
Generating highly nonlinear Boolean functions using a
genetic algorithm

A.Dimovski1, D.Gligoroski2,

Abstract: In this paper a few algorithms are presented which
assist with finding Boolean functions with good cryptographic
properties, especially with high nonlinearity. First, a basic hill-
climbing algorithm is described which improve the nonlinearity
of a Boolean function. Then this algorithm is modified to
incorporate a genetic algorithm. It is shown that these new
search techniques are extremely powerful when compared to
traditional random search techniques. Experimental results
successfully prove this statement.

Keywords: Boolean functions, nonlinearity, Hill Climbing
Algorithm, Genetic algorithm

I. INTRODUCTION

In this paper, we will present a useful application of the
genetic algorithm to the field of cryptography. The genetic
algorithm is used to search for cryptographically sound
Boolean functions. Most block and stream ciphers
incorporate Boolean functions, which are chosen to satisfy a
number of cryptographic criteria.

There are many cryptographic properties of Boolean
functions, and some of them will be described in the next
section. In this paper, the property of nonlinearity is
considered, although the work could be extended to include
other cryptographic properties. When designing
cryptosystems (ciphers) careful consideration must be given
to the choice of functions used. High nonlinearity is an
extremely important property required in order to reduce the
effectiveness of attacks such as linear cryptoanalysis –
proposed by Matsui.

1Faculty of Natural Sciences and Mathematics, Ss. Cyril and
Methodius University Arhimedova b.b., PO Box 162, 1000
Skopje, Macedonia adimovski@ii.edu.mk
2Faculty of Natural Sciences and Mathematics, Ss. Cyril and
Methodius University Arhimedova b.b., PO Box 162, 1000
Skopje, Macedonia gligoroski@yahoo.com

II. BOOLEAN FUNCTIONS AND THEIR
CRYPTOGRAPHIC PROPERTIES

In this section, we will describe Boolean functions, their

representation, operators and properties.
The most basic representation of a Boolean function is by

its binary truth table. The binary truth table of a Boolean
function of n variables is denoted f(x) where f(x) ∈ {0, 1} and
x = {x1, x2, . . . , xn}, xi ∈ {0, 1}, i = 1, . . . , n. The truth table
contains 2n elements corresponding to all possible
combinations of the n binary inputs.

Sometimes it is desirable to consider a Boolean function
over the set {1, -1} rather than {0, 1}. The polarity truth table
of a Boolean function is denoted f^(x) where f^(x) ∈ {1, -1}
and f^(x) = (-1) f(x) = 1 - 2f(x). So, if f(x) = 1 then f^(x) = -1,
and if f(x) = 0 then f^(x) = 1. It is also important to note that
XOR over {0, 1} is equivalent to real multiplication over {-1,
1}. Thus,

)(^)(^)(^
)()()(

xgxfxh
xgxfxh
⋅=⇒
=⊕=

Two fundamental properties of Boolean functions are
Hamming weight and Hamming distance. The Hamming
weight of a Boolean function is the number of ones in the
binary truth table, or equivalently the number of -1s in the
polarity truth table. So, the Hamming weight of a Boolean
function f, hwt(f), is given by:

))(^2(
2
1)()(∑∑ −==

x

n

x

xfxffhwt (1)

The Hamming distance between two Boolean functions is
the number of positions in which their truth tables differ. The
Hamming distance between two Boolean functions, dist(f, g),
can be calculated as follows:

))(^2(
2
1))()((),(∑∑ −=⊕=

x

n

x

xfxgxfgfdist (2)

How well two Boolean functions correlate is also of
interest. The correlation between two Boolean functions,
c(f,g), gives an indication of the extent to which two
functions approximate each other. The correlation is a real
number in the range [-1, 1], and is given by:

∑−
−

=−=
x

n
n xgxfgfdistgfc)(^)(^2

2
),(1),(1 (3)

A linear function, Lw(x), where w ∈ Z2
n , is defined by:

nn xwxwxwxwLw(x) ⊕⊕⊕=⋅= K2211

in Proceedings of 1st Balcan Conference on Informatics,
 November 2003, Thessaloniki, Greece

1 of 4

mailto:adimovski@ii.edu.mk
mailto:gligoroski@yahoo.com

An affne function is one of the form:
cxwxAw ⊕⋅=)(

where c∈ Z2.
The Hamming distance to linear functions is an important

cryptographic property, since ciphers that employ nearly
linear functions can be broken easily by a variety of methods.
So, we get the definition of a new cryptographic property of
Boolean functions, nonlinearity. The nonlinearity of a
Boolean function is the minimum distance to any affine
function. In order to determine the nonlinearity of a Boolean
function, we should find Walsh - Hadamard Transform,
WHT, of that Boolean function:

∑=
x

xwLxfwF)(^)(^)(^ (4)

It is clear from this definition that the value of F^(w) is
closely related to the Hamming distance between f(x) and the
linear function Lw(x), in fact c(f, Lw) = F^(w) / 2n.

The nonlinearity, Nf, of f is raleted to the maximum
magnitude of WHT values, WHMAX, and is given by:

)2(
2
1

MAX
n

f WHN −⋅= (5)

Clearly in order to increase the nonlinearity of a Boolean
function, WHMAX must be decreased. A function is
uncorrelated with linear function Lw(x) when F^(w) = 0.
Cryptographically, it would be desirable to find Boolean
functions, which have all WHT values equal to zero, since
such functions have no correlation to any affine functions.
However, it is known that such functions do not exist. In [4],
there is a theorem, which states that the sum of the squares of
the WHT values is the same constant for every Boolean
function: . So, there is an opportunity only

to minimize affine correlation, and in that way to maximize
the nonlinearity of functions.

∑ =
w

nwF 22 2)(^

It is known that the Bent functions [6] satisfy the property
that |F^(w)| = 2n/2 for all w. Bent functions exist only for
even n, and they attain the maximum possible nonlinearity of
NBENT = 2n-1-2(n-1)/2. It is an open problem to determine an
expression for the maximum nonlinearity of functions with an
odd number of inputs. It is known that, for n odd, it is
possible to construct a function with nonlinearity 2n-1-2(n-1)/2
by concatenating Bent functions. Still, it is shown that for n =
15, this value is not the upper bound of the nonlinearity.

III. IMPROVING NONLINEARITY

Now, we will describe a technique, which enables the
creation of a complete list of Boolean function inputs such
that complementing any one of the corresponding truth table
positions will increase the nonlinearity of the function. This
list of truth table positions is referred to as the 1-
Improvement Set of f, or 1-ISf for short. A formal definition
of the 1-ISf is:

Definition 1. Let g(x) = f(x)⊕1 for x = xa, and g(x) = f(x) for
all other x. If Ng > Nf then xa ∈ 1 - ISf.

The set 1-ISf may be empty in which case f is referred to as
1-locally maximum for nonlinearity and cannot be improved
using the technique described below. Since all Bent functions
are globally maximum, their 1-Improvement Sets must be
empty. It is computationally intensive to exhaustively alter
truth table positions, find new WHT values and determine the
set 1-ISf. In this section a set of conditions are presented
which provide a method of determining whether or not an
input x is in the 1-Improvement Set.

In order to find the 1-ISf of a Boolean function it is first
necessary to find values of the WHT coefficients with the
Equation 4.

Definition 2. Let f be a Boolean function with Walsh -
Hadamard transform F^(w), where WHMAX denotes the
maximum absolute value of F^(w). There will exist one or
more linear functions Lw(x) that have minimum distance to f,
and |F^(w)| = WHMAX for these w. The following sets are
defined:

W +1 = {w: F^(w) = WHMAX}
W -1 = {w: F^(w) = -WHMAX}

Also needed are the sets of w, for which the WHT magnitude
is close to the maximum WHMAX:

W +2 = {w: F^(w) = WHMAX - 2}
W -2 = {w: F^(w) = -(WHMAX - 2)}

When a truth table is changed in exactly one place, all
WHT values are changed by +2 or -2. So, in order to increase
the nonlinearity of a function, the WHT values in set W +

1
must change by -2, the WHT values in set W -

1 must change
by +2, and also the WHT values in W +

2 must change by –2
and the WHT values in W -2 must change by +2. The first two
conditions are obvious, and the second two conditions are
required so that all other |F^(w)| remain less than WHMAX.

Theorem 1. Given a Boolean function f with WHT F^(w),
and define sets W +=W +

1∩ W +
2 and W -= W -

1∩ W -
2. For an

input x to be an element of the Improvement Set 1-ISf, the
following two conditions must be satisfied:

(i) f(x) = Lw(x) for all w ∈ W +, and
(ii) f(x) ≠ Lw(x) for all w ∈ W -.

Proof: Let’s start by considering the conditions to make
WHT values change by a desired amount. When F^(w) is
positive, there are more 1 than -1 in the polarity truth table,
and more 0 than 1 in the binary truth table of f(x)⊕ Lw(x).
Thus changing a single 0, in the truth table of f(x)⊕ Lw(x), to
a 1 will make ∆F(w) = -2. This means that an input x, is
selected such that f(x) = Lw(x). A change of -2 is desired for
all WHT values with w ∈ W +, and this proves condition (i).
A similar argument proves condition (ii).

The following theorem shows how to modify the WHT
values of a Boolean function that has been altered in a single
truth table position.

in Proceedings of 1st Balcan Conference on Informatics,
 November 2003, Thessaloniki, Greece

2 of 4

Theorem 2. Let g(x) be obtained from f(x) by complementing
the output for a single input xa. Then each component of the
WHT values of g(x), G^(w) = F^(w)+ ∆ (w), can be obtained
as follows: If f(xa) = Lw(xa), then ∆(w) =-2, else ∆ (w)=+2.
Proof: If f(xa) = Lw(xa), then f^(xa) · L^w(xa) = 1, and this 1
contributes to the sum in F^(w). Changing the value of f(xa)
changes this contribution to -1, so ∆ F^(w) = -2. Similarly if
f(x) ≠ Lw(x), then ∆ F^(w) = +2.

IV. HILL CLIMBING ALGORITHM

In this section, we will describe the one step improvement
algorithm Hill Climbing 1.

The one step improvement algorithm, Hill Climbing 1,
takes as its input the binary truth table of a Boolean function
and corresponding WHT values, and recursively improves the
Boolean function’s nonlinearity until the function is 1-locally
maximum, and that case its 1-Improvement Set is empty. The
Hill Climbing 1 algorithm tries each bit in the truth table
successively in an attempt to find a candidate bit that, upon
complementation, will improve the function’s nonlinearity by
one. The algorithm terminates when no improvement in
nonlinearity can be obtained by complementing any one of
the bit in the function’s truth table. Description of the Hill
Climbing 1 algorithm is given:

1. The algorithm is given the binary truth table of a
Boolean function BF and corresponding WHT values.

2. Determine the maximum WHT value - WHMAX.
3. By parsing the WHT values, we find those w which

correspond to WHT or F^(w) values equal to |WHMAX|
and |WHMAX - 2|. In this manner create the two sets:
W +=W +

1∩ W +
2 and W-= W -1∩ W -

2.
4. For i = 1, . . . 2n, do:

(a) Check whether the i-th bit in the truth table of BF,
satisfy conditions (i) and (ii) of Theorem 1, for the
sets W+ and W-.

(b) If conditions are satisfied, then first complement
i-th bit in the truth table of BF to produce the new
Boolean function BF’, and calculate the updated
WHT’ values using Theorem 2, finally restart the
algorithm, i.e. return back to the Step 1 with new
arguments BF’ and WHT’.

5. BF represents a 1-locally maximum Boolean function and
the algorithm is finished.

V. USING A GENETIC ALGORITHM TO THE SEARCH

In this section, the genetic algorithm is used to improve the

Hill Climbing 1 algorithm described above. Solution, in this
Genetic algorithm, is a Boolean function, which will be
represented as a binary string. In this case the binary string
represents the binary truth table of the Boolean function.
Given a solution representation, there are three other

requirements of the genetic algorithm, namely a solution
evaluation technique, reproduction and mutation operations.

The genetic algorithm requires a method of assessing and
comparing solutions. The fitness, which is used here, is
simply the nonlinearity Nf of the Boolean function. In other
words, one solution is better than other solution if the first
one f has higher nonlinearity Nf.

The genetic algorithm also requires a method for
combining two solutions (parents) in order to obtain new
solutions (children). Here, we will use a reproduction
operation called ’merging’, which is described below.

Given the binary truth tables of two Boolean functions f1
and f2 of n variables and Hamming distance d. The ’merge’
operation is defined as:

• If d ≤ 2n-1
MERGE f1, f2 (x) = f1(x), if f1(x) = f2(x)

a random bit, otherwise
• Else

MERGE f1, f2 (x) = f1(x), if f1(x) ≠ f2(x)
a random bit, otherwise

This ’merge’ operation includes implicit mutation. Since
random mutation of a highly nonlinear function is likely to
reduce the nonlinearity, additional mutations are avoided and
instead the merge is relied upon to direct the pool into new
areas of the search space. The motivation for this operation is
that two functions that are highly nonlinear and close to each
other will be close to some local maximum, and the merging
operation produces a function also in the same region,
hopefully close to that maximum. Also when applied to
uncorrelated functions, the merge operation produces
children spread over a large area, thus allowing the genetic
algorithm to search the space more fully.
 Combining each of the genetic algorithm operations
described above the overall algorithm is obtained. Generally
the initial solution pool is generated randomly, and this is
acceptable since very few randomly generated functions have
low nonlinearity. The problem with random generation is that
very highly nonlinear functions are difficult to find.

In this genetic algorithm, all possible combinations of
parents undergo the recombination process. If the pool size is
P, then there are P(P-1)/2 such pairings. We should initialize
the following algorithm parameters: the maximum number of
iterations that the algorithm should perform MAX, the size of
the solution pool P, and HC is Boolean value indication
whether or not the algorithm should incorporate the Hill
Climbing 1 algorithm. Description of the genetic algorithm
used to generate highly nonlinear functions is given:

1. Initialize the algorithm parameters: MAX, P, and
HC.

2. Generate a pool of P random Boolean functions and
calculate their corresponding WHT values.

3. For i = 1, . . . 2n, do:
(a) For each possible pairing of the functions

in the solution pool, do:

in Proceedings of 1st Balcan Conference on Informatics,
 November 2003, Thessaloniki, Greece

3 of 4

• Perform the ’merge’ operation on the two
parents to produce a child – solution

• If HC = true, call Hill Climbing 1 function
for the child

• If the resulting child is not already in the
list of children, add the new child to the list
of children.

(b) Select the best solutions from the list of
children and the current pool of solutions.

4. Output the best solution from the current solution
pool.

VI. EXPERIMENTAL RESULTS

The results presented in this section illusstrate the merits of

the genetic algorithm search over both random Boolean
function generation and the Hill Climbing 1 algorithm.

As a benchmark the best results obtained from random
search for functions with inputs ranging from eight n = 8 to
twelve n = 12 were obtained for various search sizes from
100 to 100000 functions. The results for nonlinearity of this
extensive search are given in Table 1. The table clearly shows
that increasing the sample size 10 times only marginally
increases the nonlinearity obtained. These results confirm the
property of Boolean functions: most functions do not have
low linearity, but very highly nonlinear functions are
extremely rare.

TABLE 1
BEST NONLINEARITY ACHIEVED BY RANDOM SEARCH

Sample

size 8 9 10 11 12

100 110 228 469 958 1946
1000 111 228 470 959 1947

10000 111 229 470 960 1949
100000 112 229 470 960 1950

The acronyms used in Tables 2 and 3 have the following

meanings: RHC means a random search utilizing the Hill
Climbing 1 algorithm, GA means a basic genetic algorithm
with no hill climbing, GA HC means a genetic algorithm
which incorporate the Hill Climbing 1 algorithm.

Tables 2 and 3 indicate the best results achived by the
algorithms when they are forced to terminate after a specific
number of functions have been tested. A direct comparison
between random generation with Hill Climbing 1 algorithm,
and a simple genetic algorithm without hill climbing shows
that these algorithms are about equally effective for 100 and
1000 function tests. Other experiments have suggested that as
the computation bound is increased, the performance of the
genetic algorithm will eventually exceed that of RHC. It is
interesting to note that the best algorithm is clearly a genetic
algorithm with hill climbing. This hybrid algorithm is able to
quickly obtain functions far better than the benchmarks.

TABLE 2
BEST NONLINEARITY ACHIEVED AFTER TESTING 100 FUNCTIONS

Method 8 9 10 11 12

Benchmark 110 228 469 958 1946
R HC 112 232 475 964 1958
GA 111 229 470 959 1951

GA HC 113 232 474 968 1962

TABLE 3
BEST NONLINEARITY ACHIEVED AFTER TESTING 1000

FUNCTIONS

Method 8 9 10 11 12
Benchmark 111 228 470 959 1947

R HC 112 232 476 966 1960
GA 113 232 475 964 1956

GA HC 114 236 480 974 1970

V. REFERENCES

[1] K.G. Beauchamp. Applications of Walsh and Related
Functions. Academic Press, 1984.

[2] D.E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley,
Reading, Massechusetts, 1989.

[3] J.Dj. Golic. Linear Cryptanalysis of Stream Ciphers. In
Fast Software Encryption, 1994 Leuven Workshop, LNCS,
volume 1008, pages 154169, December 1994.

[4] W. Meier and O. Staffelbach. Nonlinearity Criteria for
Cryptographic Functions. In Advances in Cryptology -
Eurocrypt 89, Proceedings, LNCS, volume 434, pages
549562. Springer-Verlag, 1990.

[5] O.S. Rothaus. On Bent Functions. Journal of
Combinatorial Theory (A), 20:300 305, 1976.

[6] William Millan, Andrew Clark, and Ed Dawson. Smart
hill climbing finds better Boolean functions. In Workshop on
Selected Areas in Cryptology (SAC), pages 5063, Ottawa,
Canada, August 1997.

in Proceedings of 1st Balcan Conference on Informatics,
 November 2003, Thessaloniki, Greece

4 of 4

