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Abstract: In this paper a few algorithms are presented which 
assist with finding Boolean functions with good cryptographic 
properties, especially with high nonlinearity. First, a basic hill-
climbing algorithm is described which improve the nonlinearity 
of a Boolean function. Then this algorithm is modified to 
incorporate a genetic algorithm. It is shown that these new 
search techniques are extremely powerful when compared to 
traditional random search techniques. Experimental results 
successfully prove this statement. 
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I. INTRODUCTION 
 

In this paper, we will present a useful application of the 
genetic algorithm to the field of cryptography. The genetic 
algorithm is used to search for cryptographically sound 
Boolean functions. Most block and stream ciphers 
incorporate Boolean functions, which are chosen to satisfy a 
number of cryptographic criteria. 

There are many cryptographic properties of Boolean 
functions, and some of them will be described in the next 
section. In this paper, the property of nonlinearity is 
considered, although the work could be extended to include 
other cryptographic properties. When designing 
cryptosystems (ciphers) careful consideration must be given 
to the choice of functions used. High nonlinearity is an 
extremely important property required in order to reduce the 
effectiveness of attacks such as linear cryptoanalysis – 
proposed by Matsui. 
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II. BOOLEAN FUNCTIONS AND THEIR 
CRYPTOGRAPHIC PROPERTIES 

 
In this section, we will describe Boolean functions, their 

representation, operators and properties. 
The most basic representation of a Boolean function is by 

its binary truth table. The binary truth table of a Boolean 
function of n variables is denoted f(x) where f(x) ∈ {0, 1} and 
x = {x1, x2, . . . , xn}, xi ∈ {0, 1}, i = 1, . . . , n. The truth table 
contains 2n elements corresponding to all possible 
combinations of the n binary inputs. 

Sometimes it is desirable to consider a Boolean function 
over the set {1, -1} rather than {0, 1}. The polarity truth table 
of a Boolean function is denoted f^(x) where f^(x) ∈ {1, -1} 
and f^(x) = (-1) f(x) = 1 - 2f(x). So, if f(x) = 1 then f^(x) = -1, 
and if f(x) = 0 then f^(x) = 1. It is also important to note that 
XOR over {0, 1} is equivalent to real multiplication over {-1, 
1}. Thus, 
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Two fundamental properties of Boolean functions are 
Hamming weight and Hamming distance. The Hamming 
weight of a Boolean function is the number of ones in the 
binary truth table, or equivalently the number of -1s in the 
polarity truth table. So, the Hamming weight of a Boolean 
function f, hwt(f), is given by: 
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The Hamming distance between two Boolean functions is 
the number of positions in which their truth tables differ. The 
Hamming distance between two Boolean functions, dist(f, g), 
can be calculated as follows: 
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How well two Boolean functions correlate is also of 
interest. The correlation between two Boolean functions, 
c(f,g), gives an indication of the extent to which two 
functions approximate each other. The correlation is a real 
number in the range [-1, 1], and is given by: 
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A linear function, Lw(x), where w ∈ Z2
n , is defined by: 
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An affne function is one of the form: 
cxwxAw ⊕⋅=)(  

where c∈ Z2. 
The Hamming distance to linear functions is an important 

cryptographic property, since ciphers that employ nearly 
linear functions can be broken easily by a variety of methods. 
So, we get the definition of a new cryptographic property of 
Boolean functions, nonlinearity. The nonlinearity of a 
Boolean function is the minimum distance to any affine 
function. In order to determine the nonlinearity of a Boolean 
function, we should find Walsh - Hadamard Transform, 
WHT, of that Boolean function: 
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It is clear from this definition that the value of F^(w) is 
closely related to the Hamming distance between f(x) and the 
linear function Lw(x), in fact c(f, Lw) =  F^(w) / 2n. 

The nonlinearity, Nf, of f is raleted to the maximum 
magnitude of WHT values, WHMAX, and is given by: 
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Clearly in order to increase the nonlinearity of a Boolean 
function, WHMAX must be decreased. A function is 
uncorrelated with linear function Lw(x) when F^(w) = 0. 
Cryptographically, it would be desirable to find Boolean 
functions, which have all WHT values equal to zero, since 
such functions have no correlation to any affine functions. 
However, it is known that such functions do not exist. In [4], 
there is a theorem, which states that the sum of the squares of 
the WHT values is the same constant for every Boolean 
function: . So, there is an opportunity only 

to minimize affine correlation, and in that way to maximize 
the nonlinearity of functions.  
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It is known that the Bent functions [6] satisfy the property 
that |F^(w)| = 2n/2 for all w. Bent functions exist only for 
even n, and they attain the maximum possible nonlinearity of 
NBENT = 2n-1-2(n-1)/2. It is an open problem to determine an 
expression for the maximum nonlinearity of functions with an 
odd number of inputs. It is known that, for n odd, it is 
possible to construct a function with nonlinearity 2n-1-2(n-1)/2  
by concatenating Bent functions. Still, it is shown that for n = 
15, this value is not the upper bound of the nonlinearity. 
 

III. IMPROVING NONLINEARITY 
 

Now, we will describe a technique, which enables the 
creation of a complete list of Boolean function inputs such 
that complementing any one of the corresponding truth table 
positions will increase the nonlinearity of the function. This 
list of truth table positions is referred to as the 1-
Improvement Set of f, or 1-ISf for short. A formal definition 
of the 1-ISf is: 

Definition 1. Let g(x) = f(x)⊕1 for x = xa, and g(x) = f(x) for 
all other x. If Ng > Nf then xa ∈ 1 - ISf. 

The set 1-ISf may be empty in which case f is referred to as 
1-locally maximum for nonlinearity and cannot be improved 
using the technique described below. Since all Bent functions 
are globally maximum, their 1-Improvement Sets must be 
empty. It is computationally intensive to exhaustively alter 
truth table positions, find new WHT values and determine the 
set 1-ISf. In this section a set of conditions are presented 
which provide a method of determining whether or not an 
input x is in the 1-Improvement Set.  

In order to find the 1-ISf of a Boolean function it is first 
necessary to find values of the WHT coefficients with the 
Equation 4. 
 
Definition 2. Let f be a Boolean function with Walsh -
Hadamard transform F^(w), where WHMAX denotes the 
maximum absolute value of F^(w). There will exist one or 
more linear functions Lw(x) that have minimum distance to f, 
and |F^(w)| = WHMAX for these w. The following sets are 
defined: 

W +1 = {w: F^(w) = WHMAX} 
W -1 = {w:  F^(w) = -WHMAX} 

Also needed are the sets of w, for which the WHT magnitude 
is close to the maximum WHMAX: 

W +2 = {w: F^(w) = WHMAX - 2} 
W -2 = {w: F^(w) = -(WHMAX - 2)} 

When a truth table is changed in exactly one place, all 
WHT values are changed by +2 or -2. So, in order to increase 
the nonlinearity of a function, the WHT values in set W +

1 
must change by -2, the WHT values in set W -

1 must change 
by +2, and also the WHT values in W +

2 must change by –2 
and the WHT values in W -2 must change by +2. The first two 
conditions are obvious, and the second two conditions are 
required so that all other |F^(w)| remain less than WHMAX. 
 
Theorem 1. Given a Boolean function f with WHT F^(w), 
and define sets W +=W +

1∩ W +
2 and W -= W -

1∩ W -
2. For an 

input x to be an element of the Improvement Set 1-ISf, the 
following two conditions must be satisfied: 

(i) f(x) = Lw(x) for all w ∈  W +, and 
(ii) f(x) ≠ Lw(x) for all w ∈ W -. 

Proof: Let’s start by considering the conditions to make 
WHT values change by a desired amount. When F^(w) is 
positive, there are more 1 than -1 in the polarity truth table, 
and more 0 than 1 in the binary truth table of f(x)⊕ Lw(x). 
Thus changing a single 0, in the truth table of f(x)⊕ Lw(x), to 
a 1 will make ∆F(w) = -2. This means that an input x, is 
selected such that f(x) = Lw(x). A change of -2 is desired for 
all WHT values with w ∈ W +, and this proves condition (i). 
A similar argument proves condition (ii). 

The following theorem shows how to modify the WHT 
values of a Boolean function that has been altered in a single 
truth table position. 
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Theorem 2. Let g(x) be obtained from f(x) by complementing 
the output for a single input xa. Then each component of the 
WHT values of g(x), G^(w) = F^(w)+ ∆ (w), can be obtained 
as follows: If f(xa) = Lw(xa), then ∆(w) =-2, else ∆ (w)=+2. 
Proof: If f(xa) = Lw(xa), then f^(xa) · L^w(xa) = 1, and this 1 
contributes to the sum in F^(w). Changing the value of f(xa) 
changes this contribution to -1, so ∆ F^(w) = -2. Similarly if 
f(x) ≠ Lw(x),  then ∆ F^(w) = +2. 
 
IV. HILL CLIMBING ALGORITHM 
 

In this section, we will describe the one step improvement 
algorithm Hill Climbing 1. 

The one step improvement algorithm, Hill Climbing 1, 
takes as its input the binary truth table of a Boolean function 
and corresponding WHT values, and recursively improves the 
Boolean function’s nonlinearity until the function is 1-locally 
maximum, and that case its 1-Improvement Set is empty. The 
Hill Climbing 1 algorithm tries each bit in the truth table 
successively in an attempt to find a candidate bit that, upon 
complementation, will improve the function’s nonlinearity by 
one. The algorithm terminates when no improvement in 
nonlinearity can be obtained by complementing any one of 
the bit in the function’s truth table. Description of the Hill 
Climbing 1 algorithm is given: 
 

1. The algorithm is given the binary truth table of a 
Boolean function BF and corresponding WHT values. 

2. Determine the maximum WHT value - WHMAX. 
3. By parsing the WHT values, we find those w which 

correspond to WHT or F^(w) values equal to |WHMAX| 
and |WHMAX - 2|. In this manner create the two sets:  
W +=W +

1∩ W +
2 and W-= W -1∩ W -

2. 
4. For i = 1, . . . 2n, do: 

(a) Check whether the i-th bit in the truth table of BF, 
satisfy conditions (i) and (ii) of Theorem 1, for the 
sets W+ and W-. 

(b) If conditions are satisfied, then first complement 
i-th bit in the truth table of BF to produce the new 
Boolean function BF’, and calculate the updated 
WHT’ values using Theorem 2, finally restart the 
algorithm, i.e. return back to the Step 1 with new 
arguments BF’ and WHT’. 

5. BF represents a 1-locally maximum Boolean function and 
the algorithm is finished. 
 
V. USING A GENETIC ALGORITHM TO THE SEARCH 

 
In this section, the genetic algorithm is used to improve the 

Hill Climbing 1 algorithm described above. Solution, in this 
Genetic algorithm, is a Boolean function, which will be 
represented as a binary string. In this case the binary string 
represents the binary truth table of the Boolean function. 
Given a solution representation, there are three other 

requirements of the genetic algorithm, namely a solution 
evaluation technique, reproduction and mutation operations. 

The genetic algorithm requires a method of assessing and 
comparing solutions. The fitness, which is used here, is 
simply the nonlinearity Nf of the Boolean function. In other 
words, one solution is better than other solution if the first 
one f has higher nonlinearity Nf. 

The genetic algorithm also requires a method for 
combining two solutions (parents) in order to obtain new 
solutions (children). Here, we will use a reproduction 
operation called ’merging’, which is described below. 

Given the binary truth tables of two Boolean functions f1 
and f2 of n variables and Hamming distance d. The ’merge’ 
operation is defined as: 

• If d ≤ 2n-1 
MERGE f1, f2 (x) =  f1(x), if f1(x) = f2(x) 

a random bit, otherwise 
• Else 

MERGE f1, f2 (x) =  f1(x), if f1(x) ≠  f2(x) 
a random bit, otherwise 

This ’merge’ operation includes implicit mutation. Since 
random mutation of a highly nonlinear function is likely to 
reduce the nonlinearity, additional mutations are avoided and 
instead the merge is relied upon to direct the pool into new 
areas of the search space. The motivation for this operation is 
that two functions that are highly nonlinear and close to each 
other will be close to some local maximum, and the merging 
operation produces a function also in the same region, 
hopefully close to that maximum. Also when applied to 
uncorrelated functions, the merge operation produces 
children spread over a large area, thus allowing the genetic 
algorithm to search the space more fully. 
 Combining each of the genetic algorithm operations 
described above the overall algorithm is obtained. Generally 
the initial solution pool is generated randomly, and this is 
acceptable since very few randomly generated functions have 
low nonlinearity. The problem with random generation is that 
very highly nonlinear functions are difficult to find.  

In this genetic algorithm, all possible combinations of 
parents undergo the recombination process. If the pool size is 
P, then there are P(P-1)/2 such pairings. We should initialize 
the following algorithm parameters: the maximum number of 
iterations that the algorithm should perform MAX, the size of 
the solution pool P, and HC is Boolean value indication 
whether or not the algorithm should incorporate the Hill 
Climbing 1 algorithm. Description of the genetic algorithm 
used to generate highly nonlinear functions is given: 
 

1. Initialize the algorithm parameters: MAX, P, and 
HC. 

2. Generate a pool of P random Boolean functions and 
calculate their corresponding WHT values. 

3. For i = 1, . . . 2n, do: 
(a) For each possible pairing of the functions 

in the solution pool, do: 
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• Perform the ’merge’ operation on the two 
parents to produce a child – solution  

• If HC = true, call Hill Climbing 1 function 
for the child 

• If the resulting child is not already in the 
list of children, add the new child to the list 
of children. 

(b) Select the best solutions from the list of 
children and the current pool of solutions. 

4. Output the best solution from the current solution 
pool. 

 
VI. EXPERIMENTAL RESULTS 

 
The results presented in this section illusstrate the merits of 

the genetic algorithm search over both random Boolean 
function generation and the Hill Climbing 1 algorithm. 

As a benchmark the best results obtained from random 
search for functions with inputs ranging from eight n = 8 to 
twelve n = 12 were obtained for various search sizes from 
100 to 100000 functions. The results for nonlinearity of this 
extensive search are given in Table 1. The table clearly shows 
that increasing the sample size 10 times only marginally 
increases the nonlinearity obtained. These results confirm the 
property of Boolean functions: most functions do not have 
low linearity, but very highly nonlinear functions are 
extremely rare. 

TABLE 1 
BEST NONLINEARITY ACHIEVED BY RANDOM SEARCH 

 
Sample 

size 8 9 10 11 12 

100 110 228 469 958 1946 
1000 111 228 470 959 1947 

10000 111 229 470 960 1949 
100000 112 229 470 960 1950 

 
The acronyms used in Tables 2 and 3 have the following 

meanings: RHC means a random search utilizing the Hill 
Climbing 1 algorithm, GA means a basic genetic algorithm 
with no hill climbing, GA HC means a genetic algorithm 
which incorporate the Hill Climbing 1 algorithm. 

Tables 2 and 3 indicate the best results achived by the 
algorithms when they are forced to terminate after a specific 
number of functions have been tested. A direct comparison 
between random generation with Hill Climbing 1 algorithm, 
and a simple genetic algorithm without hill climbing shows 
that these algorithms are about equally effective for 100 and 
1000 function tests. Other experiments have suggested that as 
the computation bound is increased, the performance of the 
genetic algorithm will eventually exceed that of RHC. It is 
interesting to note that the best algorithm is clearly a genetic 
algorithm with hill climbing. This hybrid algorithm is able to 
quickly obtain functions far better than the benchmarks.  
 

 

TABLE 2 
BEST NONLINEARITY ACHIEVED AFTER TESTING 100 FUNCTIONS 

 
Method 8 9 10 11 12 

Benchmark 110 228 469 958 1946 
R HC 112 232 475 964 1958 
GA 111 229 470 959 1951 

GA HC 113 232 474 968 1962 
 

TABLE 3 
BEST NONLINEARITY ACHIEVED AFTER TESTING 1000 

FUNCTIONS 
 

Method 8 9 10 11 12 
Benchmark 111 228 470 959 1947 

R HC 112 232 476 966 1960 
GA 113 232 475 964 1956 

GA HC 114 236 480 974 1970 
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