations between the variables x and y. The octagon
analysis givesmore precise (less approximative) results about
y. That is, y = 10 for configurations A ∧ ¬B and ¬A ∧ B as
well as y = 0 for ¬A∧¬B are the most precise (exact) results.
But, we obtain an imprecise (approximative) result y ≥ 10
for the configuration A ∧ B, since the relations which can
be tracked using the octagon analysis are limited. Finally,
the polyhedra analysis reports the most precise results for
both x and y in all configurations, since it is a fully relational
domain and is able to track all (linear) relations between
variables.

On the other hand, if we perform lifted analyses based on
the binary decision diagram domain proposed here, then the
analyses results in the final program point 7○ of P obtained
using interval, octagon, and polyhedra domains are shown in
Fig. 2a, Fig. 2b, and Fig. 2c, respectively. Note that the inner
nodes of a binary decision diagram (BDD) in Fig. 2 are labeled
with features from F, the leaves are labeled with the elements
from the property domain we use, and the edges are labeled
with the truth value of the decision on the parent node, true
or false (we use solid edges for true, and dashed edges for
false). It is obvious that binary decision diagrams offer more
possibilities for sharing and interaction between analysis
properties corresponding to different configurations. Thus,
they provide symbolic and compact representation of lifted
analysis elements. For example, Fig. 2a presents interval

properties of two variables x and y, which are partitioned
with respect to the Boolean features A and B. When A is
true, the property is independent from the value of B, hence
the node at level B can be omitted. Moreover, the cases (A is
true) and (A is false and B is true) are identical, so they share
the same leaf node. As a consequence, this representation
uses only two leaf nodes (properties for x and y), while the
tuple-based representation in Fig. 1a uses four. Notice that,
in the worst case, BDDs still need |K| different leaf nodes,
but experimental evidence shows that sharing often occurs
in practice.

3 A Language for Program Families
Let F = {A1, . . . ,An} be a finite and totally ordered set of
Boolean variables representing the features available in a
program family. A specific subset of features, k ⊆ F, known
as configuration, specifies a variant (valid product) of a pro-
gram family. We assume that only a subset K ⊆ 2F of all
possible configurations are valid. An alternative represen-
tation of configurations is based upon propositional formu-
lae. Each configuration k ∈ K can be represented by a for-
mula: k(A1) ∧ . . . ∧ k(An), where k(Ai ) = Ai if Ai ∈ k , and
k(Ai ) = ¬Ai if Ai < k for 1 ≤ i ≤ n. We will use both
representations interchangeably.
We define feature expressions, denoted FeatExp(F), as the

set of well-formed propositional logic formulae over F gen-
erated by the grammar:

θ ::= true |A ∈ F | ¬θ | θ1 ∧ θ2

We will use θ ∈ FeatExp(F) to define presence conditions in
program families. We write [[θ ]] to denote the set of variants
from K that satisfy θ , i.e. k ∈ [[θ ]] iff k |= θ , where |= is
the standard satisfaction relation of propositional logic. For
example, given F = {A,B} with all four possible variants
being valid K = {A∧B,A∧¬B,¬A∧B,¬A∧¬B} (or, equiv-
alently using sets K = {{A,B}, {A}, {B}, ∅}), for the feature
expressionA∨B we have: [[A∨B]] = {A∧B,A∧¬B,¬A∧B}.
We consider the language IMP for writing program fam-

ilies, which will be used to exemplify our work. Still, the
introduced methodology is not limited to IMP or its features.
In fact, we evaluate our approach on program families writ-
ten in C. IMP is an extension of the imperative language IMP
[35] often used in semantic studies. IMP adds a compile-time
conditional statement for encoding multiple variants of a
program. The new statement “#if (θ ) s” contains a feature
expression θ ∈ FeatExp(F) as a presence condition, such that
only if θ is satisfied by a configuration k ∈ K then the state-
ment s will be included in the variant corresponding to k .
The syntax of the language is given by:

s ::= skip | x := e | s ; s | if e then s else s |

while e do s | #if (θ ) s

e ::= n | [n,n′] | x | e ⊕ e
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( A∧B︷        ︸︸        ︷
[y≥ 0, x=0],

A∧¬B︷        ︸︸        ︷
[y≥ 0, x=0],

¬A∧B︷        ︸︸        ︷
[y≥ 0, x=0],

¬A∧¬B︷        ︸︸        ︷
[y=0, x=0]

)
(a) Intervals

( A∧B︷            ︸︸            ︷
[y≥ 10 ∧ x=0],

A∧¬B︷            ︸︸            ︷
[y=10 ∧ x=0],

¬A∧B︷            ︸︸            ︷
[y=10 ∧ x=0],

¬A∧¬B︷          ︸︸          ︷
[y=0 ∧ x=0]

)
(b) Octagons

( A∧B︷              ︸︸              ︷
[y = 20 ∧ x = 0],

A∧¬B︷              ︸︸              ︷
[y = 10 ∧ x = 0],

¬A∧B︷              ︸︸              ︷
[y = 10 ∧ x = 0],

¬A∧¬B︷             ︸︸             ︷
[y = 0 ∧ x = 0]

)
(c) Polyhedra.

Figure 1. Tuple-based analyses results at the program point 7○ of P .

A

B

[y≥0,x=0] [y=0,x=0]

(a) Intervals

A

B B

[y≥10∧x=0] [y=10∧x=0] [y=0∧x=0]

(b) Octagons

A

B B

[y=20∧x=0] [y=10∧x=0] [y=0∧x=0]

(c) Polyhedra.

Figure 2. BDD-based analyses results at the program point 7○ of P (solid edges = true, dashed edges = false).

where n ranges over integers, [n,n′] ranges over integer in-
tervals, x ranges over variable names Var, and ⊕ over binary
arithmetic operators. Integer intervals [n,n′] have constant
and possibly infinite bounds, and denote a random choice
of an integer in the interval. This provides a notion of non-
determinism useful to model user input or to approximate
expressions. The set of all generated statements s is denoted
by Stm, while the set of all expressions e is denoted by Exp.

The IMP programs are evaluated in two stages. First, a pre-
processor takes as input an IMP program and a configuration
k ∈ K, and outputs a variant, i.e. a single IMP program with-
out #if-s, corresponding to k . Second, the obtained variant
is evaluated using the standard IMP semantics [35]. The first
stage is specified by the projection function Pk , which copies
all basic statements of IMP that are also in IMP and recur-
sively pre-processes all sub-statements of compound state-
ments. Hence, Pk (skip) = skip and Pk (s;s ′) = Pk (s);Pk (s ′).
The interesting case is “#if (θ ) s” statement, where the state-
ment s is included in the resulting variant iffk |= θ , otherwise
the statement s is removed. That is,

Pk (#if (θ ) s) =

{
Pk (s) if k |= θ

skip if k ̸ |= θ

For example, the variants PA∧B (P), PA∧¬B (P), P¬A∧B (P), and
P¬A∧¬B (P) shown in Fig. 3a, Fig. 3b, Fig. 3c, and Fig. 3d,
respectively, are derived from the program family P defined
in Section 2.

4 Numerical Property Domains
There exist various numerical property domains, which can
be used for automatic discovery of numerical properties of

program variables. They differ in expressive power and com-
putational complexity. In the following, we briefly recall the
well-known numerical property domains of intervals [11],
octagons [34], and polyhedra [15]. They are the foundation
upon which we implement in practice new lifted analyses
domains introduced in Sections 5 and 6.

Intervals. The Interval domain [11] (also called Box domain),
denoted as ⟨I, ⊑I ⟩, is a non-relational numerical property do-
main, which abstracts each variable independently. It iden-
tifies the range of possible values for every variable as an
interval. The property elements are: {⊥I } ∪ {[l,h] | l ∈

Z ∪ {−∞},h ∈ Z ∪ {+∞}, l ≤ h}, where the least element
(bottom) ⊥I denotes the empty interval and the greatest
element (top) is ⊤I = [−∞,+∞].

The abstract operations of the Interval domain are defined
in [11], they are: concretization function γI , partial ordering
⊑I , least upper bound (join) ⊔I , greatest lower bound (meet)
⊓I , widening ∇I , narrowing △I , transfer functions for tests
FILTERI and assignments ASSIGNI . Interval analysis is very
cheap, that is, all the domain operations can be performed
in linear time and space in the number of variables.

We now give precise definitions of some operations. The
concretization functionγI , which assigns a concrete meaning
to each element from I , is defined as:

γI (⊥I ) = ∅, γI ([l,h]) = {n ∈ Z | l ≤ n ≤ h}

The partial ordering ⊑I is defined as:

[l1,h1] ⊑I [l2,h2] ≡def l2 ≤ l1 ∧ h1 ≤ h2
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int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y+1;
y := y+1;

}

(a) PA∧B (P)

int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y+1;

}

(b) PA∧¬B (P)

int x := 10, y := 0;
while (x != 0) {

x := x-1;
y := y+1;

}

(c) P¬A∧B (P)

int x := 10, y := 0;
while (x != 0) {

x := x-1;
}

(d) P¬A∧¬B (P)

Figure 3. Different variants of the program family P from Section 2.

The least upper bound (join), ⊔I , and the greatest lower
bound (meet), ⊓I , are:

[l1,h1] ⊔I [l2,h2] = [min{l1, l2},max{h1,h2}],

[l1,h1] ⊓I [l2,h2] = [max{l1, l2},min{h1,h2}]

The interval domain has infinite strictly ascending chains
so we need to define widening operators in order to enforce
convergence of the fixed point of while loops. The standard
widening consists in replacing any unstable upper bound
with +∞ and any unstable lower bound with −∞ [11]:

[l1,h1]∇I [l2,h2] =
[ {l1, if l1 ≤ l2

−∞, otherwise
,

{
h1, if h1 ≥ h2

+∞, otherwise
]

In order to improve the precision of loop analysis, we can
apply the narrowing after stabilization with widening is
achieved. This is an example narrowing for intervals:

[l1,h1]△I [l2,h2] =
[ {l2, if l1 = −∞

l1, otherwise
,

{
h2, if h1 = +∞
h1, otherwise

]
Let a ∈ Var → I be an abstract state which maps each
variable x to an interval. The transfer function FILTERI ab-
stracts tests (expressions) in while-s and if-s by restricting
the input abstract store so that it satisfies the given test. For
example, this is one simple case:

FILTERI (a : Var→ I , x≤n : Exp) =

{
a[x 7→[l,min(h,n)]], if l ≤n
⊥I , if l >n

where a(x) = [l,h]. The transfer function ASSIGNI which
abstracts assignments is:

ASSIGNI (a : Var → I , x:=e : Stm) = a[x 7→ [[e]]Ia]

where [[e]]Ia is the value obtained by abstract evaluation of
e in the store a.

Octagons. The Octagon domain [34], denoted as ⟨O, ⊑O ⟩,
is a weakly-relational numerical property domain, where
property elements are conjunctions of linear inequalities of
the form +−xj +− xi ≤ c between program variables xi and xj .

The abstract operations of the Octagon domain are defined
in [34]. The octagon analysis has a cubic time cost per domain
operation. Thus, it represents a trade-off between the interval
analysis, which is very cheap but quite imprecise, and the
polyhedra analysis, which is very expressive but quite costly.
Each property element is encoded as Difference Bound

Matrix (DBM)mwhich is a 2n×2nmatrix, wheren is the total

number of program variables. For each variable xi ∈ Var, we
consider two versions x ′

2i−1 and x
′
2i which correspond to +xi

and −xi respectively. The elementmi j at row i and column
j of m (1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n), denotes the constraint
x ′
j − x ′

i ≤ mi j . The concretization function γO is defined as:

γO (m)= {(v1,. . .,vn) ∈R
n | (v1,−v1,. . .,vn,−vn) ∈γDBM (m)}

γDBM (m) = {(v1, . . . ,v2n) ∈ R
2n | ∀i, j .vj −vi ≤ mi j }

The structure ⟨DBM, ⊑DBM ,⊔DBM ,⊓DBM ,⊥DBM ,⊤DBM ⟩ is
a lattice, where⊑DBM ,⊔DBM , and⊓DBM are defined element-
wise, and ⊤DBM has all its elements set to +∞. Thus, we can
use its operators to define the octagon analysis.

As for the interval domain, the widening ∇O puts unstable
bounds to infinity, while the narrowing △O refines an upper
bound only if it is infinity.

∀i, j .
[
m∇On

]
i j =

{
mi j , if ni j ≤ mi j

+∞, otherwise
,

∀i, j .
[
m△On

]
i j =

{
ni j , ifmi j = +∞

mi j , otherwise

The transfer functions for tests FILTERO and assignments
ASSIGNO are similar [34]. We show here only the simplest
case of handling the non-deterministic assignment xj:=? (or
xj:=[−∞,+∞]).

∀k, l .
[
ASSIGNI (m : DBM, xj:=? : Stm)

]
kl ={

+∞, ifk ∈ {2j−1, 2j}∨l ∈ {2j−1, 2j}
mkl , otherwise

Polyhedra. The Polyhedra domain [15], denoted as ⟨P, ⊑P ⟩,
is a fully relational numerical property domain, which al-
lows manipulating conjunctions of linear inequalities of the
form α1x1 + . . . + αnxn ≥ β , where x1, . . ., xn are program
variables and αi , β ∈ R (reals). The abstract operations of
the Polyhedra domain are defined in [15]. Polyhedra analy-
sis is very expensive, that is, it has time and memory cost
exponential in the number of variables in practice.
A property element is represented as a conjunction of

linear constraints given in the matrix form ⟨|A, ®b|⟩which
consists of a matrixA ∈ Rm×n and a vector ®b ∈ Rm , where n
is the number of variables andm is the number of constraints.
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This is called the constraint representation of polyhedra ele-
ments, and there is another so-called generator representa-
tion. One representation can be converted to the other one
using the Chernikova’s algorithm [8]. Some domain opera-
tions can be performed more efficiently using the generator
representation only, others based on the constraint represen-
tation, and some making use of both. We now present some
operations defined using the constraint representation.

The concretization function is:

γP (⟨|A, ®b|⟩) = {®v ∈ Rn | A · ®v ≥ ®b}

The meet ⊓P is defined as:

⟨|A1, ®b1 |⟩⊓P ⟨|A2, ®b2 |⟩= ⟨|
(A1
A2

)
,
( ®b1
®b2

)
|⟩

We also need widening since the polyhedra domain has infi-
nite strictly increasing chains.

⟨|A1, ®b1 |⟩∇P ⟨|A2, ®b2 |⟩= {c ∈ ⟨|A1, ®b1 |⟩ | ⟨|A2, ®b2 |⟩ ⊑P {c}}

where c represents one constraint from ⟨|A1, ®b1 |⟩. The transfer
function FILTERP abstracts affine inequality tests (expres-
sions) by adding them to the input polyhedra.

FILTERP (⟨|A, ®b|⟩ : P,
∑
i

αixi ≥ β : Exp) = ⟨|

(
A

α1 . . . αn

)
,

(
®b
β

)
|⟩

5 Lifted Analysis via Products
Lifted analyses are designed by lifting existing single-program
analyses to work on program families, rather than on indi-
vidual programs. They directly analyze IMP program fam-
ilies, without preprocessing them by taking into account
variability-specific aspects of program families.

In this section, we introduce lifted analyses based on the
lifted domain that is |K|-fold product of an existing (single-
program) analysis domain A. From now on, we assume that
the single-program analysis domain A is equipped with
sound operators for concretization γA, ordering ⊑A, join ⊔A,
meet ⊓A, bottom ⊥A, top ⊤A, widening ∇A, and narrowing
△A, as well as sound transfer functions for tests FILTERA and
assignments ASSIGNA. For example, in the implementation
we will use for A one of the numerical property domains
introduced in Section 4.

Lifted Domain. The lifted analysis domain is defined as
⟨AK, Û⊑, Û⊔, Û⊓, Û⊥, Û⊤⟩, where AK is shorthand for the |K|-fold
product

∏
k ∈K A, that is, there is one separate copy of A for

each valid configuration of K.

Example 5.1. Consider the tuple in Fig. 1a, in which com-
ponents are analysis properties from the Interval domain and
K = {A∧B,A∧¬B,¬A∧B,¬A∧¬B}. Note that to simplify the
presentation, we write x ≥ n short for x 7→ [n,+∞], x ≤ n
short for x 7→ [−∞,n], n ≤ x ≤ n′ short for x 7→ [n,n′], and
x = n short for x 7→ [n,n]. In first order logic, the tuple in

Fig. 1a can be written as the following disjunctive property:(
A∧B∧[y ≥ 0, x = 0]

)
∨

(
A∧¬B∧[y ≥ 0, x = 0]

)
∨(

¬A∧B∧[y ≥ 0, x = 0]
)
∨

(
¬A∧¬B∧[y = 0, x = 0]

)
(1)

Abstract Operations. Given a tuple (lifted domain element)
a ∈ AK, the projection πk selects the k th component of a.

Concretization function: Given a configuration k ∈ K, the
concretization function γ k of a tuple a ∈ AK depends on the
concretization function γA of the domain A, and is defined
as: γ k (a) = γA(πk (a)).
Ordering: Given two tuples a1,a2 ∈ AK, their approxima-

tion ordering a1 Û⊑ a2 is computed by lifting configuration-
wise the ordering⊑A of the domainA:a1 Û⊑ a2 ≡def πk (a1)⊑A
πk (a2) for all k ∈ K.
Join, Meet: Similarly, we lift configuration-wise all other

elements of the latticeA. Given a1,a2 ∈ AK, their join a1 Û⊔ a2
and meet a1 Û⊓ a2 are defined as: a1 Û⊔ a2 =

∏
k ∈K(πk (a1)⊔A

πk (a2)), and a1 Û⊓ a2 =
∏

k ∈K(πk (a1) ⊓A πk (a2)).
Top, Bottom: The top Û⊤ and bottom Û⊥ elements are de-

fined as: Û⊤ =
∏

k ∈K ⊤A = (⊤A, . . . ,⊤A), Û⊥ =
∏

k ∈K ⊥A =

(⊥A, . . . ,⊥A)
Widening, Narrowing: The widening Û∇ and the narrow-

ing Û△ are defined as: a1 Û∇ a2 =
∏

k ∈K(πk (a1)∇Aπk (a2)),
a1 Û△ a2 =

∏
k ∈K(πk (a1)△Aπk (a2)).

Transfer Functions. We now define transfer functions for
tests and assignments. There are two types of tests: expression-
based tests that occur in while and if statements, and feature-
based tests that occur in #if statements.
Expression-based tests: The transfer function FILTER for

the expression tests “e” in while and if statements is de-
signed to handle the test “e” independently on each con-
figuration component k ∈ K using the transfer function
FILTERA of the domain A. That is,

FILTER(a : AK, e : Exp) =
∏

k ∈K(FILTERA(πk (a), e))

Feature-based tests: The transfer function F-FILTER for the
feature expression tests “θ” in #if-s is designed to check the
satisfaction of k |= θ 2 for each configuration component
k ∈ K. If k |= θ holds, then we keep the corresponding
component element, otherwise we replace it with ⊥A. That
is, we have

F-FILTER(a :AK, θ :FeatExp(F)) =
∏

k ∈K

{
πk (a), if k |= θ

⊥A, if k ̸ |= θ

Assignments: The transfer function ASSIGN that handle
the assignment “x:=e” in the input tuple a ∈ AK is defined
using ASSIGNA which is independently applied on each com-
ponent of a. We have

ASSIGN(a :AK, x:=e :Stm) =
∏

k ∈K(ASSIGNA(πk (a), x:=e))

2Since any k ∈ K is a valuation formula, we have that either k |= θ holds
or k ̸ |= θ (which is equivalent to k |= ¬θ ) holds, for any θ ∈ FeatExp(F).
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1○
(
[y=⊤I, x=⊤I], [y=⊤I, x=⊤I], [y=⊤I, x=⊤I], [y=⊤I, x=⊤I]

)
2○

(
[y=0, x=10], [y ==0, x=10], [y=0, x=10], [y=0, x=10]

)
3○

(
[y≥ 0, x≤ 10], [y≥ 0, x≤ 10], [y≥ 0, x≤ 10], [y=0, x≤ 10]

)
4○

(
[y ≥ 0, x ≤ 9], [y ≥ 0, x ≤ 9], [y ≥ 0, x ≤ 9], [y = 0, x ≤ 9]

)
5○

(
[y ≥ 1, x ≤ 9], [y ≥ 1, x ≤ 9], [y ≥ 0, x ≤ 9], [y = 0, x ≤ 9]

)
6○

(
[y ≥ 2, x ≤ 9], [y ≥ 1, x ≤ 9], [y ≥ 1, x ≤ 9], [y = 0, x ≤ 9]

)
7○

(
[y ≥ 0, x = 0], [y ≥ 0, x = 0], [y ≥ 0, x = 0], [y = 0, x = 0]

)
Figure 4. Tuple-based (interval) analyses results at the pro-
gram points from 1○ to 7○ of P .

#if statements: Given the (lifted) transfer function [[s]] for
the statement s , the transfer function IFDEF for “#if (θ ) s”
is defined as:

IFDEF(a : AK, #if (θ ) s : Stm) =

[[s]](F-FILTER(a, θ )) Û⊔ F-FILTER(a, ¬θ )

Lifted Analysis. In the first iteration of the analysis, we
construct tuples based on the information we have forK. For
the first program point, we build a tuple where all compo-
nents are set to ⊤A, whereas for the other program points
all components are set to ⊥A.

The operators of the lifted analysis domain AK and trans-
fer functions are combined together to analyze program
families. The non- Û⊥ analysis properties are then propagated
forward from the first program point towards the final con-
trol point taking assignments and (expression- and feature-
based) tests into account with join and widening around
while-s. We apply so-called delayed widening, which means
we start extrapolating by widening only after some fixed
number of iterations we analyze the loop. As a consequence
of the soundness of all operators and transfer functions of
the abstract domain A, we can establish the soundness and
correctness of the lifted analysis based on tuples: we obtain
correct analysis results for each valid variant.

Example 5.2. Consider the IMP program P from Section 2.
We want to perform interval lifted analysis of P using the
lifted domain IK. In order to enforce convergence of the
analysis, we apply the widening operator at the loop head,
that is, at the point before the while test. The final analysis
results at program points from 1○ to 7○ are shown in Fig. 4.
They represent 4-sized tuples, which contain four interval
properties (stores), one for each configuration. □

6 Lifted Analysis via Binary Decision
Diagrams

In this section, we propose a new efficient lifted analysis by
introducing the lifted domain of binary decision diagrams
(BDDs), denoted as D(F,K,A). We exploit the well-known
efficiency of BDDs [5, 26] for representing formulae that com-
bine Boolean variables and analysis properties. The elements

A

B B

[y≥0,x=0] [y≥0,x=0] [y≥0,x=0] [y=0,x=0]

Figure 5. A BDT.
A

B

[y≥0] [y=0]

⊔D

A

[y=1][y=−1]

=

A

B

[y≥−1] [y≥0] [0≤y≤1]

Figure 6. The join of two BDDs.

of the domain D(F,K,A) are disjunctions of the leaf nodes
that belong to an existing (single-program) analysis domain
A, which are separated by the values of Boolean features
organized in the decision nodes. Therefore, we encapsulate
the set K into the decision nodes of a BDD where each top-
down path represents one or several configurations from K,
and we store in each leaf node the property generated from
the variants derived by the corresponding configurations.

Lifted Domain. We first consider a simpler form of binary
decision diagrams called binary decision trees (BDTs), which
can be used as lifted analysis domains. A binary decision tree
(BDT) t ∈ T(F,K,A) over the set F of features, the set K of
valid configurations, and the leaf abstract domain A is either
a leaf node ⟨|p |⟩, with p an element of A and F = K = ∅,
or [[A : tl, tr ]], where A is the first element of F, tl is the
left subtree of t representing its true branch, and tr is the
right subtree of t representing its false branch, such that
tl, tr ∈ T(F\{A},K\{A},A). K\{A} denotes the removal of
A from each configuration. The left and right subtrees are
either both leaf nodes or both decision nodes labeled with
the same feature.

Example 6.1. The binary decision tree in Fig. 5 has decision
nodes labeled with featuresA and B, and leaf nodes are Inter-
val properties. In first order logic, the above tree expresses
the same formula as the one in Eqn. (1), Example 5.1. □

However, the BDTs contain some redundancy. There are
three optimizations we can apply to BDTs in order to reduce
their representation [5, 26]:
(1) Removal of duplicate leaves. If a tree contains more

than one same leaf, we redirect all edges that point to
such leaves to just one of them.
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(2) Removal of redundant tests. If both outgoing edges of
a node Ai point to the same node Aj , we eliminate Ai
by sending all its incoming edges to Aj .

(3) Removal of duplicate non-leaves. If two nodes Ai and
Aj are the roots of identical subtrees, we eliminate Ai
by sending all its incoming edges to Aj .

If we apply reductions (1)-(3) to a binary decision tree t ∈
T(F,K,A) until no further reductions are possible, then the
result is a reduced binary decision diagram d ∈ D(F,K,A).
Thanks to the sharing of information enabled by the re-
ductions (1)-(3), BDDs are quite compact representation of
disjunctive analysis properties from AK. Moreover, if the
ordering on the Boolean variables from F occurring on any
path is fixed, then the resulting BDDs have a canonical form.
This means that any disjunctive analysis property from the
lifted domain AK can be represented in a unique way by a
BDD from D(F,K,A).

Example 6.2. After applying reductions (1)-(3) to the bi-
nary decision tree in Fig. 5, the resulting reduced BDD is
shown in Fig. 2a. □

AbstractOperations. The abstract operations onD(F,K,A)
are implemented by recursive traversal of the operand BDDs
and by using hashtables to store and reuse already computed
subtrees [5]. The basic operations are:

• apply2(op,d1,d2) which lifts any binary operation op
from the domain A to BDDs, thus computing the re-
duced BDD of “d1opd2”.

• apply1(op,d) which applies any unary operation op
from the domain A to the leaf nodes of the BDD d ,
thus computing the reduced BDD of “opd”.

• meet_condition(d,b) which restricts the top-down
paths (Boolean part) of the BDD d to those paths that
satisfy the condition b.

With the help of apply2, apply1, and meet_condition, ab-
stract operations and transfer functions from A are lifted to
D(F,K,A).
Concretization function: Given a configuration k ∈ K,

the concretization function γ kD of a binary decision diagram
d ∈ D(F,K,A) returns γA(a), where a ∈ A is the analysis
property in the leaf node of d reached along the top-down
path representing the configuration k .
Ordering: Given two BDDs d1,d2 ∈ D(F,K,A), their ap-

proximation ordering d1 ⊑D d2 is defined as:

d1 ⊑D d2 ≡def apply2(λ(a1,a2).a1 ⊑A a2,d1,d2)

If the resulting BDD of the above operation is the constant
true, then d1 ⊑D d2 holds.

Join, Meet: Similarly, we compute the other binary opera-
tions. For join d1 ⊔D d2 and meet d1 ⊓D d2, we have:

d1 ⊔D d2 = apply2(λ(a1,a2).a1 ⊔A a2,d1,d2),
d1 ⊓D d2 = apply2(λ(a1,a2).a1 ⊓A a2,d1,d2)

For example, Fig. 6 shows the join of two BDDs fromD(F,K,A).

Top, Bottom: The BDDs ⊤D and ⊥D representing the top
and bottom elements in D(F,K,A) have only one leaf node
⊤A and ⊥A, respectively.

Widening, Narrowing: We have:

d1∇Dd2 = apply2(λ(a1,a2).a1∇Aa2,d1,d2),
d1△Dd2 = apply2(λ(a1,a2).a1△Aa2,d1,d2)

Transfer Functions. We now proceed by defining transfer
functions for both expression-based and feature-based tests
as well as for assignments and #if-s.

Expression-based tests: The transfer function FILTERD for
the expression tests “e” in while-s and if-s is implemented
by handling “e” at each leaf node of the input BDD using
apply1. That is,

FILTERD(d :D(F,K,A), e :Exp) = apply1(λa.FILTERA(a, e),d)
Feature-based tests: The transfer function F-FILTERD for

the feature expression tests “θ” in #if-s is implemented using
the meet_condition operation. We have
F-FILTERD(d :D(F,K,A), θ :FeatExp(F)) = meet_condition(d, θ )

Assignments: The transfer function ASSIGND for the as-
signment “x:=e” is implemented by applying ASSIGNA at
each leaf node of the input BDD using apply1.

ASSIGND(d :D(F,K,A), x:=e :Stm) =

apply1(λa.ASSIGNA(a, x:=e),d)

#if statements: Given the (lifted) transfer function [[s]] for
the statement s , the transfer function IFDEFD for “#if (θ ) s”
is defined as:
IFDEFD(d :D(F,K,A), #if (θ ) s :Stm) =

[[s]](F-FILTERD(d, θ )) ⊔D F-FILTERD(d, ¬θ )

Lifted Analysis. A path in a BDD corresponds to one or
several configurations. We say that a path is valid if the cor-
responding configurations are valid and belong to K. In the
first iteration of the analysis, we build BDDs with only one
leaf node that can be reached along only valid paths. For the
first program point the leaf node is⊤A, whereas for the other
program points the leaf node is⊥A. Thus, in the first iteration,
the BDD for the first point is meet_condition(⊤D,∨k ∈Kk),
whereas for the other points is meet_condition(⊥D,∨k ∈Kk).
Note that, if K = 2F then ∨k ∈Kk ≡ true, so the BDD is ⊤D
for the first point and ⊥D for the others.

The operators of the abstract lifted domain D(F,K,A) and
transfer functions are combined together to analyze program
families. The non-⊥D analysis properties are then propagated
forward towards the final control point taking assignments
and tests into account with join and widening around while-
s. As a consequence of the soundness of all operators and
transfer functions of the leaf domain A, we can establish the
soundness and correctness of the lifted analysis based on
BDDs: we obtain correct analysis results for each variant
corresponding to a valid configuration k ∈ K.
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Example 6.3. Consider the IMP program P from Section 2.
We want to perform interval lifted analysis of P using the
lifted domain D(F,K, I), where F = {A,B} and K = 2{A,B } .
The final analysis results at program points from 1○ to 7○ are
shown in Fig. 7. Compared to the analysis results obtained
using the lifted domain IK in Fig. 4 (see Example 5.2), which
represent 4-sized tuples, it is obvious that results based on the
lifted domainD(F,K, I) have a lot of sharing of the redundant
information in all program points. For example, in program
points from 1○ to 4○, there is only one interval property
(store). In points 5○ and 7○ there are two interval properties,
while in 6○ there are three interval properties. □

7 Evaluation
Wenow evaluate our approach for speeding up lifted analysis
on several C case studies. The evaluation aims to show the
following objectives:

O1: The BDD-based lifted analyses outperform the corre-
sponding tuple-based lifted analyses;

O2: The BDD-based lifted analyses can even turn some
previously infeasible tuple-based lifted analyses into
feasible ones;

O3: We can find practical application scenarios of using our
lifted analyses to efficiently verify C program families.

Implementation We have implemented our lifted abstract
domains of tuplesAK and binary decision diagramsD(K, F,A)
into a prototype static analyzer. The abstract domains A for
encoding properties of leaf nodes are based on intervals,
octagons, and polyhedra. The operators and transfer func-
tions for the domains A: intervals, octagons, and polyhedra,
are provided by the APRON library [29]. The operators and
transfer functions for the binary decision diagram domains
that combine Boolean formulae and APRON domains are
provided by the BDDAPRON library [28]. The prototype
tool is written in OCaml. It accepts programs written in a
subset of Cwith #ifdef constructs, but without struct and
union types. It provides only a limited support of arrays and
pointers, and the only basic data types are integers. As out-
put, the tool infers numeric invariants in all program points.
We implement a forward reachability analysis that starts
from the beginning of the program and an initial abstract
property, then it goes forward to derive necessary conditions
so that the executions reach particular program points. The
analysis proceeds by structural induction on the program
syntax, iterating while-s until a fixed point is reached. It
computes the unique least solution which to every program
point assigns an element from the lifted analysis domain.

Experimental setup All experiments are executed on a
64-bit IntelCoreTM i5 CPU, Linux Ubuntu VM, with 8 GB
memory. The reported times represent the average runtime

of five independent executions. We report the times (in sec-
onds) needed for actual analyses to be performed. The im-
plementation, benchmarks, and all results obtained from our
experiments are available from: http://bit.ly/2SUck5n (also
http://bit.ly/2Fu266X). In our experiments, we use three in-
stances of our lifted analyses based on BDDs:AD(I ),AD(O),
andAD(P) which use intervals, octagons, and polyhedra do-
mains for the leaf nodes, respectively. We also consider three
lifted analyses based on tuples: AΠ(I ), AΠ(O), and AΠ(P),
which use intervals, octagons, and polyhedra domains for
the component elements, respectively.

Benchmarks For our experiment, we use a dozen of C
programs extracted from five different folders (categories)
of the 8th International Competition on Software Verifica-
tion (SV-COMP 2019) 3. The folders we consider are: loops,
loop-invgen (invgen for short), loop-lit (lit for short),
termination-crafted (crafted for short), and finally we
consider termination-restricted (restrict for short).
We have selected some numeric programs with integers that
our tool can handle. We have manually added variability in
each of them, and then we have analyzed those programs
using our prototype lifted analyzer. All added features are
unconstrained, so the set of valid configurations is K = 2F.
Table 1 summarizes relevant characteristics for some selected
benchmarks: the folder where it is located, the number of
features, and the total number of lines of code (LOC).

Performances Table 1 compares the performances of dif-
ferent versions of our lifted analyses based on BDDs and on
tuples. For each analysis version based on BDDs, there are
two columns. In the first column, Time, we report the run-
ning time in seconds to analyze the given program using the
analyses versions based on BDDs:AD(I ),AD(O), andAD(P).
In the second columnn, Improve, we report how many times
a BDD-based analysis is faster than the corresponding base-
line analyses based on tuples (AD(I ) vs. AΠ(I ), AD(O) vs.
AΠ(O), and AD(P) vs. AΠ(P)). The results match expecta-
tions. All BDD-based versions achieve significant speed-ups
compared to the tuple-based versions, which range from
2.6 to 13.5 times for programs with four features and from
5.3 to 11.8 times for programs with five features (addresses
Objective (O1)). Of course, the speed up depends on how
much sharing is possible for a given program. We can see
that AD(I ) is the fastest version, then it comes AD(O), and
AD(P) is the slowest and the most precise version.

From infeasible to feasible analyses For very large val-
ues of |K|, the tuple-based lifted analyses may become im-
practically slow or even infeasible since they work on |K|-
sized tuples. In that case, we can use the BDD-based lifted
analyses with improved representation via sharing to obtain
feasible lifted analyses.

3https://sv-comp.sosy-lab.org/2019/

http://bit.ly/2SUck5n
http://bit.ly/2Fu266X
https://sv-comp.sosy-lab.org/2019/
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[y=⊤I,x=⊤I]

(a) Point 1○
[y=0,x=10]

(b) Point 2○
[y≥0,x≤10]

(c) Point 3○
[y≥0,x≤9]

(d) Point 4○

A

[y≥1,x≤9] [y≥0,x≤9]

(e) Point 5○

A

B B

[y≥2,x≤9] [y≥1∧x≤9] [y≥0∧x≤9]

(f) Point 6○

A

B

[y≥0∧x=0] [y=0∧x=0]

(g) Point 7○

Figure 7. BDD-based analyses results at the program points from 1○ to 7○ of P .

Table 1. Performance results for lifted static analyses based on binary decision diagrams vs. lifted static analyses based on
tuples (which are used as baseline). All Times are in seconds.

Bench. folder |F|LOC
AD(I ) AD(O) AD(P)

Time Improve Time Improve Time Improve

down.c invgen 4 25 0.0078 4.6× 0.0163 7.5× 0.0189 6.7×
half2.c invgen 4 30 0.0093 4.9× 0.0240 7.8× 0.0259 6.5×

heapsort.c invgen 4 60 0.0216 6.5× 0.0887 13.5× 0.0899 12.4×
seq.c invgen 4 40 0.0162 5.6× 0.0721 9.1× 0.0674 6.3×
eq1.c loops 4 20 0.0109 2.6× 0.0196 4.5× 0.0252 4.2×
eq2.c loops 5 20 0.0064 7.7× 0.0127 11.8× 0.0138 11.4×

sum01*.c loops 4 20 0.0084 5.2× 0.0236 9.9× 0.0269 7.5×
count_up_down*.c loops 4 30 0.0046 5.6× 0.0071 5.8× 0.0103 5.9×

hhk2008.c lit 5 30 0.0100 7.9× 0.0198 10.7× 0.0269 8.9×
gsv2008.c lit 5 25 0.0079 7.5× 0.0168 11.1× 0.0189 10.7×
gcnr2008.c lit 4 30 0.0179 3.0× 0.0345 6.2× 0.0584 6.3×
bhmr2007.c lit 4 30 0.0085 5.6× 0.0318 8.4× 0.0231 7.4×

GCD4.c restrict 4 30 0.0056 6.3× 0.0083 10.1× 0.0170 8.7×
UpAndDown.c restrict 4 30 0.0106 4.8× 0.0145 5.3× 0.0414 4.7×

Log.c restrict 4 35 0.0082 5.7× 0.0161 9.7× 0.0201 8.8×
java_Sequence.c restrict 4 25 0.0085 3× 0.0130 4.1× 0.0177 4.6×
Toulouse*.c crafted 4 75 0.0143 4.1× 0.0232 4.4× 0.0392 5.2×
TelAviv*.c crafted 4 50 0.0070 3.1× 0.0078 3.4× 0.0142 4.7×
Mysore.c crafted 5 35 0.0092 5.3× 0.0109 5.8× 0.0235 7.4×

Copenhagen.c crafted 5 30 0.0041 7.6× 0.0050 8.1× 0.0087 11.1×

As an experiment, we have tested the limits of the tuple-
based lifted analysisAΠ(P).We took amethod, foon (), which
contains n features A1, . . . , An and n sequentially composed
#if statements of the form #if (Ai ) i := i+1. For example,
the method foo3() with three features A1, A2, and A3 is:

1○ int i := 0;
2○ #if (A1) i := i+1; #endif
3○ #if (A2) i := i+1; #endif
4○ #if (A3) i := i+1; #endif 5○

Depending on which features are enabled in a configuration,
the variable i in point 5○ can have a value in the range from
0 (when A1, A2, and A3 are all disabled) to 3 (when A1, A2, and
A3 are all enabled). The analysis results in program point
5○ obtained using AΠ(P) and AD(P) are shown in Fig. 8

and Fig. 9. The tuple-based AΠ(P) uses 8 interval properties,
while the BDD-based AD(P) uses only 4 interval properties
which are shared between all 8 configurations.

We have gradually added unconstrained variability into
foo3 by adding optional features and by sequentially compos-
ing #if statements guarded by all existing features. In gen-
eral, the number of interval properties used byAΠ(P) grows
exponentially (that is, 2n) with n, whereas the number of
interval properties used byAD(P) in the final program point
grows linearly (that is, n+1) with n. The performance results
of analyzing foon , for different values of n, usingAΠ(P) and
AD(P) are shown in Table 2. Already for |K| = 216 =65,536
configurations, the analysis AΠ(P) took 181 seconds, while
the analysis AD(P) took only 5.2 seconds thus giving speed
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( A1∧A2∧A3︷ ︸︸ ︷
[i = 3],

A1∧A2∧¬A3︷ ︸︸ ︷
[i = 2],

A1∧¬A2∧A3︷ ︸︸ ︷
[i = 2],

A1∧¬A2∧¬A3︷ ︸︸ ︷
[i = 1] ,

¬A1∧A2∧A3︷ ︸︸ ︷
[i = 2],

¬A1∧A2∧¬A3︷ ︸︸ ︷
[i = 1] ,

¬A1∧¬A2∧A3︷ ︸︸ ︷
[i = 1] ,

¬A1∧¬A2∧¬A3︷ ︸︸ ︷
[i = 0]

)
Figure 8. AΠ(P) results at point 5○ of foo3().

A1

A2 A2

A3 A3 A3

[i=3] [i=2] [i=1] [i=0]

Figure 9. AD(P) results at point 5○ of foo3().

Table 2. The performance results of analyzing foon .

n AΠ(P ) AD(P ) Improve

3 0.0046 0.0017 2.7×
5 0.0253 0.0047 5.4×
10 1.6228 0.1304 12.4×
15 85.525 3.7461 22.8×
16 181.38 5.2260 34.7×
17 infeasible 6.5258 -
18 infeasible 7.3149 -

up of 35 times. For |K| = 217 =131,172, AΠ(P) crashes with
an out-of-memory error, while AD(P) ends in less than 6.5
seconds, producing a BDD with 18 leaf nodes: one node
for each i∈ {0, . . . , 17}. Hence, BDDs can not only speed up
analyses, but also turn previously infeasible analyses feasible
(addresses Objective (O2)).

Application scenarios. Let us consider the program P1

1○ #if (A) int x := [10, 20]; #endif
2○ #if (¬A) int x := [0, 10]; #endif
3○ int y := [0, 1];
4○ if (y ≥ 1) x := −x;
5○ assert(x!=0); 6○

which has only one feature A. When A is on, the program
stores a random value from [10, 20] in x. Otherwise, when
A is off, it stores a random value from [0, 10] in x. Then,
depending on the value of the non-deterministic variable y,
x is negated or not. We want to show that the assertion at the
program point 5○, is correct for the config A. For example,
later on in the program, there may be divisions by x (e.g. n/x).
In this way, we can verify that there are no divisions-by-zero.
The lifted analysis using the Interval domain will take

at point 4○ the join of the then branch of conditional and
its else branch. Hence, it will report in point 5○ that x ∈

[−20, 20] for the config A and x ∈ [−10, 10] for the configura-
tion ¬ A. Thus, the assertion will fail for both configurations.
However, the lifted analysis using the Polyhedra domain will
be more successful. The found invariant for the config A at
point 5○ is: 10 ≤ x+30y ≤ 20 ∧ 0 ≤ y ≤ 1. Hence, in this

case, the analysis will correctly conclude that the assertion
is correct for the configuration A (addresses Objective (O3)).
However, the assertion may fail for the configuration ¬ A.

Let us consider the program P2:
1○ #if (A) int x := [−10, 10]; #endif
2○ #if (¬A) int x := [0, 10]; #endif
3○ int y := x;
4○ if (x ≤ 0) y := −y;
5○ assert(y<0); 6○

which has one feature A. When A is on, the program stores a
random value from [−10, 10] in x. Otherwise, when A is off,
it stores a random value from [0, 10] in x. Then, we store in
y the absolute value of x. In the program point 5○, we want
to check the given assertion. For example, later on in the
program, there are references to an array using the index y
(e.g. a[y] := 0). In this way, we want to verify that there are
no array-out-of-bounds references.
Lifted analysis using the Interval domain is not able to

deduce that the assertion is correct, since it finds that −10 ≤

y ≤ 10 in point 5○ for both configurations A and ¬ A. Still,
the lifted analyses using Octagons and Polyhedra are able
to prove that the assertion is correct, since they show that
y ≥ 0 at 5○ for both A and ¬ A (addresses Objective (O3)).

8 Related Work
We divide our discussion of related work into four categories:
analyses based on disjunctive abstract domains, lifted analy-
ses, other lifted techniques, and other types of families.

Analyses based on disjunctive abstract domains. The
use of disjunctive abstract domains in static analysis has at-
tracted considerable attention recently. Decision trees have
been used for the disjunctive refinement of the interval do-
main [25]. A segmented decision tree abstract domain where
disjunctions are determined by value of variables is pro-
posed in [14], whereas in [7] disjunctions are determined
by the branch conditions. The Function analyzer [38] for
proving program termination is also based on decision tree
abstract domains for defining ranking functions, where deci-
sion nodes contain constraints that split the memory space
and the leaves contain affine expressions. Logico-numerical
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abstract domain implemented usingBDDAPRON and specifi-
cally designed acceleration methods are used in [36] to verify
synchronous data-flow programs with Boolean and numeri-
cal variables, such as LUSTRE programs. The BDDAPRON
library has been developed by Jeannet [28] to implement a
relational inter-procedural analysis of concurrent programs.

Lifted analyses. Brabrand et. al. [4] lift a dataflow analysis
from the monotone framework, resulting in a tuple-based
lifted dataflow analysis that works on the level of families.
Another efficient implementation of the lifted dataflow anal-
ysis formulated within the IFDS framework was proposed
in SPLLIFT [3]. It has been shown that the running time of
analyzing all variants in a family is close to the analysis
of a single program. However, this technique is limited to
work only for analyses phrased within the IFDS framework,
a subset of dataflow analyses with certain properties, such as
distributivity of transfer functions. Many dataflow analyses,
including interval and octagon analyses, are not distributive
and cannot be encoded in IFDS. A formal methodology for
systematic derivation of tuple-based lifted static analyses
from existing single-program analyses phrased in the ab-
stract interpretation framework was proposed in [33]. There
are two ways to speed up analyses: improving representation
and increasing abstraction. In this paper, we investigate the
former. The latter has also received attention in the field of
lifted analysis [17–20]. Variability abstractions introduced
in [17, 19] aim to tame the combinatorial explosion of the
number of configurations and reduce it to something more
tractable by manipulating the configuration space. Such vari-
ability abstractions are used for deriving abstract lifted anal-
yses, which enable deliberate trading of precision for speed.
The works [18, 20] propose an automatic two-phase proce-
dure for effective lifted analyses, where in the first phase a
specifically designed pre-analysis is run to calculate suitable
variability abstractions, and then in the second phase the
calculated abstract lifted analysis is performed. However,
the above tuple-based lifted analyses [4, 17, 18, 33] are only
applied to CIDE-based Java program families [31] using toy
client analyses, such as reaching definitions and uninitialized
variables. On the other hand, here we consider #ifdef-based
C program families which represent the majority of indus-
trial embedded code, as well as the most known numeric
client analyses which enable verification of the most com-
mon invariance properties.

Other lifted techniques. Various approaches have been
proposed for lifting other existing analysis and verification
techniques to work on the level of families (see [37] for a
survey). Besides the family-based (lifted) strategy, the sur-
vey [37] identifies product-based (all variants are analyzed
one by one) and sampling strategy (only a random subset of
variants is analyzed) as possible ways of analyzing product
lines (see also [2]). Many family-based (lifted) approaches

analyze entire families at once through sharing, by split-
ting where necessary and joining at fine granularity. Our
lifted static analysis based on BDDs is an example of such
analysis with sharing. There are other successful lifted tech-
niques that use sharing through BDDs. SPLVerify [39] per-
forms software model checking of program families based on
variability encoding which transforms compile-time to run-
time variability [27], VarexJ [32] performs dynamic analysis
of program families based on variability-aware execution,
whereas SuperC [24] is a variability-aware parser, which can
parse C language with preprocessor annotations thus produc-
ing ASTs with variability nodes. All of them use BDDs and
standard BDD libraries (e.g. JavaBDD) to represent feature ex-
pressions. In this paper, we employ BDDs and widely-known
numeric abstract domain libraries (APRON and BDDAPRON)
for automatic inference of invariants of program families.
Lifted model checking has also been an active research

field in recent years. One of the most known models of
system families is by using the popular Feature Transition
Systems (FTSs) [9]. Several specially designed lifted model
checking algorithms for efficient verification of temporal
properties of such models have been proposed [9, 16, 21, 22].

Other types of program families. In this work, we con-
sider annotation-based program families where variability
is integrated with the common code base. Apart from C-
Preprocessors [30], graphical CIDE [31] and the choice cal-
culus [23] represent another methods to implement such
annotation-based program families. The graphical CIDE (Col-
ored IDE) is an Eclipse plug-in which annotates variability
in program code using background colors, such that every
feature is associated with a unique color. The choice calculus
is a simple, formal language for representing variability in
a way that maximizes sharing and minimizes redundancy,
which is similar to the goals of the binary decision diagram
domain used here. The annotation-based families contrast
sharply with composition-based program families [1], where
features are implemented as separate and composable units.
In this approach, features are developed and tested indepen-
dently, and then combined in a prescribed manner to produce
the desired set of variants. They have also been interesting
for analysis and verification [6].

9 Conclusion
In this work we proposed lifted analysis domains based on
tuples and binary decision diagrams, which are used for per-
forming several lifted numeric analyses of program families.
The BDD-based lifted domain provides a symbolic and very
compact representation of such lifted properties of program
families, where the sharing of information is maximized. In
effect, we obtain faster lifted analyses without losing any
precision. We evaluate the proposed lifted domains on sev-
eral C product lines. We experimentally demonstrate the
effectiveness of BDD-based lifted domain.
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