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A recent line of work lifts particular verification and analysis methods to Software 
Product Lines (SPL). In an effort to generalize such case-by-case approaches, we develop 
a systematic methodology for lifting single-program analyses to SPLs using abstract 
interpretation. Abstract interpretation is a classical framework for deriving static analyses 
in a compositional, step-by-step manner. We show how to take an analysis expressed as 
an abstract interpretation and lift each of the abstract interpretation steps to a family 
of programs (SPL). This includes schemes for lifting domain types, and combinators for 
lifting analyses and Galois connections. We prove that for analyses developed using our 
method, the soundness of lifting follows by construction. The resulting variational abstract 
interpretation is a conceptual framework for understanding, deriving, and validating static 
analyses for SPLs. Then we show how to derive the corresponding variational dataflow 
equations for an example static analysis, a constant propagation analysis. We also describe 
how to approximate variability by applying variability-aware abstractions to SPL analysis. 
Finally, we discuss how to efficiently implement our method and present some evaluation 
results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The methodology of Software Product Lines (SPLs) [1] enables systematic development of a family of related programs, 
known as variants, from a common code base by maximizing reuse in order to decrease development cost and time-to-
market. Each variant in an SPL is specified in terms of features selected for that particular variant. The SPL method has 
grown in popularity over the last 20 years, especially in the domain of embedded systems, including safety critical systems 
with stringent quality requirements on produced code.

While program families can be implemented using domain-specific languages and general-purpose model transforma-
tion [2], often it is possible to use simpler methods that are more easily amenable to testing and analysis. The most 
popular [3] implementation method in practice relies on a simple form of two-staged computation in preprocessor style: 
the programming language used (often C) is enriched with the ability to express simple compile-time computations (often 
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C preprocessor), e.g., it can be enriched with ‘#if A’ statements in which A represents a feature. At build-time, the source 
code is first configured, a variant describing a particular product is derived by selecting a set of features relevant for it, and 
only then is this variant compiled or interpreted.

In this two-stage process the compiler handles only the second stage artifacts—the code of the actual product variant. 
Consequently, all its static analysis mechanisms (such as type checking, data and control-flow analyses) do not analyze 
the entire program source code, but only the variant specialized for a particular product. This is entirely unacceptable for 
analyses that aim at identifying program errors. Often, it is not feasible for the vendor shipping the code to analyze each 
of the variants separately, due to a combinatorial explosion of the number of products (variants). For example, if variability 
is used to provide personalization of software for various users, it suffices to have 33 independent features to yield more 
configurations than people on the planet (233). As little as 320 optional features yield more configurations than the number 
of atoms in the universe. Now, we have the Linux kernel code base with more than 11,000 features [4]. The problem is 
particularly burning when run-time errors remain disguised because exhaustive analysis is not possible [5].

In the last decade, many existing program analysis and verification techniques have been lifted to work on program 
families leading to the emergence of so-called family-based or variability-aware analyses [6]. The main advantage of these 
analyses is that they do not work in two stages, i.e. they do not generate and analyze individual variants separately, but 
directly analyze the entire code base—all configuration variants at once—at a cost much lower than the accumulated cost of 
analyzing each of the product variants separately.

Unfortunately, along with the growth of the collection of available lifted analysis methods, a more fundamental worry 
became increasingly clear: does the variability challenge require redevelopment of the entire language and compiler en-
gineering theory? In response, the industry initiated standardization efforts to codify common understanding of what 
variability in languages is (for example [7]). In research, a number of papers have started to appear that tackle the more 
fundamental question of “what is variability in a programming language?” [8]. As part of this larger effort, we attack the 
problem by developing a systematic understanding of (1) how a single-program analysis relates to the lifted family-based 
analysis, (2) how programming language definitions (including semantics) are enriched with variability and (3) how a pro-
gram analysis developed formally for a single program can be systematically lifted into a correct analysis for a family of 
programs.

We develop a systematic methodology for lifting single-program analyses using abstract interpretation [9]. Abstract inter-
pretation is a unifying theory of sound abstraction and approximation of structures; a well established general framework, 
which can express many analyses (including data-flow analyses [9], control-flow analyses [10], model checking [11,12], and 
type checking [13]). Our method exploits knowledge about a single-program analysis to obtain a family-based analysis. The 
family-based analyses derived using this method are not only sound, but also formally and intimately related to their single 
program origins. The method is applicable to any analysis expressible as an abstract interpretation, but our focus here is on 
the constant propagation analysis. The following contributions are made:

(C1) A systematic method for compositional derivation of family-based analyses based on abstract interpretation.
(C2) The correctness (soundness) of the obtained family-based analyses follows by construction.
(C3) Understanding of the structure of the space of family-based analyses (how single-program analyses induce family-based 

analyses, and which of their abstraction components can be reused at the family level).
(C4) Understanding of individual family-based analyses (in particular, precisely where analysis precision is lost).
(C5) Transfer of the usual benefits of abstract interpretation to family-based analyses (for example, techniques for trading 

precision for speed and methods for proving analyses to be semantically sound).
(C6) A step-by-step example-driven demonstration of how to derive a family-based analysis.

This work represents an extended and revised version of [14]. Compared to the earlier work, we provide formal and care-
fully explained proofs of all theorems. We use a running example throughout the paper in order to clarify and improve the 
presentation of the proposed method and the introduced concepts. In addition, we discuss on an efficient implementation 
of this method and support our claims by some practical results.

The work is organized as follows. First, a simple imperative language and its operational semantics are presented in 
Section 2. Then in Section 3, we present a systematic derivation of constant propagation analysis for this language, which 
is based on the calculational approach to abstract interpretation [15]. In Section 4, we show how the entire derivation 
process and result can be lifted to the family level for analyzing Software Product Lines. An alternative way to derive lifted 
analyses of family programs is described in Section 5. We then discuss how the proposed lifted analyses can be efficiently 
implemented in Section 6. In the end, we discuss related work, and conclude by presenting some ideas for future work.

2. A programming language

We begin by defining the programming language that we want to analyze. Then, we present its operational semantics as 
we aim to develop a provably sound analysis. Finally, we introduce static variability into the language, and into its formal 
semantics.
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〈skip,σ 〉 → σ
Skip

E(e,σ ) = v

〈x := e,σ 〉 → σ [x �→ v] Assign

〈s0,σ 〉 → 〈s′
0,σ

′〉
〈s0 ; s1,σ 〉 → 〈s′

0 ; s1,σ
′〉 Seq1

〈s0,σ 〉 → σ ′

〈s0 ; s1,σ 〉 → 〈s1,σ
′〉 Seq2

E(e,σ ) = v v �= 0

〈if e then s0 else s1,σ 〉 → 〈s0,σ 〉 If1

E(e,σ ) = v v = 0

〈if e then s0 else s1,σ 〉 → 〈s1,σ 〉 If2

E(e,σ ) = v v �= 0

〈while e do s,σ 〉 → 〈s ; while e do s,σ 〉 Wh1

E(e,σ ) = v v = 0

〈while e do s,σ 〉 → σ
Wh2

Fig. 1. Small-step operational semantics for IMP.

2.1. IMP: a language for single programs

We use a simple imperative language, called IMP [16,17], which represents a regular general-purpose programming 
language, aimed at the development of single programs (as opposed to program families). IMP is a well established minimal 
language, used in teaching and research. We stress that IMP is used only for presentational purposes, and that the introduced 
systematic methodology is not limited to IMP or its features.

Syntax IMP is structured as a traditional imperative language into two syntactic categories: expressions and statements. 
Expressions include integer constants, variables, and binary operations, and statements include a “do-nothing” statement 
skip , assignments, statement sequences, conditional statements, and while loops. Its abstract syntax is summarized using 
the following context-free grammar:

e ::= n | x | e0 ⊕ e1

s ::= skip | x := e | s0 ; s1 |
if e then s0 else s1 | while e do s

In the above, n stands for an integer constant, x stands for a variable name, and ⊕ stands for a binary operator. The 
precise choice of available operators is immaterial for the remainder of the paper. We denote by Stm and Exp the set of all 
statements, s, and expressions, e, generated by the above grammar. We use parentheses to resolve ambiguities in different 
syntactic categories. For this purpose we will write {. . .} for statements, and (. . .) for expressions.

Semantics A state of an IMP program is an abstraction of memory storage (a store) mapping variables to values (integer 
numbers), Val = Z. We write Store = Var → Val to denote the set of all possible stores. IMP expressions are computed in 
a given store, denoted by σ below. A function E : Exp × Store → Val defined below by structural induction on e, maps an 
expression and a store to a value, thereby formalizing evaluation of expressions.

E(n,σ ) = n

E(x,σ ) = σ(x)

E(e0 ⊕ e1,σ ) = E(e0,σ ) ⊕ E(e1,σ )

Fig. 1 presents a small-step operational semantics for IMP. Following the convention popularized by C, we model Boolean 
values as integers, with zero interpreted as false and everything else as true (see rules If2 and Wh2, respectively, If1 and
Wh1). Note that there are two types of rules. First, we have the typical small-step rules (for instance, Seq1 or Seq2), which 
rewrite a complex statement into a simpler one, possibly updating the store. Second, there are the completion rules, which 
execute a statement to completion producing a new store (for instance, Skip or Wh2).

Example 1. Let us consider the following IMP program S taken from [18]:

z := 3;
x := 1;
while (x<5) do {

if (x=1) then y := 7 else y := z+ 4;
x := x+ 1 }
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where the body of while is marked with curly braces {. . .}. We evaluate S in the initial store σ = [x �→ 0, y �→ 0, z �→ 0]. 
By using the rules in Fig. 1, we obtain the following final store:

〈S,σ 〉 →∗ [x �→ 5,y �→ 7,z �→ 3]
where →∗ is defined to be the transitive and reflexive closure of →. We will use the program S as a running example in 
the single-program analysis.

2.2. IMP: a language for program families

Implementation of SPL architectures [1] relies on the existence of a variability mechanism [2] that allows early, or staged, 
configuration of program functionality (i.e., ability to configure program behavior at build-time or compile-time). This way, 
we can use a common code base to encode multiple variations of a software product, maximizing code reuse. An individual 
product is derived by specializing the multi-staged program, i.e. the common code base, at product derivation time, before 
it is built.

A simple form of two-staged computation involving a C-style preprocessor is the most common variability mechanism in 
practice [3]. We will now lift IMP from describing single programs to program families, admitting two-staged computation 
in this style. The compile-time computation is controlled by a product configuration k—a set of product features that should 
be included in the build process. A finite set F of Boolean variables, A, describes available features, A ∈ F. A configuration, k, 
is a subset of available features: k ⊆ F. We write K for the set of all valid configurations for a family program. We consider 
only valid configurations in the remainder of the paper.

The set of valid configurations is typically described by a feature model [19] or a configuration model in another similar 
notation [20]. In this paper we disregard syntactic representations of the set K, as we are concerned with mathematical 
proofs more than with implementation details (so the set-theoretic view is simple and convenient). In practice, syntax of 
feature models can be easily related to sets of valid configurations [21]. An exhaustive account of feature modeling and 
domain modeling can be found in [2].

Syntax The programming language IMP is our two-stage extension of IMP. Its abstract syntax includes the same expression 
and statement productions as IMP, but we add a new compile-time-conditional statement, with keyword #if. It takes a 
condition over features (ϕ) and a statement (s) that should be executed (included in the product) if the condition is satisfied 
by the product configuration.

s ::= ... | #if ϕ s

ϕ ::= A ∈ F | ¬ϕ | ϕ0 ∧ ϕ1

We also add a syntactic category of Boolean expressions (ϕ) to write compile-time propositional logic formulae over fea-
tures. We write, FeatExp, for the set of all Boolean expressions over features, and Stm for the set of all statements of IMP. 
To stress the variability aspect, we write s to denote a statement from Stm (despite the notational overhead). The set of 
expressions Exp remains the same as for IMP. Observe that adding preprocessor directives to the abstract syntax of IMP was 
essentially a mechanical transformation of the grammar that will look similar for other, more complex languages.

Remark. The C preprocessor uses the following keywords: #if, #ifdef, and #ifndef to start a conditional construct;
#elif and #else to create additional branches; and #endif to end a construct. Any of such preprocessor conditional con-
structs can be desugared and represented only by #if construct we use in this work, e.g. #ifdef ϕ s0 #else s1 #endif
is translated into #if ϕ s0 ; #if ¬ϕ s1.

Conditional constructs can be defined at the level of expressions as well, but in that case we must have a conditional-
compilation expression with a choice between two different elements, e.g. (#ϕ ? e0 : e1#), since there is no unit element for 
expressions. However, conditional constructs defined on arbitrary language elements could be translated into constructs that 
respect the appropriate syntactic structure of the language by code duplication [22,23]. We have made the choice to intro-
duce variability at the level of statements purely for pedagogical reasons. This allows us to keep the presentation focussed 
and improves readability of definitions and proofs.

Semantics: from IMP to IMP IMP’s semantics has two stages: first, given a configuration k compute an IMP program for a 
given product variant; second, execute the IMP program using regular IMP semantics. Below we present the first stage of 
IMP’s semantics.

We capture the meaning of static conditional expressions over features using a satisfiability relation, � ⊆ K × FeatExp, 
defined as:

k � A iff A ∈ k

k � ¬ϕ iff k � ϕ

k � ϕ0 ∧ ϕ1 iff k � ϕ0 ∧ k � ϕ1
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P [[skip]]k = skip
P [[x := e]]k = x := e
P [[s0 ; s1]]k = P [[s0]]k ; P [[s1]]k

P [[if e then s0 else s1]]k = if e then P [[s0]]k else P [[s1]]k
P [[while e do s]]k = while e do P [[s]]k

P [[#if ϕ s]]k =
{

P [[s]]k k � ϕ
skip k � ϕ

Fig. 2. Preprocessor from IMP to IMP for configuration k.

The semantics of the first stage of the computation—a simple preprocessor from IMP to IMP, is specified by the function 
P : Stm → K→ Stm in Fig. 2. The semantic function P copies all basic statements of IMP that are also IMP statements, and 
recursively pre-processes all sub-statements of compound statements. The last case checks whether a feature constraint is 
satisfied and, if so, it includes the guarded statement. Otherwise it reduces to skip, which has the effect of removing the 
guarded statement. Again, observe that the above rules are independent of the semantics of IMP, so specifying the semantics 
of the preprocessor is essentially a mechanical process.

Example 2. We now slightly modify the program S from Example 1 by adding some #if statements, and in this way obtain 
a new IMP program S:

z := 3;
#if (A) x := 1;
#if (B) y := 7;
while (x< 5)do {

if (x= 1)theny := 7elsey := z+ 4;
x := x+ 1}

Let the set of all possible valid configurations be K = {{A}, {B}, {A, B}}. Then the result of preprocessing S in configuration 
A, P [ [S] ]{A} , is the program S from Example 1. We also have that P [ [S] ]{B} is the program:

z := 3;
y := 7;
while (x< 5)do {

if (x= 1)theny := 7elsey := z+ 4;
x := x+ 1}

We denote the above single program as S B . We will use the program S as a running example in the family-program analysis.

3. Background: how to derive a single-program analysis

This section represents a brief summary of the ideas and concepts of abstract interpretation, and in particular of its 
calculational approach. For more elaborate treatments of these concepts, which are central in this paper, we refer to [15,17]. 
In [24] we give the proofs of all results presented here. We leave IMP aside in this section and work only with single 
programs and IMP in the following. We will systematically derive static analyses for IMP in a step-by-step compositional 
manner, using abstract interpretation.

3.1. Collecting semantics

We first introduce a collecting semantics for IMP, which is the starting point in abstract interpretation. A collecting se-
mantics takes a program as an argument and then defines how to “collect” information of interest in the given program. It 
can be seen as an analysis that does not introduce any imprecision. Such an analysis is obviously uncomputable, i.e. it cannot 
be computed statically since IMP is a Turing complete language. Then, we introduce the notion of a Galois connection—a pair 
of functions capturing information loss between two domains. Finally, we demonstrate how to combine collecting semantics 
and Galois connections to derive approximate, albeit computable analyses, which can statically determine dynamic proper-
ties of programs. We use a constant propagation analysis for IMP to demonstrate this approach.

A collecting semantics mimics the behavior of the operational semantics (cf. Fig. 1), but with one important difference. 
Instead of working on stores, it works on sets of stores. In other words: our property of interest is the possible memories 
(modeled as a set of stores) that may arise at each program point. Furthermore, unknown program input can be modeled as 
any possible input (the set of stores in which a dedicated input variable can take on any run-time value). Finally, the set of 
stores is naturally ordered under the subset ordering, ⊆. In this way, the collecting semantics can already be thought of as 
a fully precise (but uncomputable) analysis. Then the actual computable analyses can be defined as approximations of this 
semantics.

The collecting semantics for IMP is given in Fig. 3. Going from the operational semantics to the collecting semantics is 
straightforward. The function C[ [s] ] captures the effect of executing statement s on a set of input stores, by computing the 
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C[[skip]] = λc. c
C[[x := e]] = λc. {σ [x �→ v] | σ ∈ c ∧ v ∈ C′[[e]]{σ }}
C[[s0 ; s1]] = C[[s1]] ◦ C[[s0]]

C[[if e then s0 else s1]] = λc.C[[s0]]{σ ∈ c | 0 /∈ C′[[e]]{σ }} ∪ C[[s1]]{σ ∈ c | 0 ∈ C′[[e]]{σ }}
C[[while e do s]] = lfpλ�.λc. {σ ∈ c | 0 ∈ C′[[e]]{σ }} ∪ �(C[[s]]{σ ∈ c | 0 /∈ C′[[e]]{σ }})

C′[[n]] = λc. {n}
C′[[x]] = λc. {σ(x) | σ ∈ c}

C′[[e0 ⊕ e1]] = λc. {v | v ∈ {v0} ⊕̇ {v1} ∧ σ ∈ c ∧ v0 ∈ C′[[e0]]{σ } ∧ v1 ∈ C′[[e1]]{σ }}

Fig. 3. Collecting semantics C[[s]] : 2Store → 2Store and C′[[e]] : 2Store → 2Val .

Fig. 4. A Galois connection between a concrete, 〈C,�〉, and an abstract domain, 〈A,�〉.

set of possible output stores (memory contents after executing s). For instance, since the Skip rule does not modify the store, 
the corresponding case in the collecting semantics becomes the identity function on sets of stores: λc. c. The if case results 
in the union of the effect from the two corresponding rules (If1 and If2) with a contribution from s0 (for the stores where 
the condition evaluates to a non-zero value) and one from s1 (for the stores where the condition evaluates to zero). The 
only slightly more complex case is that of the while statement which is now given in a standard fixed-point formulation. 
The case similarly combines the effects corresponding to the two rules (Wh1 and Wh2) although with an application of �
to capture additional iterations of the while loop. Observe, that the subordinate function C′[ [e] ] does the same exercise 
for expressions. The symbol ⊕̇ denotes lifting of ⊕ to sets—an operator that produces a set of possible values of the 
expression for each combination of arguments from argument sets. Note that since the language is deterministic, if we 
evaluate an expression in a singleton set of input stores then a singleton value will be obtained, i.e. C′[ [e] ]{σ } yields exactly 
one value (a singleton set). So we have C′[ [e] ]{σ } = {E(e, σ )}, and we denote this fact by (∗). It can be proved by simple 
structural induction on expressions e.

Example 3. By using the rules in Fig. 3, we can calculate the collecting semantics of program S from Example 1 for an 
arbitrary set of input stores c ∈ 2Store as:

C[[S]]c = {[x �→ 5,y �→ 7,z �→ 3]}
and the collecting semantics of program S B from Example 2 for the input set c′ = {[x �→ 0, y �→ 0, z �→ 0], [x �→ 6, y �→ 0,

z �→ 0]} is:

C[[S B ]]c′ = {[x �→ 5,y �→ 7,z �→ 3], [x �→ 6,y �→ 7,z �→ 3]}

The collecting semantics captures precisely all executions of the operational semantics. Formally:

Theorem 1 (Correctness of collecting semantics).

∀s ∈ Stm, c ∈ 2Store : C[[s]]c = {σ ′ | σ ∈ c ∧ 〈s,σ 〉 →∗ σ ′}

Proof. By structural induction on statements s given in [24]. �
Given a statement s, we can show that the collecting semantics C[ [s] ] : 2Store → 2Store , and in particular the fixed-point 

functional of the while rule: λ�. λc. {σ ∈c | 0∈C′[[e]]{σ }} ∪ �(C[[s]]{σ ∈c | 0 /∈C′[[e]]{σ }}) are monotone functions over com-
plete lattices (see [24] for proofs). Thus by Tarski’s Fixed-Point Theorem, they admit a unique least fixed point. However, 
since these lattices have infinite height, it is not guaranteed that we can compute a fixed point in finite time.

3.2. Galois connection

A Galois connection is a pair of functions, α :C →A and γ :A →C (respectively known as the abstraction and concretiza-
tion functions), connecting two partially ordered sets, 〈C, �〉 and 〈A, �〉 (often called the concrete and abstract domain, 
respectively), such that:

∀c ∈C,a ∈A : α(c) � a ⇔ c � γ (a) (1)
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Fig. 5. Galois connection: 〈2Var→Val,⊆〉 −−−−→←−−−−
αcb

γbc 〈Var → 2Val, ⊆̇〉.

which is often typeset as: 〈C, �〉 −−−→←−−−
α

γ 〈A, �〉. Fig. 4 illustrates a Galois connection graphically. For a concrete domain C, 
we define abstraction and concretization functions to and from a more abstract domain A, where information has been 
abstracted away.

The seemingly innocent concept has a number of important properties [25]:

(GC1) α is monotone: i.e., c � c′ ⇒ α(c) � α(c′), for all c, c′ ∈ C;
(GC2) γ is monotone; i.e., a � a′ ⇒ γ (a) � γ (a′), for all a, a′ ∈ A;
(GC3) γ ◦ α is extensive; i.e., c � (γ ◦ α)(c), for all c ∈ C;
(GC4) α ◦ γ is reductive; i.e., (α ◦ γ )(a) � a, for all a ∈ A;
(GC5) If A and C are complete lattices, then α is a complete join morphism (CJM), i.e., we have α(

⋃
c∈C c) =�c∈C α(c), where 

∪ and � represent lattice joins (least upper bounds) in C and A, respectively.

(GC6) The composition of Galois connections is a Galois connection. If 〈C, �〉 −−−→←−−−
α

γ 〈B, ⊆〉 and 〈B, ⊆〉 −−−→←−−−
α′
γ ′

〈A, �〉 then 

〈C, �〉 −−−−−→←−−−−−
α′◦α
γ ◦γ ′

〈A, �〉.

Due to this last closure property, abstraction can be split into several steps by composing successive Galois connections that 
incrementally over-approximate information. Collectively, properties (GC1)–(GC4) are equivalent to (1).

3.3. Deriving an abstracted analysis via a Galois connection

Let us now return to our IMP language and show how to use a Galois connection to approximate information yielding a 
less precise analysis (although, in this case, still intractable). Recall that the collecting semantics of a statement s works on 
sets of stores: it transforms sets of stores to sets of stores. Fig. 5 defines a Galois connection to abstract away information 
from sets of stores to multi-valued stores, so from 2Store = 2Var→Val to Var → 2Val . Multi-valued stores are less precise than 
sets of stores, because they lose relational information about the values of different variables. Consider the (concrete) store 
set, c = {[x�→1, y �→2], [x�→2, y �→1]}, as an example. The abstraction function, αcb , abstracts the store set c into b = αcb(c) =
[x�→{1, 2}, y �→{1, 2}]. The abstract store b will now have “forgotten” which values of variable x go with which values of y. 
Now if the next statement computes, say, multiplication x ∗ y, the analysis will conservatively over-approximate the set of 
possible values to {1, 2, 4}, admitting spurious values, 1 and 4, in addition to the precise answer: {2}. The approximate 
response is bound to include the precise answer; in other words, we have a sound analysis: {2} ⊆ {1, 2, 4}.

Not only values can be abstracted from C to A in a Galois connection 〈C, �〉 −−−→←−−−
α

γ 〈A, �〉. In fact, also functions defined 
on the concrete domain, f : C → C, can be abstracted to work on the abstract domain, α ◦ f ◦ γ = F : A → A. This process 
transforms an argument, a ∈ A, in three simple steps: (1) concretize a, γ (a) ∈ C; (2) apply f , ( f ◦ γ )(a) ∈ C; and (3) abstract
the result, (α ◦ f ◦γ )(a) ∈ A. Also, if f is monotone, then its composition with a monotone α and γ is monotone. In general, 
any monotone over-approximation of the composition α ◦ f ◦ γ is sufficient for a sound analysis.

Cousot and Cousot [9] observed that even fixed points transfer from C to A. If C and A are complete lattices and f is a 
monotone function on C → C, then by the fixed-point transfer theorem [9]:

α(lfp f ) � lfp F � lfp F # (2)

where F = α ◦ f ◦ γ and F # is some monotone, conservative over-approximation of F ; formally: F �̇ F # (i.e., ∀a∈A : F (a) �
F #(a)). Note that F represents the best possible approximation of f over the chosen abstract domain [25]. The above version 
of the fixed-point transfer theorem still lets us approximate the desired fixed point. Under the stronger assumption that 
α ◦ f = F ◦ α then a stronger version of the theorem guarantees that no approximation of the fixed point is taking place: 
α(lfp f ) = lfp F [9].

The approach to abstract interpretation adopted in this paper, known as the calculational approach [15], advocates simple 
algebraic manipulation to obtain a direct expression for the function, F (if, indeed, it exists); or, a sound approximation
thereof, F #. It is thus a systematic (as in “pen and paper”) rather than automatic (as in “computer generated”) approach for 
deriving analyses.

In our case, we derive from, C[ [s] ] : (2Var→Val) → (2Var→Val), a function working on the abstracted domain, αcb ◦C[ [s] ] ◦γbc :
(Var → 2Val) → (Var → 2Val). This step is crucial—we use the Galois connection to derive a more abstract semantics (and thus 
a more approximating analysis) from the less abstract semantics (here the collecting semantics). We want to obtain a direct 
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B[[skip]] = λb.b
B[[x := e]] = λb.b[x �→ B′[[e]]b]
B[[s0 ; s1]] = B[[s1]] ◦B[[s0]]

B[[if e then s0 else s1]] = λb.B[[s0]]b ∪̇B[[s1]]b
B[[while e do s]] = lfpλ�.λb.b ∪̇�(B[[s]]b)

B′[[n]] = λb. {n}
B′[[x]] = λb.b(x)

B′[[e0 ⊕ e1]] = λb.B′[[e0]]b ⊕̇ B′[[e1]]b

Fig. 6. Systematically derived over-approximated abstracted collecting semantics, B[[s]] : (Var → 2Val) → (Var → 2Val) and B′[[e]] : (Var → 2Val) → 2Val .

expression for an over-approximation of αcb ◦ C[ [s] ] ◦ γbc which we henceforth abbreviate, B[ [s] ]. Technically, the derivation 
is done by structural induction on s. Note that operators ∪̇ and ⊆̇ are extended to functions: f ∪̇ g = λx. f (x) ∪ g(x) and 
f ⊆̇ g = ∀x. f (x) ⊆ g(x).

Let us consider the derivation steps for the ‘if’ statement. Since the derivations for most of the other cases are similar 
to this one, we present the calculation of B[ [if e then s0 else s1] ] in detail. By using the definition of C for ‘if’ in Fig. 3, 
a subsequent β-reduction, and the rule (GC5), we obtain:

(αcb ◦ C[[if e then s0 else s1]] ◦ γbc)(b)

= αcb(C[[s0]]{σ ∈ γbc(b) | 0 /∈ C′[[e]]{σ }} ∪
C[[s1]]{σ ∈ γbc(b) | 0 ∈ C′[[e]]{σ }}) (by def. of C in Fig. 4, and β-red.)

= αcb(C[[s0]]{σ ∈ γbc(b) | 0 /∈ C′[[e]]{σ }}) ∪̇
αcb(C[[s1]]{σ ∈ γbc(b) | 0 ∈ C′[[e]]{σ }}) (αcb is a CJM and (GC5))

⊆̇ αcb(C[[s0]](γbc(b))) ∪̇αcb(C[[s1]](γbc(b))) (over-approximation)

⊆̇ B[[s0]]b ∪̇B[[s1]]b (by IH, twice)

In the last two steps above, we first over-approximate the arguments of functions αcb ◦ C[ [s0] ] and αcb ◦ C[ [s1] ] by 
neglecting the value of the condition e, and then, we apply the inductive hypothesis (IH for short) twice to s0
and s1. So we calculated that B[ [if e then s0 else s1] ] = λb. B[[s0]]b ∪̇B[[s1]]b, which is an over-approximation of 
αcb ◦ C[ [if e then s0 else s1] ] ◦ γbc .

The function B′[ [e] ] : (Var → 2Val) → 2Val is also derived for expressions from C′[ [e] ] : (2Var→Val) → 2Val , such that it is an 
over-approximation of C′[ [e] ] ◦ γbc . Note that we do not specify an abstraction function α in this case, since it represents an 
identity function on the domain 2Val . We derive B′[ [e] ] by structural induction on expressions e.

The resulting over-approximated abstracted collecting semantics B[ [s] ] and B′[ [e] ] are shown in Fig. 6. The following 
result shows how the approximate semantics B and B′ are related to the concrete semantics C and C′ , and it holds by 
construction, i.e., by definitions of B[ [s] ] and B′[ [e] ].

Theorem 2 (Soundness of approximate collecting semantics).

(i) ∀e ∈ Exp, b ∈ B : (C′[ [e] ] ◦ γbc)(b) ⊆ B′[ [e] ]b
(ii) ∀s ∈ Stm, b ∈ B : (αcb ◦ C[ [s] ] ◦ γbc)(b) ⊆̇ B[ [s] ] b

Example 4. By using the rules in Fig. 6, we can calculate the approximate collecting semantics of program S from Example 1
for different input multi-valued stores. Thus, for a zero initialized (Java-like) input store, we have:

B[[S]]([x �→ {0},y �→ {0},z �→ {0}])=[x �→ {1,2,3,. . .},y �→ {0,7},z �→ {3}]
and for an uninitialized (C-like) input store, we have:

B[[S]]([x �→ Val,y �→ Val,z �→ Val]) = [x �→ {1,2,3, . . .},y �→ Val,z �→ {3}]
Notice how the final stores computed by B[ [S] ] over-approximate the corresponding final store computed by C[ [S] ] in Exam-
ple 3.

This is now starting to look like a conventional dataflow analysis [17]. However, it is still intractable. For example, 
consider the following program: x := 1;while(1)dox := x+ 1. It will give rise to an infinite multi-valued abstract store 
b = [x �→ {1, 2, 3, . . .}]. Our next Galois connection will remedy this in abstracting our abstract domain, Var → 2Val , even 
further into a domain with finite height, thereby guaranteeing an analysis computable with a Kleene fixed point iteration.

3.4. Deriving constant propagation analysis via another Galois connection

We aim to derive a constant propagation analysis, which establishes whether a variable has a constant value whenever 
the execution reaches a program point. Fig. 7 presents a Galois connection between B = Var → 2Val and A = Var → Const, 
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Fig. 7. Galois connection: 〈2Val, ⊆〉 −−−→←−−−
α̂

γ̂ 〈Const, �〉 (top diagram) along with its pointwise lifting (bottom diagram): 〈B = Var → 2Val, ⊆̇〉 −−−−→←−−−−
αba

γab

〈A= Var → Const, �̇〉.

A[[skip]] = λa.a
A[[x := e]] = λa.a[x �→ A′[[e]]a]
A[[s0 ; s1]] = A[[s1]] ◦A[[s0]]

A[[if e then s0 else s1]] = λa.A[[s0]]a �̇A[[s1]]a
A[[while e do s]] = lfpλ�.λa.a �̇�(A[[s]]a)

A′[[n]] = λa.n
A′[[x]] = λa.a(x)

A′[[e0 ⊕ e1]] = λa.A′[[e0]]a ⊕̂ A′[[e1]]a, where

v0 ⊕̂ v1 =
{⊥ if v0 = ⊥ ∨ v1 = ⊥
n0 ⊕ n1 if v0 = n0 ∧ v1 = n1
� otherwise

Fig. 8. Constant propagation analysis A[[s]] : (Var→Const) → (Var→Const) and A′[[e]] : (Var→Const) → Const.

〈B, ⊆̇〉 −−−−→←−−−−
αba

γab 〈A, �̇〉, for abstracting the multi-valued store domain even further. It does so by approximating the value set 
of each individual variable with a constant propagation lattice 〈Const, �〉, where Const = Val ∪ {⊥, �} is partially ordered as 
follows: ∀v ∈ Val. ⊥ � v � �, and ∀v1, v2 ∈ Val. v1 � v2 iff v1 = v2. We use � to indicate that a variable is not constant, and 
⊥ to indicate that no information is available. All other elements show that a variable is constant with that particular value. 
The partial ordering � induces a least upper bound (join) operator, �, on the lattice elements, which is used to combine 
information during the analysis. For example, we have ⊥ � 1 = 1, 0 � 1 = �, etc. If we follow the systematic derivation steps 
for inferring B[ [s] ] and B′[ [s] ], we can finally derive a computable constant propagation analysis as an over-approximation 
of αba ◦ B[ [s] ] ◦ γab and α̂ ◦ B′[ [s] ] ◦ γab , which we call A[ [s] ] and A′[ [e] ] respectively. See Fig. 8 for definitions of A[ [s] ]
and A′[ [e] ], which are derived by structural induction on s and e respectively. We now show the derivation steps for the 
conditional statement:

(αba ◦B[[if e then s0 else s1]] ◦ γab)(a)

= αba(B[[s0]]γab(a) ∪̇ B[[s1]]γab(a)) (by def. of B in Fig. 6 and β-red.)

= αba(B[[s0]]γab(a)) �̇ αba(B[[s1]]γab(a)) (αba is a CJM, and (GC5))

�̇ A[[s0]]a �̇ A[[s1]]a (by IH, twice)

= A[[if e then s0 else s1]]a

Since operators are functions, they too get abstracted by our Galois connection. Recall that our example uses ⊕̇, the point-
wise extension of the binary operator ⊕, defined as V 0 ⊕̇ V 1 = {v0 ⊕ v1 | v0 ∈ V 0 ∧ v1 ∈ V 1}. The abstract counterpart, ⊕̂, 
can be calculated by following the same recipe: α̂(γ̂ (V ) ⊕̇ γ̂ (V ′)) � V ⊕̂ V ′; i.e., by concretizing its arguments, performing 
the corresponding concrete operation, and finally abstracting the outcome. The resulting abstract operator, ⊕̂, can be com-
puted effectively (in constant time) for all concrete binary operators (see Fig. 8). Finally, we write �̇ to denote the pointwise 
join in the Var → Const lattice: a0 �̇a1 = λx. a0(x) � a1(x).

Since our domain now has a finite height, we have a tractable analysis. Indeed now the program: x := 1;while (1) do
x := x+ 1 gives rise to a finite abstract store a = [x �→ �]. Moreover, the soundness (correctness) of the constant propagation 
analysis follows by construction, i.e. by definition of A[ [s] ] and A′[ [e] ].

Theorem 3 (Soundness of constant propagation analysis).

(i) ∀e ∈ Exp, a ∈A : (α̂ ◦B′[ [e] ] ◦ γab)(a) �A′[ [e] ] a
(ii) ∀s ∈ Stm, a ∈A : (αba ◦B[ [s] ] ◦ γab)(a) �̇ A[ [s] ] a

Notice how Theorem 3 composes with the result of Theorem 2 yielding soundness of the analysis A not only with 
respect to B, but also with respect to the collecting semantics C .

Example 5. Returning to our running example program S , by using the rules in Fig. 8 we can calculate A[ [S] ] for two 
different abstract input stores:
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Fig. 9. Abstract interpretation of programs (bottom line) along with lifted “variational abstract interpretation” of SPLs (top line).

A[[S]]([x �→ 0,y �→ 0,z �→ 0]) = [x �→ �,y �→ �,z �→ 3]
A[[S]]([x �→ 0,y �→ 7,z �→ 0]) = [x �→ �,y �→ 7,z �→ 3]

We may choose to implement the analysis in Fig. 8 directly. We may use Kleene’s Fixed-Point Theorem to calculate local 
fixed point computations for loops iteratively. A more common approach is to implement a dataflow analysis as a set of 
dataflow equations. In Section 6, we will show how the dataflow equations can be derived from the analysis in Fig. 8.

4. Deriving a variability-aware program analysis

We are now ready to discuss how the analysis obtained in Section 3 can be effectively lifted to work on the level 
of program families (SPLs). We call this framework for systematic derivation of analyses for SPLs as variational abstract 
interpretation. This is illustrated by the commutative diagram in Fig. 9, which presents and relates the abstract interpretation 
of single programs and program families. The bottom part of the figure shows the derivation process for single programs 
presented in Section 3. The top part shows the same derivation process only lifted to work on SPLs. This top line of the 
diagram starts by defining the collecting semantics for the language with variability (in our case IMP), and then it repeats 
the same abstraction steps as before but now at the level of program families. However, if we did this, we would almost 
completely ignore the artifacts accumulated during creation of the single-program analysis! The core idea of the variational 
abstract interpretation is that the analyses at the single-program level can be systematically lifted to work on the family level 
without rerunning the entire derivation process: you arrive at the same, provably sound lifted analysis by commutation of 
the diagram.

The final constant propagation A can be lifted to family-based constant propagation A by applying a lifting combinator 
(lift) to A and performing simplifying calculations. In the following, we discuss how this is done in detail and obtain a 
correctness result. We show how the domains of analyses, the analyses themselves (the transfer functions), and the Galois 
connections are lifted to the family level. Two kinds of upward arrows (dashed and dotted) lift us from the single program 
world to the program family world in Fig. 9. There is a dashed upward arrow for lifting analyses, e.g. A[ [s] ] : A →A is lifted 

to A[ [s] ] : (A →A)K; and a dotted upward arrow for lifting Galois connections: C −−−→←−−−
α

γ
B is lifted to C−−−−−→←−−−−−

lift(α)

lift(γ )

B.

4.1. Lifting domains

We first lift the semantic domains. Recall that K denotes a finite set of valid configurations. A domain, (C, �), is lifted 
to a variability domain, (C, �̇), by taking C to be CK (i.e., a tuple of |K| copies of C, one for each valid configuration), and 
lifting the ordering �̇ configuration-wise; i.e., c �̇ c′ ≡def for all k ∈ K : πk(c) � πk(c′), where πk selects the kth component 
of a tuple.

4.2. Lifting analyses

The lifted domain representation, A = A
K , and Fig. 9 suggest that the lifted analysis, A, should be one complex function 

from AK to AK . However, it turns out that using a tuple of |K| independent simple functions, (A →A)K , is a much better 
alternative. This models our intuition that lifting corresponds to running |K| analyses in parallel. Functions of type (A →A)K

are essentially a well behaved subset of functions from AK to AK—namely those, for which the kth component of the 
function value only depends on the kth component of the argument. This causes no problems with interference between 
configurations, which is critical for correctness of lifting.
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Fig. 10. Generate-and-analyze vs. lifted analysis.

To help readability, we introduce notational conventions that allow using tuples of functions, as if they were functions 
on tuples. We admit direct application of tuples of functions to tuples of arguments: if f :(A →A)K is a tuple of functions 
indexed by elements of K, we write f(a) to mean the tuple of |K| values created by applying each function to the cor-
responding argument in the tuple of arguments: 

∏
k∈K πk( f)(πk(a)). Similarly, we overload the λ-abstraction notation, so 

creating a tuple of functions looks like creating a function on tuples: we write λa. 
∏

k∈K f (πk(a)) to mean 
∏

k∈K λak. f (ak).
The straightforward way of analyzing a configuration, k, of an SPL, s, using a conventional single-program analysis, A, is 

to first generate a product, sk = P [ [s] ]k , using the preprocessor; then, analyze the generated product, sk , using the conven-
tional analysis: A[ [sk] ]. This two stage process is depicted in Fig. 10 (cf. arrow labelled generate-and-analyze). However, it 
only analyzes one configuration of the SPL (the arrow ends up at the bottom part of Fig. 10). Thus, to define the analysis 
on the family level, we need to execute A for all valid configurations k ∈ K. If A[ [s] ] = A → A is a single analysis function, 
then we require that its lifted version A[ [s] ] : (A →A)K satisfies the following:

A[[s]] = λa.
∏
k∈K

A[[P [[s]]k]](πk(a)) (3)

The equation stipulates that running the aggregate analysis A must be equivalent to running the original analysis A for 
each variant separately, after deriving it using the preprocessor P . An analysis A satisfying (3) transforms a lifted store, 
a ∈ A = A

K , into another lifted store, a′ = ∏
k∈KA[[P [[s]]k]]πk(a), of the same type. In other words, A is a transformer 

between aggregated state of all configurations on entry to a given program point to an aggregated state of all configurations 
on the exit from that program point.

This specification of lifting works for any single-program analysis, not just for constant propagation. We formulate it as 
a general analysis-independent and language-independent combinator.

Definition 4. The generic lifting of analysis, X :X →X, is:

lift(X )[[s]] = λx.
∏
k∈K

X [[P [[s]]k]](πk(x))

In Fig. 9 the dashed upward arrows represent applications of the above lifting combinator lift. They transform an analysis 
function (solid loop arrows at the bottom), to a family-based analysis (solid loop arrows at the top).

Unfortunately, Definition 4 cannot be used as a direct definition of analysis A as it still depends on the single-program 
analysis. Implementing A naively, directly following (3), would merely apply the conventional analysis |K| times (one for 
each k ∈K). While this would give the correct results, it is not what we wanted! This analysis will generate and analyze all 
individual configurations one by one. We seek a family-based analysis that will analyze all configurations simultaneously. 
The question is how to obtain a definition of A that is independent of A, yet satisfies Eq. (3). To achieve this we simplify 
Eq. (3), similarly to how we simplified the composition of analysis functions with Galois connections. As such, our lifting 
is calculational in nature, following the natural steps in abstract interpretation. If we perform the composition and simplify 
the resulting expression systematically, we can eliminate the intermediate product generation step and obtain a direct 
expression for the lifted analysis as shown in Fig. 11 corresponding to the top arrow in Fig. 10 (cf. Contribution (C1)).

We now illustrate how the calculation of A[ [s] ] given in Fig. 11 is done for conditional, iteration, and compile-time 
conditional statements. Again the derivation is performed by structural induction on statements s. The calculation looks 
similar for the other cases. Note that the pointwise join operator �̇ defined on the lattice A in Section 3 is lifted to �̈. It is 
defined on the lattice AK as follows: a0 �̈ a1 = ∏

k∈K πk(a0) �̇ πk(a1).
Consider the derivation for the ‘if’ statement.

λa.
∏
k∈K

A[[P [[if e then s0 else s1]]k]](πk(a))

= λa.
∏

A[[if e then P [[s0]]k else P [[s1]]k]](πk(a)) (by def. of P , Fig. 2)
k∈K
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A[[skip]] = λa.a

A[[x := e]] = λa.
∏
k∈K

(πk(a))[x �→ πk(A′[[e]]a)]

A[[s0 ; s1]] = A[[s1]] ◦A[[s0]]
A[[if e then s0 else s1]] = λa.A[[s0]]a �̈A[[s1]]a

A[[while e do s]] = lfpλ�.λa.a �̈ �(A[[s]]a)

A[[#if ϕ s]] = λa.
∏
k∈K

{
πk(A[[s]]a) k � ϕ

πk(a) k � ϕ

A′[[n]] = λa.
∏
k∈K

n

A′[[x]] = λa.
∏
k∈K

πk(a)(x)

A′[[e0 ⊕ e1]] = λa.
∏
k∈K

πk(A′[[e0]]a) ⊕̂ πk(A′[[e1]]a)

Fig. 11. Lifted constant propagation analysis A[[s]] : ((Var → Const) → (Var → Const))K and A′[[e]] : ((Var → Const) → Const)K .

= λa.
∏
k∈K

(A[[P [[s0]]k]](πk(a))) �̇ (A[[P [[s1]]k]](πk(a))) (by def. of A in Fig. 8, and β-red.)

= λa.
∏
k∈K

(πk(A[[s0]]a)) �̇ (πk(A[[s1]]a)) (by IH, twice)

= λa.A[[s0]]a �̈ A[[s1]]a (by def. of �̈)

= A[[if e then s0 else s1]]
For the derivation of ‘while’, we first define an abstraction αk which projects a tuple to a particular configuration 

entry k, along with the corresponding concretization function γk:

αk : AK →A,where αk(a) = πk(a)

γk : A →A
K,where γk(a) =

∏
k′∈K

{
a k = k′
�̇ k �= k′

where �̇ = λx. � ∈A, and �̈ = ∏
k∈K �̇ ∈ A

K . Such projections are well known to form a Galois connection 〈AK, �̈〉 −−−→−→←−−−−
αk

γk

〈A, �̇〉. In particular it is a Galois insertion since (αk ◦γk)(a) = a. We then lift this Galois connection to a higher-order Galois 
connection given by two monotone transfer functions [25]:

α→(�) = αk ◦ � ◦ γk, forα→ : (AK m−→ A
K) →A

m−→ A

γ→(�) = γk ◦ � ◦ αk, forγ→ : (A m−→ A) →A
K m−→ A

K

where we write X m−→ Y for the domain of monotone functions from X to Y . In order to use the stronger version of the 
fixed-point theorem [9]:

α→(lfp f ) = lfp F (4)

where f : AK m−→ A
K and F : A m−→ A, we need to show that the assumption: α→ ◦ f = F ◦ α→ holds. In our case f is the 

fixed-point functional in the definition of A[ [while e do s] ] in Fig. 11 and F is the fixed-point functional in the definition 
of A[ [while e do s] ] in Fig. 8. First we show the assumption:

α→ ◦ (λ�.λa.a �̈ �(A[[s]]a))

= λ�.αk ◦ (λa.a �̈ �(A[[s]]a)) ◦ (λa. γk(a)) (by def. of ◦,α→, η-expan.)

= λ�.λa. αk(γk(a) �̈ �(A[[s]](γk(a)))) (by def. of ◦, and β-red.)

= λ�.λa.a �̇ αk(�(A[[s]](γk(a)))) (Galois insertion, αk is a CJM)

= λ�.λa.a �̇ αk(�(
∏

k′∈K
A[[P [[s]]k′ ]](πk′(γk(a))))) (by IH)

= λ�.λa.a �̇ πk(�)(A[[P [[s]]k]](πk(γk(a))))) (by def. of αk)

= λ�.λa.a �̇ πk(�)(A[[P [[s]]k]]a) (by def. of αk, Galois insertion)
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By using definitions of πk , γk and ◦, we further obtain:

= λ�.λa.a �̇ (πk ◦ � ◦ γk)(A[[P [[s]]k]]a)

= λ�. (λ�.λa.a �̇ �(A[[P [[s]]k]]a))(αk ◦ � ◦ γk) (by def. of αk, β-exp.)

= (λ�.λa.a �̇ �(A[[P [[s]]k]]a)) ◦ (λ�.αk ◦ � ◦ γk) (by def. of ◦)
= (λ�.λa.a �̇ �(A[[P [[s]]k]]a)) ◦ α→ (by def. of α→)

As a consequence, we can now apply the stronger fixed-point theorem given in (4) to show:

α→(A[[while e do s]])
= α→(lfp λ�.λa.a �̈ �(A[[s]]a)) (by def. of A)

= lfp λ�.λa.a �̇ �(A[[P [[s]]k]]a) (by the fixed-point transfer theorem (4))

= A[[while e do P [[s]]k]] (by def. of A)

= A[[P [[while e do s]]k]] (by def. of P )

Finally we can use this equality to obtain:

λa.
∏
k∈K

A[[P [[while e do s]]k]](πk(a))

= λa.
∏
k∈K

α→(A[[while e do s]])(πk(a)) (by above equality)

= λa.
∏
k∈K

(αk ◦A[[while e do s]] ◦ γk)(πk(a)) (by def. of α→)

= λa.
∏
k∈K

αk

(
A[[while e do s]]

( ∏
k′∈K

{
πk(a) k = k′
�̇ k �= k′

))
(by def. of γk and ◦)

= λa.
∏
k∈K

αk

( ∏
k′∈K

(πk′(A[[while e do s]]))
({

πk(a) k = k′
�̇ k �= k′

))
(by def. of fun. tuple appl.)

= λa.
∏
k∈K

(πk(A[[while e do s]]))(πk(a)) (by def. of αk)

= λa.A[[while e do s]]a (by def. of appl.)

= A[[while e do s]] (by η-reduce)

Consider the case of ‘#if’ statement.

λa.
∏
k∈K

A[[P [[#if ϕ s]]k]](πk(a))

= λa.
∏
k∈K

{
A[[P [[s]]k]](πk(a)) k � ϕ

A[[skip]](πk(a)) k � ϕ
(by def. of P in Fig. 2)

= λa.
∏
k∈K

{
A[[P [[s]]k]](πk(a)) k � ϕ

πk(a) k � ϕ
(by def. of A in Fig. 8)

= λa.
∏
k∈K

{
πk(A[[s]]a) k � ϕ

πk(a) k � ϕ
(by IH)

= A[[#if ϕ s]]
A lifted analysis A′[ [e] ] is also derived for expressions, such that A′[ [e] ] = λa. 

∏
k∈KA′[[e]](πk(a)). The derivation is by 

structural induction on e. We only consider the case of binary operations.
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λa.
∏
k∈K

A′[[e0 ⊕ e1]](πk(a))

= λa.
∏
k∈K

(λa.A′[[e0]]a ⊕̂ A′[[e1]]a)(πk(a)) (by def. of A′in Fig. 8)

= λa.
∏
k∈K

A′[[e0]](πk(a)) ⊕̂ A′[[e1]](πk(a)) (β-reduction)

= λa.
∏
k∈K

πk(A′[[e0]]a) ⊕̂ πk(A′[[e1]]a) (by IH, twice)

= A′[[e0 ⊕ e1]]
The correctness of the lifted analysis A and A′ shown in Fig. 11 holds by construction (cf. Contribution (C2)).

Theorem 5 (Correctness of lifting the constant propagation analysis).

(i) ∀e ∈ Exp. A′[ [e] ] = λa. 
∏

k∈KA′[[e]](πk(a))

(ii) ∀s ∈ Stm. A[ [s] ] = λa. 
∏

k∈KA[[P [[s]]k]](πk(a))

The equality signs in this theorem furthermore capture that lifting has introduced no approximation: the family-based 
analyses obtained this way are as precise as running the original analysis for each configuration individually. We prove that 
A and A′ are monotone in [24].

Example 6. By using the rules in Fig. 11, we can calculate A for the lifted program S from Example 2 at different lifted 
input stores, where K = {{A}, {B}, {A, B}}. We assume a convention here that the first component of the lifted store corre-
sponds to configuration {A}, the second to {B}, and the third to {A, B}. For example, for a K-tuple where all variables have 
non-constant value, �, we have:

A[[S]]([x �→�,y �→�,z �→�],[x �→�,y �→ �,z �→�],[x �→�,y �→�,z �→�])
= ([x �→ �,y �→ �,z �→ 3], [x �→ �,y �→ 7,z �→ 3], [x �→ �,y �→ 7,z �→ 3])

So the result of analyzing S using A is that for configuration {A} only z has the constant value 3, while for configurations 
{B} and {A, B} both y and z have constant values 7 and 3, respectively.

5. Variational abstract interpretation

We now look again at the variational abstract interpretation framework illustrated in Fig. 9, and present an alternative 
way to derive a lifted analysis. Then, we prove that for any analysis the diagram in Fig. 9 is commutative (Theorem 6). We 
end the section by summarizing the basic steps in the proposed framework.

5.1. Many routes to family-based analysis

If we want to prove soundness of the lifted analysis A using the classical abstract interpretation approach, we should 
devise a collecting semantics C and a Galois connection relating them. Then, we need to follow the same incremental 
process as in Section 3, and define a chain of Galois connections:

〈C, ⊆̇〉 −−−→←−−−
αcb

γbc 〈B, ⊆̈〉 −−−→←−−−
αba

γab 〈A, �̈〉

Subsequently, we need to compute A by composing these Galois connections with C and prove that the resulting analysis is 
identical to the lifting of A, so that the diagram in Fig. 9 commutes. A detailed development taking this route is available in 
the technical report [24]. But there is an easier route! Instead of devising the collecting semantics at family level, C , and then 
a sequence of Galois connections, we can obtain them all by lifting the corresponding operations from the single-program 
level.

The transfer functions C and B can be lifted to C and B like A was lifted to a family-based analysis A in Section 5. We 
can pointwise lift a Galois connection α, γ using the combinator lift defined as:

lift(α) = λc.
∏

α(πk(c)), lift(γ ) = λa.
∏

γ (πk(a))
k∈K k∈K
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This way, no invention of new analyses for the family level is needed. Instead, all analyses can be uniformly lifted and 
composed. This is by no means automatic, but it is systematic (calculational); it does not require any design effort, as the 
original analysis is a sufficient source of information for obtaining the family-based analysis.

The following theorem states that the result of lifting the final single-program analysis is equivalent to lifting and recal-
culating all intermediate steps. This result does not depend on any particular analysis. It states that if a static single-program 
analysis X [ [s] ] is obtained from a more concrete analysis Y[ [s] ] by applying a Galois connection and simplifying, then the 
lifting of this analysis can be soundly obtained by applying lifted Galois connections to the lifting of Y . Effectively, we prove 
that the diagram of Fig. 9 commutes (cf. Contribution (C3)). It is sound to develop the single program analysis and lift it as 
in Section 4.2, instead of lifting the collecting semantics and developing the entire analysis anew at the family level.

Theorem 6. If for all single programs s we have that α ◦Y[ [s] ] ◦ γ �̇ X [ [s] ] then also for each program s with variability, we have:

lift(α) ◦ lift(Y)[[s]] ◦ lift(γ ) �̈ lift(X )[[s]]

Proof. Assume that for all s ∈ Stm: α ◦Y[ [s] ] ◦ γ �̇ X [ [s] ]. Let s ∈ Stm be given.

lift(α) ◦ lift(Y)[[s]] ◦ lift(γ )

= λy. (lift(α) ◦ lift(Y)[[s]] ◦ lift(γ ))(y) (η-expansion)

= λy. lift(α)
( ∏

k∈K
Y[[P [[s]]k]](πk(lift(γ )(y)))

)
(by def. of ◦ and lift(Y))

= λy. lift(α)
( ∏

k∈K
Y[[P [[s]]k]](πk(

∏
k′∈K

γ (πk′(y))))
)

(by def. of lift(γ ))

= λy. lift(α)
( ∏

k∈K
Y[[P [[s]]k]](γ (πk(y)))

)
(by def. of πk)

= λy.
∏
k∈K

α(Y[[P [[s]]k]](γ (πk(y)))) (by def. of lift(α))

�̈ λy.
∏
k∈K

X [[P [[s]]k]](πk(y)) (by assumption)

= lift(X )[[s]] (by def. of lift) �
Moreover, if no approximation is introduced during the derivation of a single-program analysis X (so that α ◦ Y[ [s] ] =

X [ [s] ] ◦ α) then lifting introduces no additional abstraction at the family level: lift(α) ◦ lift(Y)[ [s] ] = lift(X )[ [s] ] ◦ lift(α). With 
this general theorem, the soundness for IMP now follows as a corollary from Theorems 2, 3, 5 and 6 (cf. Contribution (C4)):

Corollary 7 (Soundness). For all s ∈ Stm and a ∈ A
K:

lift(αba ◦ αcb) ◦ lift(C)[[s]] ◦ lift(γbc ◦ γab)(a) �̈ lift(A)[[s]](a) = A[[s]](a)

5.2. Summary of the steps in the variational abstract interpretation

Let us summarize the methodology of developing analyses of program families. We want to highlight the abstract steps 
and results of our method independently of the IMP language. The first three steps are the traditional steps of calculational 
abstract interpretation:

1. Develop formal operational semantics for your language.
2. Design collecting semantics for your language. Show equivalence of the operational and collecting semantics. Steps 1–2 

are often given for existing established languages.
3. Specify a series of abstractions applied to the semantics in the form of Galois connections and compose them with 

the collecting semantics to obtain a single-program analysis. The calculation of compositions includes developing an 
inductive proof that the resulting analysis is sound.

Once the single-program analysis is established we set off to develop the family-based analysis:

4. Extend the syntax of the language with a preprocessor, and give semantics to the preprocessor P mapping syntactic 
constructs with variability to syntactic constructs without variability.

5. Apply the lifting combinator lift to the analysis calculated in step 3 above.
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[[skip�]]out = [[skip�]]in

[[x :=� e]]out = [[x :=� e]]in[x �→ A′[[e]][[x :=� e]]in]
[[s�0

0 ;� s�1
1 ]]out = [[s�1

1 ]]out

[[s�1
1 ]]in = [[s�0

0 ]]out

[[s�0
0 ]]in = [[s�0

0 ;� s�1
1 ]]in

[[if� e then s�0
0 else s�1

1 ]]out = [[s�0
0 ]]out �̇ [[s�1

1 ]]out

[[s�0
0 ]]in = [[if� e then s�0

0 else s�1
1 ]]in

[[s�1
1 ]]in = [[if� e then s�0

0 else s�1
1 ]]in

[[while� e do s�0 ]]out = [[s�0 ]]in

[[s�0 ]]in = [[while� e do s�0 ]]in �̇ [[s�0 ]]out

Fig. 12. Dataflow equations for constant propagation of Fig. 8.

Remark. In the paper we only applied lift to transfer functions, which were endofunctions. This is not a requirement. For 
example, when lifting expression semantics, we had to lift functions that given a store argument produce a simple value 
as a result (see [24]). So variational abstract interpretation can be applied not only to languages expressing computations 
(state transfers), but also to others, for example constraint languages.

6. Simplify the resulting function to obtain a lifted analysis that is formulated independently of the original single-program 
analysis. Soundness of the lifted analysis at the family level now follows from combining the calculations in steps 3 and 
6 with Theorem 6.

In Section 6.3, we will add five optional extra steps to this process in case one would like to incorporate variational abstrac-
tion in the analysis (in order to essentially trade precision at the variability level for extra speed).

6. Implementing efficient lifted analyses

We will now show how to derive dataflow equations from the constant propagation analysis (Fig. 8 from Section 3). Then, 
we show how to derive the lifted dataflow equations from the lifted analysis (Fig. 11 from Section 4). Next, we show how to 
insert variability-aware abstractions in the lifted analysis. Hereafter, we consider optimization; in particular, how to exploit 
equivalent analysis information in configurations which can speed up a lifted analysis dramatically. Finally, we provide an 
evidence that lifted analyses (with or without variability abstractions) may be significantly faster than the naive brute-force 
implementation (analyzing configurations one at a time).

6.1. Deriving dataflow equations

To implement the analysis defined in Fig. 8, we can extract the corresponding dataflow equations and then use an it-
erative algorithm to obtain the fixed-point solution to the generated equation system [17]. Dataflow equations are used to 
specify and relate information that is true on entry and exit of a statement (program point) to information present in state-
ments from which control can flow to the statement of interest. We assume that individual statements have been uniquely 
labelled with labels, �, to distinguish the individual flow to and from them and adapt A to work over such labelled state-
ments. The corresponding dataflow equations are shown in Fig. 12. The transformation from Fig. 8 to Fig. 12 is essentially 
mechanical. For each statement s� we generate two flow variables [ [s�] ]in and [ [s�] ]out for the input and output abstract 
stores, respectively. Then for each statement we simply write down that the input and output variable are related by an 
expression of the right-hand-side of the corresponding domain transformer in Fig. 8, where the input variable is substituted 
for the parameter, and the output variable for the value of the function (the same could be done for all expressions, but for 
brevity we refer directly to the semantics of expressions A′[ [e] ] in Fig. 12). Observe that in the while equations the fixed 
point operator is stripped, and the value of the output variable is used for the recursive reference. The iterative algorithm 
for computing the analysis result using these equations will handle the fixed point in the while rule at the meta-level. The 
iteration starts from the bottom value of the semantic domain assigned to all flow variables (if we disregard input), and 
stops when a fixed point is reached.

Example 7. Let us consider a labelled version of the program S:

z :=1 3;2

x :=3 1;4

while5 (x< 5)do {
if6 (x= 1)theny :=7 7elsey :=8 z+ 4;9

x :=10 x+ 1}
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[[s1]]out = [[s1]]in[z �→ A′[[3]]]
[[s5]]in = [[s3]]out

[[s6]]out = [[s7]]out � [[s8]]out

[[s7]]in = [[s8]]in = [[s6]]in

[[s3]]in = [[s1]]out

[[s5]]out = [[s9]]in = [[s6]]in

[[s10]]in = [[s6]]out

[[s7]]out = [[s7]]in[y �→ A′[[7]]]

[[s3]]out = [[s3]]in[x �→ A′[[1]]]
[[s9]]in = [[s5]]in � [[s9]]out

[[s9]]out = [[s10]]out

[[s8]]out = [[s8]]in[y �→ A′[[z+ 4]][[s8]]in]

Fig. 13. Dataflow equations for Example 7.

l [[sl]]in [[sl]]out

1 [x �→ �,y �→ �, z �→ �] [x �→ �,y �→ �,z �→ 3]
3 [x �→ �,y �→ �, z �→ 3] [x �→ 1,y �→ �,z �→ 3]
5 [x �→ �,y �→ �, z �→ 3] [x �→ �,y �→ �,z �→ 3]
6 [x �→ �,y �→ �, z �→ 3] [x �→ �,y �→ 7,z �→ 3]
7 [x �→ �,y �→ �, z �→ 3] [x �→ �,y �→ 7,z �→ 3]
8 [x �→ �,y �→ �, z �→ 3] [x �→ �,y �→ 7,z �→ 3]

10 [x �→ �,y �→ 7, z �→ 3] [x �→ �,y �→ 7,z �→ 3]

Fig. 14. A solution to the dataflow equations for Example 7 (some labels omitted).

The analysis is defined by abstract stores [ [sl] ]in, [ [sl] ]out : A = (Var → Const) for all statements sl in the program. Since 
every statement is uniquely determined by a label l, for simplicity we will denote them as sl . For example, the statement 
x :=3 1 will be denoted as s3. Let us suppose that at the start of the program an initial abstract store is available, where 
any variable can have an arbitrary value, i.e., we have [ [s2] ]in = [ [s1] ]in = [x �→ �, y �→ �, z �→ �]. Fig. 13 lists some of the 
dataflow equations we obtain for this program. After the first two assignments, by using the equations in Fig. 13 we obtain:

[[s1]]out = [[s3]]in = [x �→ �,y �→ �,z �→ 3]
[[s3]]out = [x �→ 1,y �→ �,z �→ 3]

In Fig. 14, we show input and output abstract stores for some of the statements in S that satisfy our dataflow equations for 
constant propagation.

Note that after the assignment statement with label 10 the values of y and z are constants 7 and 3, respectively. But 
after the while loop with label 5, only z is constant.

Formally, a solution to the dataflow equations is sound with respect to the derived analysis.

Theorem 8 (Soundness of dataflow analysis). For all s�, such that [ [s�] ]in , [ [s�] ]out satisfies the dataflow equations in Fig. 12:

A[[s�]]([[s�]]in) �̇ [[s�]]out

Proof. The proof is by structural induction on s� . We consider the most involved cases.

Case if� e then s�0
0 else s�1

1 :

A[[if� e then s�0
0 else s�1

1 ]]([[if� e then s�0
0 else s�1

1 ]]in)

= A[[s�0
0 ]]([[if� e then s�0

0 else s�1
1 ]]in) �̇

A[[s�1
1 ]]([[if� e then s�0

0 else s�1
1 ]]in) (by def. of A in Fig. 8)

= A[[s�0
0 ]]([[s�0

0 ]]in) �̇ A[[s�1
1 ]]([[s�1

1 ]]in) (by def. of [[s�0
0 ]]in, [[s�1

1 ]]in in Fig. 12)

�̇ [[s�0
0 ]]out �̇ [[s�1

1 ]]out (by IH, twice)

= [[if� e then s�0
0 else s�1

1 ]]out (by def. of [[if� e then s�0
0 else s�1

1 ]]out in Fig. 12)

Case while� e do s�0 : First by (inner) induction on n, we can prove that

Fn(⊥̈)([[while� e do s�0 ]]in �̇ [[s�0 ]]out) �̇ [[while� e do s�0 ]]out (5)

for all n � 0, where F = λ�. λa.a �̇ �(A[[s�0 ]]a), and ⊥̈ = λa. ⊥̇. Here F represents the fixed-point functional from 
the definition of A for while e do s in Fig. 8. Now we have:

A[[while� e do s�0 ]]([[while� e do s�0 ]]in)

= (lfpF)([[while� e do s�0 ]]in) (by def. of A in Fig. 8)

= (�̈iF
i(⊥̈))([[while� e do s�0 ]]in) (by Kleene’s fixed-point theorem)
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[[skip�]]out = [[skip�]]in

∀k ∈K: πk([[x :=� e�0 ]]out) = πk([[x :=� e�0 ]]in)[x �→ πk(A′[[e�0 ]][[x :=� e�0 ]]in)]
[[s�0

0 ;� s�1
1 ]]out = [[s�1

1 ]]out

[[s�1
1 ]]in = [[s�0

0 ]]out

[[s�0
0 ]]in = [[s�0

0 ;� s�1
1 ]]in

[[if� e then s�0
0 else s�1

1 ]]out = [[s�0
0 ]]out �̈ [[s�1

1 ]]out

[[s�0
0 ]]in = [[if� e then s�0

0 else s�1
1 ]]in

[[s�1
1 ]]in = [[if� e then s�0

0 else s�1
1 ]]in

[[while� e do s�0 ]]out = [[s�0 ]]in[[s�0 ]]in = [[while� e do s�0 ]]in �̈ [[s�0 ]]out

∀k ∈K: πk([[#if� ϕ s�0 ]]out) = πk([[s�0 ]]out) if k � ϕ

∀k ∈K: πk([[#if� ϕ s�0 ]]out) = πk([[#if� ϕ s�0 ]]in) if k � ϕ

∀k ∈K: πk([[s�0 ]]in) = πk([[#if� ϕ s�0 ]]in) if k � ϕ

Fig. 15. Dataflow equations for lifted constant propagation of Fig. 11.

k ∈K: πk([[s1]]out) = πk([[s1]]in)[x �→ A′[[3]][[s1]]in] [[s3]]in = [[s1]]out

k ∈ {{A}, {A, B}}: πk([[s3]]out) = πk([[s4]]out) π{B}([[s3]]out) = [[s3]]in

k ∈ {{A}, {A, B}}: πk([[s4]]in) = πk([[s3]]in)

k ∈{{A},{A,B}}: πk([[s4]]out)=πk([[s4]]in)[x �→A′[[1]][[s4]]in] [[s6]]in = [[s3]]out

k ∈ {{B}, {A, B}}: πk([[s6]]out) = πk([[s7]]out) π{A}([[s6]]out) = [[s6]]in

k ∈ {{B}, {A, B}}: πk([[s7]]in) = πk([[s6]]in)

k ∈ {{B}, {A, B}}: πk([[s7]]out) = πk([[s7]]in)[y �→ A′[[7]][[s7]]in] [[s9]]out = [[s13]]in

[[s13]]in = [[s9]]in�̈[[s13]]out [[s10]]in = [[s13]]in = [[s11]]in = [[s12]]in

k ∈K: πk([[s14]]out)=πk([[s14]]in)[x �→πk(A′[[x+1]][[s14]]in)]
k ∈K: πk([[s11]]out) = πk([[s11]]in)[y �→ A′[[7]][[s11]]in]

Fig. 16. Lifted dataflow equations for Example 8.

= �̇iF
i(⊥̈)[[while� e do s�0 ]]in (by def. of �̈, and β-reduction)

�̇ �̇iF
i(⊥̈)([[while� e do s�0 ]]in �̇ [[s�0 ]]out) (by mono. of Fi(⊥̈))

�̇ [[while� e do s�0 ]]out (by Eq. (5)) �
The resulting constant propagation analysis is the same as the dataflow analysis presented in, e.g., [17], but with one cru-

cial difference; the one presented here has been systematically derived using the abstract interpretation framework, resulting 
in an analysis whose soundness (correctness) follows by construction.

6.2. Deriving lifted dataflow equations

Just like in Section 6.1, we can use the definition of A in Fig. 11 to derive lifted dataflow equations. This is a fairly 
mechanical process that results in the equations of Fig. 15 (compare to Fig. 11 and Fig. 12). Now, for each statement s� we 
generate two flow variables [ [s�] ]in and [ [s�] ]out for the input and output lifted stores, respectively.

Example 8. Let us consider a labelled version of the program S , which we use as a running example in the lifted analysis 
(cf. Contribution (C6)).

z :=1 3;2

#if3 (A) x :=4 1;5

#if6 (B) y :=7 7;8

while9 (x<5)do {
if10 (x=1)theny:=11 7elsey:=12 z+ 4;13

x:=14 x+1}
where the set of all possible valid configurations K is {{A}, {B}, {A, B}}. The analysis is defined by [ [sl] ]in, [ [sl] ]out : AK =
(Var → Const)K , which represent abstract stores for all possible configurations before and after the statement sl . We assume 
that in the initial abstract store all variables can have arbitrary values, i.e., [ [s1] ]in = ([x �→ �, y �→ �, z �→ �], [x �→ �,

y �→ �,z �→ �], [x �→ �, y �→ �, z �→ �]). Again, we assume that the first component of the lifted store corresponds to the 
configuration {A}, the second to {B}, and the third to {A, B}. Fig. 16 lists some of the dataflow equations obtained for this 
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l [[sl]]out

1
([x �→ �,y �→ �,z �→ 3], [x �→ �,y �→ �,z �→ 3], [x �→ �,y �→ �,z �→ 3])

3
([x �→ 1,y �→ �,z �→ 3], [x �→ �,y �→ �,z �→ 3], [x �→ 1,y �→ �,z �→ 3])

6
([x �→ 1,y �→ �,z �→ 3], [x �→ �,y �→ 7,z �→ 3], [x �→ 1,y �→ 7,z �→ 3])

9
([x �→ �,y �→ �,z �→ 3], [x �→ �,y �→ 7,z �→ 3], [x �→ �,y �→ 7,z �→ 3])

10
([x �→ �,y �→ 7,z �→ 3], [x �→ �,y �→ 7,z �→ 3], [x �→ �,y �→ 7,z �→ 3])

14
([x �→ �,y �→ 7,z �→ 3], [x �→ �,y �→ 7,z �→ 3], [x �→ �,y �→ 7,z �→ 3])

Fig. 17. A solution to the lifted dataflow equations for Example 8 (some labels omitted).

program. As in Example 7, we denote by sl the statement with label l. By using the equations in Fig. 16, after the first two 
lines we have:

[[s3]]out=
([x �→1,y �→�,z �→3], [x �→�,y �→7,z �→3], [x �→1,y �→7,z �→3])

By using lifted dataflow equations, we can also calculate input and output abstract stores for all statements in the above 
program. Some of the output stores are highlighted in Fig. 17. We can see that after the termination of the program, [ [s9] ]out , 
the values of y and z are constants 7 and 3 respectively for configurations {B} and {A, B}, whereas for configuration {A}
the value of y is non-constant.

The obtained dataflow equations are variability aware and provably sound:

Theorem 9 (Soundness of lifted dataflow analysis). For all s ∈ Stm such that [ [s�] ]in , [ [s�] ]out satisfies the dataflow equations in Fig. 15:

A[[s�]]([[s�]]in) �̈ [[s�]]out

Proof. The proof is by structural induction on s� . We consider the case for #if� ϕ s�0 .

A[[#if� ϕ s�0 ]]([[#if� ϕ s�0 ]]in)

=
∏
k∈K

{
πk(A[[s�0 ]] [[#if� ϕ s�0 ]]in) k � ϕ

πk([[#if� ϕ s�0 ]]in) k � ϕ
(by def. of A in Fig. 11)

=
∏
k∈K

{
πk(A[[s�0 ]] [[s�0 ]]in) k � ϕ

πk([[#if� ϕ s�0 ]]in) k � ϕ
(by guarded def. of [[s�0 ]]in)

�̈
∏
k∈K

{
πk([[s�0 ]]out) k � ϕ

πk([[#if� ϕ s�0 ]]in) k � ϕ
(by IH)

=
∏
k∈K

{
πk([[#if� ϕ s�0 ]]out) k � ϕ

πk([[#if� ϕ s�0 ]]out) k � ϕ
(by def. of [[#if� ϕ s�0 ]]out)

= [[#if� ϕ s�0 ]]out (simplify) �
6.3. Trading precision for speed with variability abstraction

So far, we have argued that it is most practical to develop analyses for single programs, and then apply our lifting 
combinator to lift their definition to program families via a formal calculation. This process appears most straightforward, 
but it has one disadvantage: all the abstractions applied in the derivation of a single-program analysis are unaware of 
variability. This way it is impossible to abstract over variability, which could sometimes be beneficial. For example, when 
the configuration space is too large, it may be difficult or impossible to represent lifted stores symbolically, so that they 
take little space in memory. Abstraction is the standard response of static analysis to such challenges, but for this particular 
problem one needs to abstract the configuration space. Variability abstractions can only be applied at the family level: one 
needs an analysis formulated at the family level and then apply the variability aware abstraction to it, in the very same way 
as we applied usual abstractions on the single program level in Section 3. In the end, we obtain a computationally cheaper 
but less precise analysis, since an additional over-approximation is introduced in it.

Variability-aware abstractions can be plentiful. In this section we show one example: an abstraction that ignores a certain 
subset of features, presumably meant to have insignificant impact on the analysis results. Let F ⊂ F be a set of features that 
we deem relevant for the analysis. Then if k ∈ K is a valid configuration, k ∩ F is a simplification of this configuration to 
relevant features only. Let KF be the set of valid configurations over relevant features, so we have KF ={k ∩ F | k ∈K}. Let 
〈X, �〉 stand for any complete lattice domain, which is lifted as usual, so X = X

K . We write XF for lifting X to the set of 
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valid configurations over only the relevant features, so XF = X
KF . Both 〈X, �̇〉 and 〈XF , �̇〉 are complete lattices. Clearly 

since the latter tracks the analysis values for a smaller set of configurations, it is a more abstract domain, thereby collapsing 
more information. Indeed, one can formulate abstraction and concretization functions between the two lifted domains:

αF (x) =
∏

kF ∈KF

�{k∈K|kF =k∩F } πk(x) (6)

γF (xF ) =
∏
k∈K

π(k∩F )(xF ) (7)

Theorem 10. 〈X, �̇〉 −−−→←−−−
αF

γF 〈XF , �̇〉 is a Galois connection.

Proof. We first show that αF and γF are monotone. Assume that x �̇ x′ and xF �̇ x′
F , we have:

αF (x) = ∏
kF ∈KF �{k∈K|kF =k∩F } πk(x) �̇ ∏

kF ∈KF �{k∈K|kF =k∩F } πk(x′) = αF (x′)

γF (xF ) = ∏
k∈K π(k∩F )(xF ) �̇ ∏

k∈K π(k∩F )(x′
F ) = γF (x′

F )

γF ◦ αF extensive:

γF (αF (x)) =
∏
k∈K

π(k∩F )(αF (x)) (by def. of γF )

=
∏
k∈K

π(k∩F )(
∏

kF ∈KF

�{k′∈K|kF =k′∩F } πk′(x)) (by def. of αF )

=
∏
k∈K

�{k′∈K|k∩F=k′∩F } πk′(x) (by def. of π(k∩F ))

�̇
∏
k∈K

πk(x) = x (since k ∩ F = k ∩ F )

αF ◦ γF reductive:

αF (γF (xF )) =
∏

kF ∈KF

�{k∈K|kF =k∩F } πk(γF (xF )) (by def. of αF )

=
∏

kF ∈KF

�{k∈K|kF =k∩F } πk(
∏

k′∈K π(k′∩F )(xF )) (by def. of γF )

=
∏

kF ∈KF

�{k∈K|kF =k∩F } π(k∩F )(xF ) (by def. of πk)

=
∏

kF ∈KF

�{k∈K|kF =k∩F } πkF (xF ) (since kF = k ∩ F )

=
∏

kF ∈KF

πkF (xF ) = xF (simplify) �

This Galois connection can be composed with any family-based analysis transfer function to produce a version of the 
analysis that is less precise regarding the set of valid configurations (cf. Contribution (C5)). In particular, it could be com-
posed with our constant propagation analysis A. In the extreme case, if we ask for an analysis that is insensitive to all 
features (so F =∅), we obtain an abstracted analysis, which conservatively detects which values are constant (same) in all 
configurations.

Example 9. Let us reconsider Example 6, where we calculated that:

A[[S]]([x �→�,y �→�,z �→�], [x �→�,y �→�,z �→�], [x �→�,y �→�,z �→�])
= ([x �→�,y �→�,z �→3], [x �→�,y �→7,z �→3], [x �→�,y �→7,z �→3])

for K = {{A}, {B}, {A, B}}. We denote the final output K-tuple as a0.
Let the set of relevant features F1 be {B}. Then KF1 = {∅, {B}} and αF1(a0) =

([x �→ �, y �→ �, z �→ 3], [x �→ �, y �→ 7,

z �→ 3]). So we have π∅(αF1(a0)) = π{A}(a0) and π{B}(αF1(a0)) = π{B}(a0) �̇ π{A,B}(a0).
If the set of relevant features is F2 = ∅, we have KF2 = {∅} and αF2 (a0) = π{A}(a0) �̇ π{B}(a0) �̇ π{A,B}(a0) =

([x �→ �,

y �→ �, z �→ 3]), which indicates that the final value of z will be the constant 3 for all configurations in K.
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In general, our process of developing an analysis, which should abstract variability, starts at a single program level (Fig. 9). 
We recommend developing the analysis for single programs first, and then applying lifting at a convenient intermediate step. 
After lifting the intermediate analysis function, one can apply a variability abstraction (for example 〈X, �̇〉 −−−→←−−−

αF

γF 〈XF , �̇〉
presented above) and then continue applying the liftings of the remaining abstractions (Galois connections) to develop the 
final analysis. In simple words: it is possible to switch the level in Fig. 9 at a convenient point, where abstracting over 
variability is beneficial for the design.

The presented variability-aware abstraction performs a projection of the space of all valid configurations onto some 
subset, and can be used to implement a sampling strategy [26] in static analysis. That approach selects only a subset of 
possible configurations, usually based on some sampling criteria, in order to reduce the verification problem and to identify 
results faster. Another interesting abstraction to consider would be to join all analysis results corresponding to configurations 
that satisfy some condition. In this way, we can find whether some fact (result) holds for all such products. For example, 
we can conclude whether some variable has a constant value for all products that satisfy given property.

We now extend the variational abstract interpretation framework summarized in Section 5.2 with five additional steps 
to include variability-aware abstractions in the derivation process:

1. Decide at which point in the design of single-program analysis the variability abstraction should be inserted. Compose 
the collecting semantics and all Galois connections until this point to obtain a partially specified analysis for single 
programs.

2. Apply the lifting combinator to the obtained analysis, and simplify the result to obtain the partially specified lifted 
analysis. As before, correctness follows from combining the previous calculations and Theorem 6.

3. Lift the remaining Galois connections to program families by applying our lifting combinator for Galois connections. By 
property of the lifting combinator, the lifted functions form composable Galois connections between lifted domains.

4. Formulate the Galois connection abstracting configurations.

Remark. You may want to use the variability abstraction specified in Eqs. (6) and (7), which is independent of IMP and the 
analysis domains considered here.

5. Compose the lifted Galois connections with the lifted partial analysis, in order to obtain the final formulation of the 
lifted analysis that includes variability abstraction. Soundness of the result follows from the soundness of the partially 
lifted analysis and the soundness of composing Galois connections.

6.4. Efficient lifted analyses

Taking a step back, it appears as if we have merely traded a breadth-first for a depth-first iteration strategy. Instead of 
performing |K| analyses, we now perform one analysis on |K|-sized tuples—afterall: |K|×1 = 1×|K|. Note that, even so, 
empirical evidence suggests that the latter might be faster than the former because of caching effects [27]. At the lifted 
analysis level, however, a lot of improvements are possible.

First, the brute force approach has to compile (preprocess and build control flow graph) and execute the fixed point 
iterative algorithm once for each possible valid product. On the other hand, the lifted approach will compile and execute 
the algorithm only once per SPL. Still, in the latter case the algorithm has to do as many iterations as are needed for the 
slowest converging product.

Second, all configuration satisfiability tests, k |� ϕ , can be memorized (see the last three dataflow equations of Fig. 15
ending with: “k |� ϕ”). This will enable faster analysis for ‘#if’ statements whose conditions have been previously tested.

Third, observe that many of the dataflow equations (transfer functions) act identically for all (resp., some) valid config-
urations. Thus they can be executed efficiently by running them once (resp., several times), instead of exponentially many 
times. For example, consider the statement x := n. It can be analyzed only once, and then its result will be propagated to 
all configurations. In fact, only the last three equations of Fig. 15 deal with variability directly.

Fourth, it is now possible to use a shared representation for representing sets of configurations with equivalent analysis 
information. Fig. 18 shows the results of applying a constant propagation analysis to a simple program, “if (A) x:=x+1; 
if (B) x:=x+1”, with the four valid configurations, K = {∅, {A}, {B}, {A, B}}. We assume that the variable x is initially 
zero. Fig. 18 illustrates how sets of configurations (equivalent with respect to the analysis) are only slowly split by the 
variability #if statements. Initially, all configurations, [ [true] ] = {∅, {A}, {B}, {A, B}}, may be shared as they all have equiva-
lent analysis information, [x �→ 0], associated with them. Thus, the initial lifted store ([x �→ 0], [x �→ 0], [x �→ 0], [x �→ 0])
is represented as ([ [true] ] �→ [x �→ 0]). After the first variability statement, “if (A) x:=x+1”, the four configurations get 
split into those for which A is disabled, [ [¬A] ] = {∅, {B}} (which are still mapped to [x �→ 0]) and those where A is en-
abled, [ [A] ] = {{A}, {A, B}} (which are mapped to [x �→ 1]; i.e., where x has been increased by one). Now, the lifted store 
([x �→ 0], [x �→ 1], [x �→ 0], [x �→ 1]) is represented as ([ [¬A] ] �→ [x �→ 0], [ [A] ] �→ [x �→ 1]). After the second variability state-
ment, “if (B) x:=x+1”, we have [ [¬A∧¬B] ] = {∅} mapped to [x �→ 0] and [ [A∧B] ] = {{A, B}} mapped to [x �→ 2]. Also, 
we have an equivalence class with two configurations: [ [(¬A∧B)∨(A∧¬B)] ] = {{A}, {B}} mapped to [x �→ 1]; i.e., we have 
some sharing which comes from merging two configurations that were in distinct equivalence classes before the statement. 
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Fig. 18. The set of configurations is slowly split into equivalence classes by #if statements.

Bench. method |K| Brute force Lifted+sha. Lifted+max.abs Single prog
GPL::V’.display() 106 179.3 23.1 1.17 1.05
GPL::G’.run() 72 4.36 0.87 0.11 0.064
BerkeleyDB::D’.main() 40 197.83 83.23 5.05 4.94
Prevayler::P’.publisher() 8 0.35 0.18 0.065 0.051

Fig. 19. Performance comparison of the brute force vs. lifted with sharing vs. lifted with maximum abstraction (α∅) vs. the average time of single program 
analysis for methods with the highest number of configurations |K|. All times are in milliseconds (ms).

The triangular shape of Fig. 18 is a general phenomenon. Initially all configurations may be shared. Then, as the flow of 
control passes #if statements, the configuration space is slowly split up into more and more equivalence classes (sets of 
analysis-equivalent configurations). Sharing is initially optimal, and then produces diminishing results later in the program.

Fifth, sharing can be efficiently and compactly implemented either by representing sets of configurations as bit vec-
tors [27] or formulae in conjunctive/disjunctive normal form (aka, CNF/DNF); or, even more effectively, as binary decision 
diagrams (aka, BDDs) [28]. Despite the optimistic effects of sharing, the analysis problem is inherently exponential, in the 
worst case. Given |F| features, there exists |K| = 2|F| distinct configurations, k ⊆ F, and thereby 22|F|

distinct formulae (#if
constraints), ϕ ⊆ K. Since each formula can be represented in logarithmic space, a formula will take up exponential space: 
O (log(22|F|

)) = O (2|F|), in the worst case.
Sixth, we can introduce variability abstractions as another way (along with sharing) to speed up lifted analyses. Vari-

ability abstractions, such as those presented in Section 6.3, may tame the combinatorial explosion of configurations and 
reduce it to something more tractable. Their aim is to replace a large configuration space with a smaller one and perform 
an approximate, but feasible lifted analysis on it.

6.5. Evaluation

We have evaluated the performance of different lifted analyses based on the implementation from [27]. That implemen-
tation uses SOOT’s intra-procedural dataflow analysis framework [29] for analyzing Java programs. Sharing is implemented 
using high-performance bit vector library [30]. We have implemented a lifted analysis with the variability abstraction α∅
(F = ∅) within the tool [27]. As we pointed out in Section 6.3, this is the maximum abstracted analysis that is insen-
sitive to all features and operates on 1-sized tuples. In this way, it represents the fastest abstracted lifted analysis with 
the coarsest precision. We ran a lifted reaching definitions dataflow analysis on all methods of three Java SPL benchmarks:
Graph PL (GPL), Prevayler, and BerkelyDB [3]. Figs. 19 and 20 show a performance comparison between the 
brute force approach (which analyzes all configurations, one at a time), lifted analysis with sharing, lifted analysis with 
maximum variability abstraction α∅ , and the average time of single program analysis. The experiments are executed on a 
64-bit Intel®CoreTM i5 CPU running at 1.8 GHz frequency with 8 GB memory. Fig. 19 shows the analysis times to run four 
methods from our benchmarks with the highest number of configurations |K|. Fig. 20 plots the average “speed up factor” 
with sharing and maximum abstraction as a function of the number of valid configurations in all methods of our bench-
marks. We see that the brute force is fastest when we only have 1 configuration and thus nothing to share or abstract. We 
see that the effectiveness of sharing and maximum abstraction goes up as we get more configurations. For the method with 
the highest number of configurations GPL::Vertex.display() with |K| = 106 configurations, we obtain that sharing 
is 8 times and maximum abstraction is 160 times faster than the brute force approach.

If the number of configurations |K| in an SPL is very large, then lifted analysis (even with sharing) may become very 
slow or even infeasible since the properties and transfer functions are |K|-sized tuples. In that case, we can introduce 
variability abstractions into it in order to reduce the configuration space. Thus, we will obtain an approximate (less precise), 
but feasible (faster) lifted analysis. We can choose some appropriate variability abstraction in the spectrum from the finest 
one αF (which is identity) to the coarsest (maximum) one α∅ (which works on 1-sized tuples). In fact, since lifted analysis 
with maximum abstraction α∅ works on 1-size tuples, its analysis time is quite close to the single program analysis that 
runs on only one valid product from an SPL. To illustrate this, we observe in Figs. 19 and 20 the running time of lifted 
analysis with α∅ and the average duration of all single program analyses that take one configuration from an SPL at a time.
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Fig. 20. The average “speed-up” effect of sharing and maximum abstraction as a function of the number of configurations N in all methods in our bench-
marks. The unlifted brute force analysis of all N configurations (normalized with “speed factor” 1) vs. the lifted analysis with sharing vs. lifted analysis with 
maximum abstraction vs. the average time of single program analysis. For N = 4, 8, 40, 72, and 106, we show the actual running times in ms of one represen-
tative method with N configurations for the four considered analyses.

7. Related work

Recently, many different techniques have been proposed for analyzing software product lines (see [6] for a survey). The main 
distinctive feature of our approach is that we propose a generic framework that can be used for lifting different analyses 
(phrased as abstract interpretation). Thus, we start this section by comparing our approach with the closest related work 
that has the same aim to define: lifting as a general framework. Then we continue our comparison to other related work 
that lifts individual analyses, which we split into several categories: lifting representations, lifting dataflow analyses, lifting 
other analyses, and lifting by simulation. We end our discussion by looking at: abstract interpretation and multi-staged program 
analysis.

Lifting as a general framework: Some of the main approaches to program analysis as identified in [17] are: dataflow 
analysis, abstract interpretation, and type-based analysis. It is important to note that these are not competitive approaches, 
but are different techniques appropriate for different purposes, and to some extent for different languages. Type-based 
analyses are specified by extending the typing system of the given language in order to express the program properties 
of interest. Examples of such analyses are: control flow analysis, exception analysis, flow inference, overloading, etc. Very 
recently, Chen and Erwig have proposed [31] a generic framework for lifting any type-based analysis to program families. 
That approach shares the same objective as our method. Namely, we propose a generic framework for lifting any analysis 
specified using abstract interpretation to program families. Thus, both approaches have the abilities to reuse much of the 
artifacts generated during creation of single-program analysis for the new lifted analysis, which is provably correct by con-
struction. However, abstract interpretation based framework can be applied equally well to typed and untyped programming 
languages, whereas the type based framework can be applied only to typed languages. Moreover, different formal techniques 
(such as variability abstractions) can be incorporated into our approach in order to additionally speed up lifted analyses.

Lifting representations: The preprocessor directives may be applied directly to abstract syntax trees (ASTs), not only 
to statements as here. In that case, some AST element, i.e., the corresponding code fragment, will be included or not in a 
product depending on the given configuration. For example, [32] presents an imperative language similar to our IMP with 
such fine-grained variability. However, variability in arbitrary language elements, even undisciplined directives, can always 
be converted accordingly using code duplication [22,23]. A similar coarse-grained variability as here is presented in Colored 
Featherweight Java [33], where variability can occur only in a restricted set of code elements, such as class declarations, 
fields, terms, etc.

Kästner et al. [34] show how languages with preprocessor syntax can be parsed and represented in syntax trees with 
variability, even if the preprocessor syntax is not properly nested in the main language syntax. Erwig and Walkingshaw [8]
present the Choice Calculus, which can be seen as an elegant version of a preprocessor with a fixed and well defined 
semantics. It would be interesting to develop variational abstract interpretation further, to support preprocessors like choice 
calculus, and undisciplined preprocessor use. The former appears a rather straightforward extension, while the latter likely 
remains a challenge due to difficulty of defining semantics elegantly in a syntax-directed manner.

Lifting dataflow analysis: Previous work lifts dataflow analysis, resulting in feature-sensitive dataflow analysis [27], cor-
responding to our Fig. 15. Lifted dataflow analyses are much faster than ones based on |K| runs of the naive generate and 
analyze strategy [27]. Another efficient implementation of the lifted dataflow analysis formulated within the IFDS frame-
work [35] is proposed in SPLLIFT [28]. It achieves several orders of magnitude speedups through the use of BDD-based 
sharing of configurations and encoding of lifted transfer functions and control-flow as graphs for which the fixed-point 
computation can be rephrased as graph reachability. In fact, it has been shown that the running time of analyzing all pro-
grams in a family is close to the analysis of a single program. However, this technique is limited to work only for analyses 
phrased within the IFDS framework [35], a subset of dataflow analyses with certain properties, such as distributivity of 
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transfer functions. Many dataflow analyses, including constant propagation, are not distributive and hence cannot be ex-
pressed in IFDS. Moreover, many static analyses that are not expressible as dataflow analyses, such as type checking, model 
checking, testing, cannot be handled by the techniques described in [27,28].

There are also lifted dataflow analyses that are not obtained from existing analyses for single programs, but are specific 
to SPLs. For example, [36] presents a configurability related analysis for large-scale product lines, such as the Linux kernel, 
which finds and removes dead source code and superfluous #ifdef statements.

Lifting other analyses: Recent work [6] has surveyed analysis strategies for SPLs and proposes a taxonomy of such which 
would classify our lifted analyses as family-based analyses (whereas the generate and analyze strategy yields a product-based 
analysis).

The approaches of type checking, well-formedness checking, and model checking are complementary to dataflow analysis and 
share the commendable goal of detecting errors at compile-time as opposed to run-time. There is work on lifting all of them 
in an attempt to find errors at SPL compile-time as opposed to post product-instantiation time, when a product happens to 
be compiled, possibly long after it has been developed: lifted type checking [37,38], lifted well-formedness checking [39], and 
lifted model checking [40,41].

Safe composition [37,38,42] is about verification and safe generation of properties for SPL assets and aims to provide 
guarantees that only products where certain properties are obeyed can be generated. Errors detected include type and 
definition-usage errors (e.g., undeclared variables, undeclared fields, and unimplemented abstract methods). We complement 
this with an approach based on abstract interpretation with which analyses intercepting those kinds of errors can be derived.

Lifting by simulation: Variability encoding [43] or configuration lifting [44] are based on generating a product-line 
simulator which simulates the behavior of all products in the product line. Compile-time variability (#if statements) is 
encoded using normal control flow mechanisms, such as if statements, and available features are encoded using non-
deterministically initialized global (feature) variables. Then, an existing off-the-shelf model checker is used to verify the 
generated product-line simulator, so that an erroneous product can be reconstructed/decoded from an erroneous execution 
path. Similar to our work, the simulation-based approaches adopt a family-based analysis strategy, working on the level of 
program families. They are able to reuse existing off-the-shelf tools that work on the level of single programs, but there 
is a loss of precision during the lifting phase. On the other hand, in our approach we do not lose any precision in the 
lifting phase (see Theorem 6). It would be interesting to consider implementing a dataflow analysis by using the simulation 
technique, i.e., by converting compile-time into run-time variability. On the other hand, we could also use techniques from 
abstract interpretation and dataflow analysis to extract a finite-state model from program, which can be used for verifying 
temporal properties by model checking.

Abstract interpretation: Abstract interpretation is a general theory that unifies dataflow analysis [9], model checking [11,
12], type systems [13], and testing [45]. Our analyses have been developed using the classical Galois connection frame-
work [9]. In particular, we follow the calculational and compositional approach advocated by Cousot [15]. With this 
approach, soundness follows from a systematic derivation. Indeed, this is the case for the dataflow analysis derived in 
Fig. 15. This approach has previously been used by the first author to derive, for instance, iterative graph algorithms [46]
and modular control-flow analyses [47].

Multi-staged program analysis: Our work is related to multi-staged program analysis, analyzing “programs that generate 
programs”, e.g., [48]. However, we are in a much simpler case where the first preprocessing stage considered here is signif-
icantly more restrictive than a Turing-complete programming language and can thus be dealt with without approximation. 
For SPLs, our approach is simpler and sufficient; and without loss of precision on the variability level.

8. Conclusion

We have shown how compositional and systematic derivation of static analyses based on abstract interpretation can be 
lifted to Software Product Lines. The result is variational abstract interpretation—a compositional and systematic approach 
for the derivation of variability-aware product line analyses, with the following distinctive components and properties:

• A scheme to lift domain types, and combinators for lifting analyses and Galois connections.
• A general soundness-by-construction result (Theorem 6), allowing to lift a formally developed analysis, without re-

proving the entire abstract interpretation process. This crucially reuses all the effort invested in developing a single-
program analysis, to obtain a provably sound family-based analysis.

• A possibility of incorporating abstractions that involve configuration space; including an example of one such abstrac-
tion.

• Precise control over precision of analyses (lifting does not loose any information per se).
• A scheme to obtain dataflow equations for family-based analyses from the abstract interpretation definition.

Variational abstract interpretation mixes language-independent and language-specific elements. The main language spe-
cific theorem (Theorem 5) needs to be proved for each new analysis. We have proved it for all the three semantics of 
our language and extracted a general proof methodology presented in this paper. On the other hand, the main language-
independent soundness theorem (Theorem 6) holds in general and needs not be reproved.
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Abstract interpretation is a unifying theory that allows the derivation of dataflow analyses, control flow analyses, model 
checking, type systems, verification, and even testing. Hence, variational abstract interpretation tells us how to systematically 
obtain lifted versions of all such analyses. We believe that in this sense, variational abstract interpretation, contributes to 
the understanding of how variability affects analysis of programs in general.

Finally, since the lifting operator can be applied to a directly formulated analysis, we claim that the obtained insight 
into lifting extends beyond abstract interpretation. In particular, the lift combinator can be applied to any single-program 
analyses developed in an ad hoc process, without abstract interpretation, but represented as transfer functions (soundness 
of such lifting requires a separate argument though).
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