
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Efficient family-based model checking via variability
abstractions ?

Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, Andrzej Wąsowski

IT University of Copenhagen, Denmark

Received: date / Revised version: date

Abstract. Many software systems are variational: they
can be configured to meet diverse sets of requirements.
They can produce a (potentially huge) number of re-
lated systems, known as products or variants, by system-
atically reusing common parts. For variational models
(variational systems or families of related systems), spe-
cialized family-based model checking algorithms allow
efficient verification of multiple variants, simultaneously,
in a single run. These algorithms, implemented in a tool
SNIP, scale much better than “the brute force” approach,
where all individual systems are verified using a single-
system model checker, one-by-one. Nevertheless, their
computational cost still greatly depends on the number
of features and variants. For variational models with a
large number of features and variants, the family-based
model checking may be too costly or even infeasible.

In this work, we address two key problems of family-
based model checking. First, we improve scalability by
introducing abstractions that simplify variability. Sec-
ond, we reduce the burden of maintaining specialized
family-based model checkers, by showing how the pre-
sented variability abstractions can be used to model
check variational models using the standard version of
(single-system) SPIN. The variability abstractions are
first defined as Galois connections on semantic domains.
We then show how to use them for defining abstract
family-based model checking, where a variability model
is replaced with an abstract version of it, which preserves
the satisfaction of LTL properties. Moreover, given an
abstraction, we define a syntactic source-to-source trans-
formation on high-level modelling languages that describe
variational models, such that the model checking of the
transformed high-level variational model coincides with
the abstract model checking of the concrete high-level
variational model. This allows the use of SPIN with all
its accumulated optimizations for efficient verification of

? DanishCouncil for IndependentResearch, Sapere Aude grant
no. 0602-02327B

variational models without any knowledge about vari-
ability. We have implemented the transformations in a
prototype tool, and we illustrate the practicality of this
method on several case studies.

1 Introduction

Variability is an increasingly frequent phenomenon in
software systems. A growing number of projects adopt
the Software Product Line (SPL) methodology [15] for
building a family of related systems. Implementations
of such systems usually [1] contain statically configured
options (variation points, features) governed by a feature
configuration. A feature configuration determines a single
variant (product) of the family, which can be derived,
built, tested, and deployed. The SPL methodology is
particularly popular in the embedded systems domain,
where organizing development and production in product
lines is very common (e.g., cars, phones) [15].

Variability plays a significant role outside of the SPL
methodology as well. Many communication protocols,
components and system-level programs are highly con-
figurable: a set of parameters is decided/implemented
statically and then never changes during execution. These
systems interpret decisions over variation point at run-
time, instead of statically configuring them. Nevertheless,
since the configurations do not normally change during
the time of execution, the abstract semantics of load-time
variational systems is similar to static SPLs. Therefore,
variational systems, i.e. families of related systems, can
be conceptually specified using variational models. The
semantics of variational models is specified in two stages:
first the selection of features is decided and the model is
specialized (preprocessed) for a given configuration. After-
wards, it is interpreted using the standard non-variational
semantics.

2 Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions

Since embedded systems, system-level software and
communication protocols frequently serve critical func-
tions, they require rigorous validation of models. Model
checking is a well-known technique for automatic verifi-
cation of system designs: a model of the system is con-
structed and the requirements represented as temporal
logic formulae are checked over this model. Performance
of classical single-variant model checking algorithms de-
pends on the size of the model and the size of the speci-
fication property [3]. Classical model checking research
provides abstraction and reduction techniques to address
the complexity stemming from both the model and the
specification [9,37,20,28,27]. In most of these works, the
generation of the abstract model is based on abstract
interpretation theory [18]: the semantics of the concrete
model is related with the semantics of its abstract version
by using Galois connections. Provided that the abstrac-
tion preserves the property we want to check, the analysis
of the smaller abstract model suffices to decide the satis-
faction of the property on the concrete model. This topic
is known as abstract model checking.

Unfortunately, model checking families of systems
is harder than model checking single systems because,
combinatorically, the number of possible variants is expo-
nential in the number of features (configuration param-
eters). Hence, the “brute force” approach, that applies
single-system model checking to each individual vari-
ant of a family-based system, one-by-one, is inefficient.
To circumvent this problem, family-based model check-
ing (also known as lifted model checking) algorithms
have been proposed [11,12,14], implemented in the tool,
SNIP.1 These algorithms model check all variants of a
family simultanously and pinpoint the variants that vio-
late properties. However, efficiency of these algorithms
still depend on the size of the configuration space, which
is still inherently exponential in the number of configura-
tion parameters. In order to handle variational models
efficiently we need abstraction and reduction techniques
that address the size of the configuration space, not only
the size of the model and of the specification.

1.1 Overview of our technique

In this paper, we use abstract interpretation to define a
calculus of property preserving variability abstractions
for variational models. Thus, we lay the foundations
for abstract family-based model checking of variational
models.

Fig. 1 illustrates our technique. The top left corner
shows an fPromela program (model) that describes
a given variational system. fPromela is a high-level
modelling language—a variability-aware extension of

1 The project on development of SNIP model checker
(https://projects.info.unamur.be/fts/) is independent of SPIN.
SNIP has been implemented from scratch. We put a line over
SNIP to make the distinction from SPIN clearer.

fPromela
compile //

re
co
nfi

gu
re

ab
st
ra
ct

��

FTS

ab
st
ra
ct

��

lifted

model-check
// precise
lifted results

TRADEOFF:
precision-speed

OO

��
abstract
fPromela compile

// abstract
FTS

lifted

model-check
// less precise

lifted results

Fig. 1: An overview of our technique for efficient family-
based model checking. Instead of abstracting the seman-
tics of a concrete variational model, our transformation
allows abstraction to be applied directly to the source
code of the variational model.

Promela, the language of SPIN model checker [30]. It
adds feature variables and a new guarded-by-features
statement to Promela. These allow to make selected
statements available only to a subset of the variants.
fPromela models are compiled to the so-called Fea-
tured Transition Systems (FTSs) [11,12]. See mid-top in
Fig. 1. FTSs extend the regular transitions systems (TSs)
[3] by enriching transitions with a guard predicate over
features that specifies for which variants the transition
is enabled. We can run a lifted, family-based [44], model
checking algorithms directly over an FTS and obtain “pre-
cise lifted results” (top-right in the figure). This means
that for each variant we obtain an answer whether or
not it satisfies a given property, and we also obtain a
counter-example for each violation. Since running the
lifted model checking might be too slow or infeasible, we
may decide to use abstraction to obtain a faster, although
less precise verification results.

Classically, an abstraction is applied to FTSs (mid-
dle downward arrow in the figure), which produces an
“abstract FTS” with much smaller size than the original
FTS. When lifted model checking algorithms are subse-
quently run, they will produce “less precise verification
results”, but it will do so faster than the original analysis
(i.e., there is a precision vs. speed tradeoff). The obtained
results are less precise in the sense that some of the
counter-examples reported may be spurious—introduced
in the model during abstraction.

Interestingly, for model checking of fPromela, ab-
straction (downward arrow) and compilation (rightward
arrow) commute which means that we may swap their
order of application. The implications are significant. It
means that variability abstractions can be applied be-
fore compilation; i.e., directly on fPromela models. We
exploit this observation to define a source-to-source trans-
formation, called Reconfigurator, on the source level
of input models, which enable an effective computation of
abstract models syntactically from high-level modelling
languages. The two paths from a variational system to

Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions 3

“abstract lifted model checking” are guaranteed to pro-
duce the same abstract lifted results. This makes our
technique easier to implement than using the semantic-
based abstractions defined for FTSs. In this way, we
avoid the need for intermediate storage in memory of the
semantics of the concrete full-blown variational model.
It also opens up a possibility of verifying properties of
variational models, so of multiple variants simultanously,
without using a dedicated family-based model checker
such as SNIP. We can use variability abstraction to obtain
an abstracted family-of-models (with a low number of
variants) that can then be model checked via “brute force”
using a single-system model checker, such as SPIN [30].

1.2 Contribution and organization

We make the following contributions:
– Variability abstractions. A class of variability ab-

stractions for featured transition systems, defined
inductively using a simple compositional calculus of
Galois connections.

– Soundness of abstraction. A soundness result for
the proposed abstractions, with respect to LTL prop-
erties.

– Abstraction via syntactic transformation. A def-
inition of the abstraction operators as source-to-source
transformations on variational models. The transfor-
mations are shown to have the same effect as ap-
plying the abstractions to the semantics of models
(featured transitions systems). This allows us to apply
the abstractions in a preprocessing step, without any
modifications to the model checking tools.

– Efficient family-based model checking. A tech-
nique for performing family-based model checking
using an off-the-shelf model checker. This technique
relies on partitioning and abstracting the variational
models until the point when they contain no vari-
ability. The default highly optimized implementation
of SPIN can then be used to verify the resulting ab-
stracted models.

– Experimental evaluation. An experimental evalu-
ation exploring the effectiveness of the above method
of family-based model checking with SPIN, as well as
the impact of abstractions on the scalability of the
state of the art family-based model checker SNIP.

This paper targets researchers and practitioners who
already use model checking in their projects, but, so far,
have only been analyzing one variant at a time, as well as
those working on family-based model checking. Although
designed for SPIN, the proposed rewrite techniques shall
be easily extensible to other model checkers, including
probabilistic and real-time models. Also the designers
of efficient family-based model checkers may find the
methodology of applying abstractions ahead of analysis
interesting, as it is much more lightweight to implement,
yet very effective, as shown in our experiments.

1

start

2 3

4 5

6

7 8 9
pay/v∧¬f change/v open/v∧¬f take/v

close/v

so
da/
s

serveSoda/
s

tea/
t

serveTea/t
free/f

take/f

cancel/c

re
tu

rn
/
c

Fig. 2: VendingMachine family-of-models with five
features, each assigned an identifying letter and a color:
v for VendingMachine (in black), t for Tea (in red), s for
Soda (in green), c for CancelPurchase (in brown), and
f for FreeDrinks (in blue).

This work represents an extended and revised version
of [23]. Compared to the earlier work, we make the follow-
ing extensions here. We motivate the need for using vari-
ability abstractions for achieving efficient family-based
model checking. We provide formal proofs for all main re-
sults. We expand and elaborate the examples. Finally, we
provide more evaluation results as well as one additional
case study.

We proceed by giving a motivating example for ap-
plying variability abstractions to lifted model checking
in Section 2. The basics of lifted model checking are ex-
plained in Section 3. Section 4 defines a calculus for speci-
fication of variability abstractions. Section 5 explains how
to use high-level modelling languages to encode families of
related systems. The Reconfigurator transformation
is described in Section 6 along with the correctness result.
Section 7 presents the evaluation on two case studies. In
Section 8, we show how our verification procedure can
be converted into a fully automatic. Finally, we discuss
the relation to other works and conclude.

2 Motivating Example
To better illustrate the issues we are addressing in this
work, we now present a motivating example. Fig. 2 shows
the FTS of a VendingMachine [12] which is a varia-
tional system that describes the behaviors of a family of
models of vending machines. The VendingMachine fam-
ily has five features (the set denoted F). Each of them is as-
signed an identifying letter and a color: VendingMachine
(denoted by v, in black), for purchasing a drink which
represents a mandatory root feature enabled in all vari-
ants; Tea (t, in red), for serving tea; Soda (s, in green),
for serving soda; CancelPurchase (c, in brown), for can-
celing a purchase after a coin is entered; and FreeDrinks
(f , in blue) for offering free drinks. Each transition is
labeled by first an action, then a slash ’/’, and finally a
guarding feature expression denoting whether or not the
transition is to be included in a given variant, depending
on which features have been enabled. For readability, we
color the transitions according to the feature expression
guarding it. For instance, the transition 3© soda/s−→ 5© is

4 Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions

1

start

2 3

5

7 8 9
pay change open take

close

so
da

serveSoda

(a) A variant for configuration {v, s}.

1

start

3

5

6

7

so
da

serveSoda

tea
serveTea

free

take

(b) A variant for configuration {v, s, t, f}.

Fig. 3: Some variants of VendingMachine.

guarded by feature expression, s (in green), which means
that it is only included in models if the (green) feature
Soda has been enabled.

A number of variants of this VendingMachine can
be derived. Fig. 3a shows the basic variant of Vending-
Machine that only serves soda, where only the features
v (black) and s (green) have been enabled. It accepts
payment, returns change, serves a soda, opens the access
compartment, so that the customer can take the soda,
and closes it again. A second variant of this machine,
shown in Fig. 3b, extends the basic one by serving tea
and offering free drinks, instead of requiring payment.
The following features have been enabled: v (black), s
(green), t (red), and f (blue). It shows the impact of
adding features t and f to the basic variant. Tea (t) adds
two transitions: 3© tea−→ 6© and 6© serveTea−→ 7©; whereas
FreeDrinks (f) adds: 1© free−→ 3© and 7© take−→ 1©, but re-
moves: 1© pay−→ 2© and 7© open−→ 8©. Note that transitions
2© change−→ 3© and 8© take−→ 9© close−→ 1© are not present in
this variant, since they are not reachable from the initial
state 1©.

Other variants of the VendingMachine can be also
generated by selecting (enabling, respectively, disabling)
other combinations of features. Combinatorically, this
gives rise to 2|F| different variants (configurations). In
general, however, not all combinations of features are
valid. Obviously, the basic vending machine functionality
feature, v (black), must be enabled in all variants. Equally
clearly, any variant of VendingMachine should serve
at least one kind of drink (either soda or tea). Therefore,
any valid variant of our VendingMachine should have
mandatory feature v (black) enabled and s (green) or t
(red) enabled, possibly both.

Let us suppose that some proposition, select, holds
in state three 3©. Now consider an example property, P ,
which states that “select holds infinitely often” ; i.e.:

1

start

2 3

4 5

6

7 8 9
pay/true change/true open/true take/true

close/true

so
da/
s

serveSoda/
s

tea/
t

serveTea/t
free/true

take/true

cancel/c

re
tu

rn
/
c

(a) αfignore
{v,f} (VendingMachine).

1

start

2 3

4 5

6

7 8 9
pay change open take

close

so
da

serveSoda

tea
serveTea

free

take

cancel
re

tu
rn

(b) αjoin(VendingMachine).

Fig. 4: Some abstractions of VendingMachine.

“infinitely often, a customer is able to select
between taking a drink or canceling a purchase.”

Both variants of VendingMachine in Fig. 3 satisfy this
property, since the state 3© is reachable infinitely often
in any execution of those variants. In fact, all variants
of VendingMachine satisfy P . However, in order to
formally verify P , we can either instantiate all exponen-
tially many valid variants from VendingMachine and
verify them, one-by-one (known as “the brute-force ap-
proach”); or, we can apply recently invented family-based
model checking algorithms [11,12,14] (implemented in
the SNIP tool) that work on the family-based level of
FTSs rather than individual single-system TSs. Although
the family-based approach is more efficient, it still inher-
ently depends on the number of features and variants in
the family.

In order to speed up the above family-based verifi-
cation procedure, we introduce so-called variability ab-
stractions which may tame the exponential explosion
of the number of variants and reduce it to something
more tractable. In effect, we obtain a computationally
cheaper but less precise verification procedure, since an
over-approximation is introduced in it. The two basic vari-
ability abstractions in our calculus are: (1) to confound
(join) all valid variants into one system, denoted αjoin,
and (2) to ignore a set of features, A ⊆ F, deemed as not
relevant for the current problem, denoted αfignore

A . With
αjoin we obtain a single system with over-approximated
control flow, whereas with αfignore

A we obtain a family
with less variability by confounding all executions that
differ only with regard to the features in A. We also use
a projection (divide-and-conquer) operator, which parti-
tions the space of all variants into a number of subsets

Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions 5

that can be analyzed one at a time, and a composition
operator to build other more sophisticated verification
strategies out of these basic operators.

Notice that satisfaction of the property P in Vend-
ingMachine does not depend on whether the features v
and f are enabled. So, we can ignore them by replacing
in feature expressions all literals corresponding to v and
f with true. We still keep precision with respect to all
other features: c, t and s. This will result in a new FTS,
αfignore
{v,f} (VendingMachine), given in Fig. 4a. Compared

to the concrete VendingMachine in Fig. 2, the new
FTS has less variability (less number of features and
variants) and more executions (over-approximation). For
example, the execution in which the machine first asks a
customer for a coin and then offers a free drink to the next
customer is possible in αfignore

{v,f} (VendingMachine), but
not in VendingMachine. This is so, because the transi-
tions 1© free−→ 3© and 1© pay−→ 2© change−→ 3© are alternatives
in VendingMachine, and their presence in a variant
depends on whether the feature f is enabled or not. In
effect, the new abstract verification procedure runs faster
reporting that P holds for αfignore

{v,f} (VendingMachine),
which implies that the property P holds for the concrete
VendingMachine as well.

Since the above property P does not depend on the
presence of any feature, we can apply the coarsest ab-
straction αjoin, which simply confounds (joins) control
flows of all valid variants into a single system, where
all feature expressions hold (they become true). As re-
sult of doing this we obtain αjoin(VendingMachine),
shown in Fig. 4b, which over-approximates the concrete
VendingMachine. Also, αjoin(VendingMachine) has
no variability and represents an ordinary transition sys-
tem. Hence, it can be verified efficiently using classi-
cal (single-system) model checking algorithms (imple-
mented in tools such as SPIN). The use of SNIP is no
longer needed in this case. By verifying that P holds for
αjoin(VendingMachine), we can conclude that it also
holds for VendingMachine.

The motivating example we considered here, Vend-
ingMachine, was phrased as an FTS (cf. Fig. 2). In
practice, however, models are usually not phrased di-
rectly as low-level FTSs. Instead, higher-level languages
are used; in particular, the language fPromela, for
specifying families of models.

As mentioned in the introduction, we observe that
variability abstraction (the downward arrow of Fig. 1) and
model compilation (right arrow) commute. We exploit this
to make all variability abstractions, as presented above
on FTSs, work on the level of fPromela in the form
of the source-to-source Reconfigurator tool. Given a
variability abstraction, our Reconfigurator is able to
transform an fPromela model-family into an abstracted
fPromela model-family that behaves exactly as if the
original model-family had been first compiled and only
then abstracted and analyzed. The result is that we

may combine our source-to-source Reconfigurator
with existing model checkers black-box and effectively
augment them with abstraction, irrespective of their
internal behavior, representations, and optimizations.

3 Modelling Variational Behavior

A common way of introducing variability into modeling
languages is superimposing multiple variants in a single
model [19]. Following this, Classen et al. present featured
transition systems [12,14], an extension of transition sys-
tems [3] with static guard conditions over features on
transitions. The guards determine in which variants the
transitions appear. An FTS represents the behaviour of
all instances of a variational system. Hence, all variants
are represented in a single model in order to exploit the
similarities between them. The set of valid configurations
is encoded in a separate feature model [31], i.e. a tree-like
structure that specifies which combinations of features
are valid. They have also proposed specifically designed
family-based model checking algorithms for verification
of FTSs against LTL properties and implemented them
in the SNIP tool [11].

3.1 Featured Transition Systems

Let F = {A1, . . . , An} be a finite set of Boolean vari-
ables representing the features available in a variational
model. A configuration is a specific subset of features
k ⊆ F. Each configuration defines a variant of a model.
Only a subset K ⊆ 2F of configurations are valid. Equiv-
alently, configurations can be represented as formulae
(minterms). Each configuration k ∈ K can be represented
by the term

∧
i=1..n ν(Ai) where ν(Ai) = Ai if Ai ∈ k,

and ν(Ai) = ¬Ai if Ai 6∈ k. Since minterms can be bi-
jectively translated into sets of features, we use both
representations interchangeably. The set of valid configu-
rations is typically described by a feature model, but we
disregard syntactic representations of the set K in this
paper.

The behaviour of individual variants is given as tran-
sition systems.

Definition 1. A tuple T = (S,Act, trans, I,AP, L) is a
transition system, where S is a set of states, Act is a set
of actions, trans ⊆ S × Act × S is a transition relation,
I ⊆ S is a set of initial states, AP is a set of atomic
propositions, and L : S → 2AP is a labeling function. We
write s1

λ−→ s2 when (s1, λ, s2) ∈ trans.

An execution (behaviour) of a transition system T is a
nonempty, infinite sequence ρ = s0λ1s1λ2 . . . such that
s0 ∈ I and si

λi+1−→ si+1 for all i ≥ 0. The semantics of T ,
written [[T]]TS, is the set of all executions of T .

Let FeatExp(F) denote the set of all propositional
formulae over F generated using the grammar:

ψ ::= true | A ∈ F | ¬ψ | ψ1 ∧ ψ2

6 Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions

For a condition ψ ∈ FeatExp(F), we write [[ψ]] to mean the
set of valid variants that satisfy ψ, i.e. k ∈ [[ψ]] iff k |= ψ
and k ∈ K, where |= denotes the standard satisfaction of
propositional logic.

The combined behaviour of a whole system family
is compactly represented with FTSs. They are basically
TSs appropriately decorated with feature expressions.

Definition 2. A tuple F=(S,Act,trans,I,AP,L,F,K, δ)
is a featured transition system if (S,Act, trans, I,AP, L)
is a transition system, F is the set of available features,
K is a set of valid configurations, and δ : trans →
FeatExp(F) is a total function labeling transitions with
feature expressions.

The projection of an FTS F onto a variant k ∈ K, writ-
ten πk(F), is a transition system (S,Act, trans′, I,AP, L),
where trans′ = {t ∈ trans | k |= δ(t)}. Projection
is analogous to preprocessing of #ifdef statements in
C/CPP family-based SPLs and is naturally lifted to
sets of variants. Given K′ ⊆ K, the projection πK′(F) is
the FTS (S,Act, trans′, I,AP, L,F,K′, δ), where trans′ =
{t ∈ trans | ∃k ∈ K′.k |= δ(t)}. The semantics of the
FTS F , written [[F]]FTS, is the union of the behavior of
the projections onto all valid variants k ∈ K, i.e. we have:

[[F]]FTS =
⋃
k∈K

[[πk(F)]]TS

Classen at el. [12] define the size of an FTS as: |F| =
|S|+ |trans|+ |expr |+ |K|, where |expr | denotes the size
of all feature expressions bounded by O(2|F| · |trans |). In
these terms, our abstractions aim to reduce the |expr |
and |K| components of the size |F|.

Example 1. Let us revisit the VendingMachine exam-
ple from Section 2. Fig. 2 presents an FTS describing the
behavior of the VendingMachine. It contains five fea-
tures F = {v, t, s, c, f}. We assume that only valid config-
urations are K = {{v, s}, {v, s, t, f}, {v, s, c}, {v, t, c, f}}.
The valid configuration {v, s} corresponding to the ba-
sic variant, π{v,s}(VendingMachine), given in Fig. 3a
can be expressed as the formula v∧s∧¬t∧¬c∧¬f . Note
that the variant π{v,s,t,f}(VendingMachine) is shown
in Fig. 3b. ut

3.2 fLTL Properties

An LTL formula is defined inductively as:

φ ::= true | a ∈ AP | φ1 ∧ φ2 | ¬φ | Xφ | φ1Uφ2

Satisfaction of a formula φ for an infinite execution ρ =
s0λ1s1λ2 . . . (we write ρi = siλi+1si+1 . . . for the i-th

suffix of ρ) is defined as:

ρ |= true always (for any ρ)
ρ |= a iff a ∈ L(s0),
ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2,

ρ |= ¬φ iff not ρ |= φ,

ρ |= Xφ iff ρ1 |= φ,

ρ |= φ1Uφ2 iff ∃k ≥ 0 : ρk |= φ2 and
∀j.0 ≤ j < k − 1 : ρj |= φ1

A TS T satisfies a formula φ, written T |= φ, iff ∀ρ ∈
[[T]]TS : ρ |= φ. Other temporal operators can be de-
rived as usual: Fφ = true Uφ (means “some Future state,
eventually”) and Gφ = ¬F¬φ (means “Globally, always”).

In the variational case, properties may hold only for
some variants. To capture this in specifications, fLTL
properties are quantified over the variants of interest.

Definition 3. – A feature LTL (fLTL) formula is a
pair [χ]φ, where φ is an LTL formula and χ is a
feature expression from FeatExp(F).

– An FTS F satisfies an fLTL formula [χ]φ, written
F |= [χ]φ, iff for all configurations k ∈ K ∩ [[χ]] we
have that πk(F) |= φ. An FTS F satisfies an LTL
formula φ iff F |= [true]φ.

Example 2. Consider the FTS for VendingMachine in
Fig. 2. The property P : “select holds infinitely often”
from Section 2 can be expressed as: “G F select”. We can
check that P is indeed satisfied: VendingMachine |= P ,
since all valid variants (from K) of VendingMachine
satisfy P .

Suppose that states 5© and 6© are labeled selected,
and the state 8© is labeled open. Consider an exam-
ple property φ that after each time a beverage has
been selected, the machine will eventually open the
compartment to allow the customer to access his drink:
G (selected =⇒ F open). The basic VendingMachine
satisfies this property: π{v,s}(VendingMachine) |= φ,
while the entire variational model does not, i.e. we have:
VendingMachine 6|= φ. For example, if the feature f
is enabled, the state 8© is unreachable, i.e. a counter-
example (execution that violates φ) is: 1© → 3© →
5© → 7© → 1© → The set of violating products
is {{v, s, t, f}, {v, t, c, f}} ⊆ K. At the same time, we
can check that VendingMachine |= [¬f]φ. Therefore,
we can conclude that the feature f is responsible for
violation of the property φ. ut

4 Variability Abstractions

We shall now introduce abstractions decreasing the sizes
of FTSs, in particular the number of features |F| and
the configuration space |K|. We also show how these
abstractions preserve fLTL properties over FTSs.

Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions 7

4.1 A Calculus of Abstractions

For fLTL model checking, variability abstractions can
be defined over the set of features F and the configu-
ration space K, and then lifted to FTSs. This greatly
simplifies the definitions. Variability abstractions aim
to weaken feature expressions, in order to make tran-
sitions in FTSs available to more variants. We begin
with the complete Boolean lattice of propositional formu-
lae over F: (FeatExp(F)/≡, |=,∨,∧, true, false). Elements
of FeatExp(F)/≡ are equivalence classes of propositional
formulae obtained by quotienting by the semantic equiv-
alence ≡. The pre-order relation |= is defined as the
satisfaction relation from propositional logic, whereas the
least upper bound operator is ∨ and the greatest lower
bound operator is ∧. Furthermore, the least element is
false, and the greatest element is true 2.

Sometimes the computational task on a concrete com-
plete lattice (domain) may be too costly or even uncom-
putable and this motivates replacing it with a simpler
abstract lattice. A Galois connection is a pair of total
functions, α : L → M and γ : M → L (respectively
known as the abstraction and concretization functions),
connecting two complete lattices, 〈L,6L〉 and 〈M,6M 〉
(often called the concrete and abstract domain, respec-
tively), such that:

α(l) 6M m ⇐⇒ l 6L γ(m) for all l ∈ L,m ∈M

which is often typeset as: 〈L,6L〉 −−−→←−−−α
γ
〈M,6M 〉. Note

that 6L and 6M are the pre-order relations for L and
M , respectively.

Join. This abstraction confounds the control flow of all
variants of the model, obtaining a single variant that
includes all the executions occurring in any variant. The
unreachable parts of the variational model that do not
occur in any valid variant are eliminated. The information
about which states belong to which variants is lost.

Technically, the abstraction collapses the entire con-
figuration space onto a singleton set. Each feature ex-
pression ψ is replaced with true if ψ is satisfied in at
least one configuration from K. The set of features in the
abstracted model is empty: αjoin(F) = ∅, and the set of
valid configurations is: αjoin(K) = {true} if K 6= ∅ and
αjoin(K) = {false} otherwise.
The abstraction, αjoin : FeatExp(F) → FeatExp(∅), and
concretization functions, γjoin :FeatExp(∅)→FeatExp(F),
are specified as follows:

αjoin(ψ) =
{
true if ∃k ∈ K.k |= ψ

false otherwise

2 Alternatively, we could work with the set-theoretic definition
of propositional formulae and consider an isomorphic complete
lattice of sets of configurations ([[F eatExp(F)]],⊆,∪,∩, 2F, ∅). Here,
[[F eatExp(F)]] = 22F , and an element of [[F eatExp(F)]] is a subset
of Eval(F) = 2F, which corresponds to a propositional formula over
F which is satisfied by those evaluations.

γjoin(true) = true, γjoin(false) =
∨
k∈2F\K k

Theorem 1. 〈FeatExp(F)/≡,|=〉 −−−−−→←−−−−−
αjoin

γjoin

〈FeatExp(∅),|=〉
is aGalois connection.

Proof. Let ψ ∈ FeatExp(F) and ϕ′ ∈ FeatExp(∅).

αjoin(ψ) |= ϕ′

⇐⇒ (∃k ∈ K.k |= ψ ∧ true |= ϕ′)∨
(∀k ∈ K.k 6|= ψ ∧ false |= ϕ′) (by def. of αjoin)

⇐⇒ (∃k ∈ K.k |= ψ ∧ ϕ′ = true)∨
(∀k ∈ K.k 6|= ψ ∧ (ϕ′= true ∨ ϕ′=false)) (by |=)

⇐⇒
(
(∃k ∈ K.k |= ψ ∧ ϕ′ = true)∨

(∀k ∈ K.k 6|= ψ ∧ ϕ′= true)
)
∨

(∀k ∈ K.k 6|= ψ ∧ ϕ′=false) (by def. of ∨)
⇐⇒ (ψ |= true ∧ ϕ′ = true)∨

(ψ |=
∨

k∈2F\K

k ∧ ϕ′ = false) (by def. of |=)

⇐⇒ ψ |= γjoin(ϕ′) (by def. of γjoin)

ut

Ignoring features. The abstraction αfignore
A ignores a sin-

gle feature A ∈ F that is not directly relevant for the
current analysis. We confound the control flow paths
that only differ with regard to A, and keep the precision
with respect to control flow paths that do not depend
on A. Thus, αfignore

A merges any configurations that only
differ with respect to A, and are identical with regard to
remaining features, F\{A}.

Given a feature expression ψ, we write αfignore
A (ψ) for

a weaker formula (such that ψ |= αfignore
A (ψ)) obtained

by eliminating the feature A from ψ in the following way.
First, we convert ψ into NNF (negation normal form),
which contains only ¬,∧,∨ connectives and ¬ appears
only in literals. We write lA for the literals A or ¬A.
Then, we write αfignore

A (ψ) = ψ[lA 7→ true] to denote the
formula ψ where any literal of A, lA, is replaced with
true. Note that all formulae k ∈ K are already in NNF.

The abstract sets of features and valid configurations
are: αfignore

A (F) = F\{A}, and αfignore
A (K) = {k[lA 7→

true] | k ∈ K}. The abstraction and concretization func-
tions between FeatExp(F) and FeatExp(αfignore

A (F)) are
defined as:

αfignore
A (ψ) = ψ[lA 7→ true]

γfignoreA (ϕ′) = (ϕ′ ∧A) ∨ (ϕ′ ∧ ¬A)

where ψ and ϕ′ are in NNF from.

Theorem 2. 〈FeatExp(F)/≡, |=〉 −−−−−−−→←−−−−−−−
αfignore
A

γfignore
A

〈FeatExp(F\{A})/≡, |=〉 is a Galois connection.

8 Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions

Proof. Let ψ ∈ FeatExp(F), and ϕ′ ∈ FeatExp(F\{A})
be in NNF.

αfignore
A (ψ) |= ϕ′

⇐⇒ ψ[lA 7→ true] |= ϕ′ (by def. of αfignore
A)

⇐⇒ ψ |= (ϕ′ ∧A) ∨ (ϕ′ ∧ ¬A) (by Lemma 1)

⇐⇒ ψ |= γfignoreA (ϕ′) (by def. of γfignoreA)

ut

Lemma 1. Let ψ and ϕ′ be in NNF. ψ[lA 7→ true] |= ϕ′

iff ψ |= (ϕ′ ∧A) ∨ (ϕ′ ∧ ¬A).

Proof. By induction on the structure of ψ.

Sequential Composition. The composition of two Ga-
lois connections gives also a Galois connection [18]. Let
〈FeatExp(F)/≡, |=〉 −−−→←−−−

α1

γ1 〈FeatExp(α1(F))/≡, |=〉 and
〈FeatExp(α1(F))/≡, |=〉 −−−→←−−−

α2

γ2 〈FeatExp(α2(α1(F)))/≡,
|=〉 be two Galois connections. Then their composition is
defined as:

α2 ◦ α1(ψ) = α2(α1(ψ))
γ1 ◦ γ2(ψ) = γ1(γ2(ψ))

We also have α2 ◦ α1(F) = α2(α1(F)) and α2 ◦ α1(K) =
α2(α1(K)).

Syntactic sugar. We can define an operation which ig-
nores a set of features: αfignore

{A1,...,Am} = αfignore
A1

◦ . . . ◦
αfignore
Am

and γfignore{A1,...,Am} = γfignoreAm
◦ . . . ◦ γfignoreA1

.
In the following, we will simply write (α, γ) for any

〈FeatExp(F)/≡, |=〉 −−−→←−−−α
γ
〈FeatExp(α(F))/≡, |=〉, which

is constructed using the operators presented in this sec-
tion.

4.2 Abstracting FTSs

Given Galois connections defined on the level of feature
expressions, available features, and valid configurations,
we now induce a notion of abstraction between FTSs.

Definition 4. Let F = (S,Act, trans, I,AP, L,F,K, δ)
be an FTS, [χ]φ be an fLTL formula, and (α, γ) be a
Galois connection.

– We define α(F) = (S,Act, trans, I,AP, L, α(F), α(K),
α(δ)), where α(δ) : trans → FeatExp(α(F)) is de-
fined as: α(δ)(t) = α(δ(t)).

– We define α([χ]φ) = [α(χ)]φ.

Example 3. Consider the FTS F = VendingMachine
in Fig. 2 withK = {{v, s}, {v, s, t, f}, {v, s, c}, {v, s, c, f}}.
We have showed αfignore

{v,f} (F) and αjoin(F) in Fig. 4. In
Fig. 5 are also shown αjoin(π[[f]](F)) and αjoin(π[[¬f]](F)).

For αjoin(π[[f]](F)) in Fig. 5a, note that K ∩ [[f]] =
{{v, s, t, f}, {v, s, c, f}}. So, transitions annotated with
v ∧ ¬f are not present in αjoin(π[[f]](F)).

1

start

3

4 5

6 7

so
da

serveSoda

tea serveTeafree

take

cancel

re
tu

rn

(a) αjoin(π[[f]](VendingMachine)).

1

start

2 3

4 5

7 8 9
pay

change

open take

close

so
da serveSoda

cancel
re

tu
rn

(b) αjoin(π[[¬f]](VendingMachine)).

Fig. 5: Various abstractions of VendingMachine.

For αjoin(π[[f]](F)) in Fig. 5b, note that K ∩ [[¬f]] =
{{v, s}, {v, s, c}}, and so transitions annotated with the
features t and f (Tea and FreeDrinks) are not present
in αjoin(π[[¬f]](F)). Also note that in the case of αjoin(F),
αjoin(π[[¬f]](F)) and αjoin(π[[f]](F)) we obtain ordinary
transition systems, since all transitions are labeled with
the feature expression true. ut

4.3 Property Preservation

We now show that abstracted FTSs have some interesting
preservation properties. In particular, we show an LTL
formula satisfied by the abstracted FTS is also satisfied
by the concrete FTS. First, we prove a helping lemma,
which states that for any valid variant k from the concrete
FTS that can execute a behaviour guarded by feature
expressions ψ0, ψ1, . . ., there exists a variant k′ in the
abstracted FTS that can execute the same behaviour.

Lemma 2. Let χ, ψ0, ψ1, . . . ∈ FeatExp(F), K be a set
of configurations over F, and (α, γ) be a Galois connec-
tion. Let k ∈ K∩[[χ]], such that k |= ψi for all i ≥ 0. Then
there exists k′ ∈ α(K) ∩ [[α(χ)]], such that k′ |= α(ψi) for
all i ≥ 0.

Proof. By induction on the structure of α.
Case αjoin: By assumption, we have that K 6= ∅, thus
αjoin(K) = {true}. By def. of αjoin, we have that
αjoin(χ) = αjoin(ψ0) = . . . = true, since there exists
k ∈ K such that k |= χ, k |= ψ0, Since true ∈
αjoin(K) and true |= true, we obtain the conclusion.

Case αfignore
A : By assumption, k′ = k[lA 7→ true] ∈

αfignore
A (K). For any ψ ∈ FeatExp(F), it holds: if

k |= ψ then k[lA 7→ true] |= ψ[lA 7→ true]. Thus,
we have that k′ ∈ αfignore

A (K) ∩ [[χ[lA 7→ true]]], and
k′ |= ψi[lA 7→ true] for all i ≥ 0.

Case α2 ◦ α1: Follows directly by IH.
ut

By using Lemma 2, we can prove the following result.

Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions 9

Theorem 3 (Soundness). Let (α, γ) be a Galois con-
nection. α(F) |= [α(χ)]φ =⇒ F |= [χ]φ.

Proof. We proceed by contraposition. Assume F 6|= [χ]φ.
Then, there exist a configuration k ∈ K ∩ [[χ]] and an
execution ρ = s0λ1s1λ2 . . . ∈ [[πk(F)]]TS such that ρ 6|= φ,
i.e. ρ |= ¬φ. This means that for all transitions in ρ,
ti = si

λi+1−→ si+1 for i = 0, 1, . . ., we have that k |=
δ(ti) for all i ≥ 0. By Lemma 2, we have that there
exists k′ ∈ α(K) ∩ [[α(χ)]], such that k′ |= α(δ(ti)) for all
i ≥ 0. Hence, the execution ρ is realizable for α(F), i.e.
ρ ∈ [[πk′(α(F))]]TS and ρ |= ¬φ. It follows that α(F) 6|=
[α(χ)]φ. ut

It follows from Definition 3 that a family-based model
checking problem can be reduced to a number of smaller
problems by partitioning the set of variants:
Proposition 1. Let the subsets K1,K2, . . . ,Kn form a
partition of the set K. Then: F |= [χ]φ iff πKi(F) |= [χ]φ
for all i = 1, . . . , n.

Using Proposition 1 and Theorem 3, we obtain the
following result.

Corollary 1. Let K1,K2, . . . ,Kn form a partition of
K, and (α1,γ1), . . . , (αn,γn) be Galois connections. If
α1(πK1(F)) |= [α1(χ)]φ, . . . , αn(πKn(F)) |= [αn(χ)]φ,
Then F |= [χ]φ.

The above results show that, if we are successfully able to
verify an abstracted property for an abstracted FTS, then
the verification also holds for the unabstracted (concrete)
FTS. Note that verifying the abstracted FTS can be a
lot (even exponentially) faster. If a counter-example is
found in the abstracted FTS, then it may be spurious
(introduced due to the abstraction) for some variants
and genuine for the others. This can be established by
checking which products can execute the found counter-
example. By doing so, we are able to identify the set of
products that violate a given property, and to report a
counter-example of violation for each of them.

Example 4. Recall the formula φ = G (selected =⇒
F open) from Example 2, and αjoin(π[[f]](VendingMachine))
and αjoin(π[[¬f]](VendingMachine)) shown in Fig. 5. First, we
can successfully verify thatαjoin(π[[¬f]](VendingMachine)) |=
φ, which implies that all valid variants that do not contain
the feature f satisfy the property φ. On the other hand,
we have αjoin(π[[f]](VendingMachine)) 6|= φ. This means that
the feature f (or a more complex feature interaction in
which f is always enabled) is responsible for the prop-
erty φ not to hold in the VendingMachine. In this way, the
problem of verifying whether the FTS VendingMachine sat-
isfies φ is reduced to verifying whether two ordinary TSs,
αjoin(π[[¬f]](VendingMach.)) and αjoin(π[[f]](VendingMach.)),
satisfy φ. ut

In general, we aim to partition the set of variants K into
subsets K1, . . . ,Kn such that all variants of any subset
either satisfy the property at hand or do not satisfy it.

5 High-Level Modelling Languages

It is very difficult to use FTSs to directly model very large
systems. Therefore, it is necessary to have a high-level
modelling language, which can be used directly by engi-
neers for modelling large variational systems. fPromela
is designed for describing variational systems; whereas
TVL for describing the sets of features and valid configu-
rations. We present fPromela and TVL and show their
FTS semantics.

5.1 Syntax

fPromela is obtained from Promela [30] by adding
feature variables, F, and guarded-by-features statements.
Promela is a non-deterministic modelling language de-
signed for describing systems composed of concurrent
processes that communicate asynchronously. A Promela
model, P , consists of a finite set of processes to be ex-
ecuted concurrently. The basic statements of processes
are given by:

stm ::= skip |x := expr |c?x |c!expr |stm1;stm2 |
if ::g1⇒stm1 · · · ::gn⇒stmn ::else⇒stm fi |
do :: g1 ⇒ stm1 · · · :: gn ⇒ stmn od

where x is a variable, c is a channel, and gi are conditions
over variables and contents of channels. The “if” is a
non-deterministic choice between the statements stmi for
which the guard gi evaluates to true for the current eval-
uation of the variables. If none of the guards g1, . . . , gn
are true in the current state, then the “else” statement
stm is chosen. Similarly, the “do” represents an itera-
tive execution of the non-deterministic choice among the
statements stmi for which the guard gi holds in the cur-
rent state. Statements are preceded by a declarative part,
where variables and channels are declared.

The feature variables, F, used in an fPromela (vari-
ational) model have to be declared as fields of the special
type features. The new guarded-by-features statement
introduced in fPromela is of the form:

gd :: ψ1 ⇒ stm1 . . . :: ψn ⇒ stmn :: else⇒ stm dg

where ψ1, . . . , ψn are feature expressions defined over
F. The “gd” is a non-deterministic statement similar to
“if”, except that only features can be used as conditions
(guards). Actually, this is the only place where features
may be used. Hence, “gd” in fPromela plays the same
role as “#ifdef” in C/CPP SPLs [33].

TVL [10] is a textual modelling language for de-
scribing the set of all valid configurations, K, for an
fPromela model along with all available features, F. A
feature model is organized as a tree, whose nodes denote
features and edges represent parent-child relationship
between nodes. The root keyword denotes the root of
the tree, and the group keyword, followed by a decom-
position type “allOf”, “someOf”, or “oneOf”, declares

10 Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions

the children of a node. The meaning is that if the parent
feature is part of a variant, then “all”, “some”, or “exactly
one” respectively, of its non-optional children have to be
part of that variant. The optional features are preceded
by the opt keyword. Various Boolean constraints on the
presence of features can be specified as well.

Example 5. Fig. 6 shows simple fPromela and TVL
models. After declaring feature variables in the fPromela
model in Fig. 6a, the process foo is defined. The first
gd statement specifies that i++ is available for variants
that contain the feature A, and skip for variants with
¬A. The second gd statement is similar, except that the
guard is the feature B. The TVL model in Fig. 6b (single
line comments start with “//”) specifies four valid con-
figurations: {Main}, {Main, A}, {Main, B}, {Main, A, B}. If
we use the SNIP tool to check the assertion, i≥ 0, in this
example, we will obtain that it is satisfied by all (four)
valid variants. However, the assertion i> 0 will fail for
the variant ¬A∧¬B (i.e. Main), where both features A and
B are disabled. If we include the constraint in comments
in line 5 of Fig. 6b that excludes the variant: ¬A ∧ ¬B,
then the assertion i> 0 will also hold for the given family,
which now contains three valid variants. ut

5.2 Semantics

We now show only the most relevant details of the
fPromela semantics. For the precise account of the
Promela semantics the reader is referred to [30]. Each
fPromela model defines a so-called featured program
graph (FPG), which formalizes the control flow of the
model. The FPG represents a program graph [3] (or “fi-
nite state automaton” in [30]) in which transitions are
explicitly linked with feature expressions. The vertices
of the graph are control locations (represented by line
numbers in the model) and its transition relation defines
the control flow of the model. Each transition has con-
dition under which it can be executed, an effect which
specifies its effect on the set of variables, and a feature
expression which indicates in which variants this tran-
sition is enabled. Thus, transitions are annotated with
condition/effect/feature expression. The “gd” statement
specifies the control flow and the feature expression part
of transitions.

Let V be the set of variables, and F be the set of
features in an fPromela model. Let Cond(V) denote
the set of Boolean conditions over V , and Assgn(V)
denote all assignments over V . Eval(V) is the set of all
evaluations of V that assign concrete values to variables
in V . For v ∈ Eval(V) and g ∈ Cond(V), we write
v |= g if the evaluation v makes g true, and apply(a, v)
is the evaluation obtained after applying the assignment
a ∈ Assgn(V) to v.

Definition 5. A FPG over V and F is defined as a tuple
(Loc, tr, Loc0, init,K, fe), where Loc is a set of control
locations, Loc0 ⊆ Loc is a set of initial locations, tr ⊆

Loc×Cond(V)×Assgn(V)×Loc is the transition relation,
init ∈ Cond(V) is the initial condition characterising the
variables in the initial state, K is a set of configurations,
and fe : tr → FeatExp(F) annotates transitions with
feature expressions.

The semantics of an FPG is an FTS obtained from
“unfolding” the graph (see [3, Sect. 2] for details). The
unfolded FTS is:

(Loc× Eval(V), {ε}, trans, I, Cond(V), L,F,K, δ)

where the states are pairs of the form (l, v) for l ∈
Loc, v ∈ Eval(V); action names are ignored (ε is an
empty, dummy, action name); I = {(l, v) | l ∈ Loc0, v |=
init}; L((l, v)) = {g ∈ Cond(V) | v |= g}; and transitions
are defined as:

(l, g, a, l′) ∈ tr v |= g

((l, v), ε, (l′, apply(a, v))) ∈ trans

Given t ∈ trans, let t′ ∈ tr be the corresponding tran-
sition of the FPG. Then δ(t) = true if fe(t′) is unde-
fined; and δ(t) = fe(t′) otherwise. Hence, the semantics
of fPromela follows the semantics of Promela, just
adding feature expression from the FPG to transitions.

Example 6. In Fig. 7 are shown the FPG and FTS for
the family model defined in Fig. 6. As shown in the FPG
in Fig. 7a, a “gd” statement becomes a state with one
outgoing transition per option, so that the last state of all
options leads back to a common state. For instance, see
transitions from l5© (line 5) and l6© (line 6). The unfolded
FTS is shown in Fig. 7b, where each state contains the
info about the control location (line number) and the
current value of the variable i. ut

6 Syntactic Transformations

We present the syntactic transformations of fPromela
and TVL models introduced by projection and variability
abstractions. Let P represent an fPromela model, for
which the sets of features F and valid configurations K
are given as a TVL model T . We denote with [[P]]T the
FTS obtained for this program, as shown in Section 5.

Let ψ′ be a feature expression, such that [[ψ′]] ⊆ K.
The projection π[[ψ′]]([[P]]T) is obtained by adding the
constraint ψ′ in the corresponding TVL model T , which
we denote as T + ψ′. Thus, π[[ψ′]]([[P]]T) = [[P]]T+ψ′ .

Let (α, γ) be a Galois connection obtained from our
calculus in Section 4. The abstract α(P) and α(T) are
obtained by defining a translation recursively over the
structure of α. The function α copies all non-compound
basic statements of fPromela, and recursively calls itself
for all sub-statements of compound statements other than
“gd”. For example, α(skip) = skip and α(stm1;stm2) =
α(stm1);α(stm2). We discuss the rewrites for “gd” below.

Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions 11

0 typedef features {
1 bool A; bool B; }
2 features f;
3 active proctype foo() {
4 int i := 0;
5 gd :: f.A ⇒ i++ :: else ⇒ skip dg;
6 gd :: f.B ⇒ i++ :: else ⇒ skip dg;
7 assert(i≥ 0);
8 }

(a) An fPromela model.

0 root Main {
1 group allOf {
2 opt A,
3 opt B
4 }
5 // A || B;
6 }

(b) A TVL model.

Fig. 6: Simple fPromela and TVL models

l5

init={i=0}

l6 l7 l8

tt/i++/A

tt/ − /¬A

tt/i++/B

tt/ − /¬B

tt/ass(i≥0)/−

(a) An FPG.

l5
i= 0

start

l6
i= 1

l6
i= 0

l7
i= 2

l7
i= 0

l7
i= 1

l8
i= 1

l8
i= 2

l8
i= 0

ε/A

ε/¬A

ε/B

ε/¬B

ε/B

ε/¬B

ε/−

ε/−

ε/−

(b) An FTS.

Fig. 7: The semantics of the family system defined in Fig. 6. Note that “lx” refers to the line number x from the
program in Fig. 6a, and tt is short for true.

For αjoin, we obtain a Promela (single variant)
model αjoin(P) where all “gd”-s are appropriately re-
solved and all features are removed. Thus, αjoin(T) is
empty. The transformation is

αjoin(gd :: ψ1 ⇒ stm1 . . .
:: ψn ⇒ stmn :: else⇒ stm′ dg

)
=

if :: αjoin(ψ1)⇒ αjoin(stm1) . . .
:: αjoin(ψn)⇒ αjoin(stmn)
:: αjoin(¬(ψ1∨ . . . ∨ψn))⇒ αjoin(stm′) fi

For αfignore
A , the transformation for “gd” is:

αfignore
A

(
gd :: ψ1 ⇒ stm1 . . .

:: ψn ⇒ stmn :: else⇒ stm′ dg
)

=
gd ::αfignore

A (ψ1)⇒αfignore
A (stm1). . .

::αfignore
A (ψn)⇒αfignore

A (stmn)
::αfignore

A (¬(ψ1∨. . .∨ψn))⇒αfignore
A (stm′) dg

The new αfignore
A (T) is obtained by removing the feature

A from T , when F\{A} 6= ∅. Otherwise, if F\{A} = ∅,
then αfignore

A (P) is a Promela model where the keyword
“gd” is replaced with “if”, and αfignore

A (T) is empty.
For α2◦α1, we have α2◦α1(gd :: ψ1 ⇒ stm1 . . . dg) =

α2(α1(gd :: ψ1 ⇒ stm1 . . . dg)). Similarly, we transform
the TVL model T , i.e. α2 ◦ α1(T) = α2(α1(T)).

Since feature expressions are treated in the same way
by FTS and fPromela, we can show that the relation
between fPromela and abstract fPromela models
coincides with that between FTSs and abstracted FTSs.

Theorem 4. Let P and T be fPromela and TVL
models, and (α, γ) be a Galois connection. We have:
α([[P]]T) ≡ [[α(P)]]α(T), where ≡ means that both FTSs
are semantically equivalent.

Proof. By induction on the structure of P and stm. The
only interesting case is for the “gd” statement, since in
all other cases we have an identity translation.

For the “gd” statement, we can see that all abstrac-
tions α are applied on feature expressions, which can
be introduced in FTSs only through “gd”-s. Thus, it is
the same whether the abstraction is applied directly on
FTSs after the FTS is built by following the operational
semantics of “gd”, or the abstraction is first applied on
“gd” statements and after that the corresponding FTS is
built. ut

7 Evaluation

We now evaluate our verification technique based on
variability abstractions on several case studies. The eval-
uation aims to address the following objectives:

O1: To show how variability abstractions can turn a
previously infeasible analysis of model families into a
feasible one;

O2: That instead of verifying properties using a family-
based model checker (e.g., SNIP), we can use variabil-
ity abstraction to obtain an abstract family-of-models

12 Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions

(with a low number of variants) that can then be
efficiently model checked using a single-system model
checker (e.g., SPIN);

O3: To demonstrate that we can use variability abstrac-
tions to speed-up verification of some properties using
only a family-based model checker (e.g., SNIP), by
ignoring features that are not relevant for the given
properties.

To achieve the above objectives, we use the soundness
of variability abstractions (Theorem 3). That is, if we are
able to verify properties on the abstract model family, we
may safely conclude that they also hold on the original
(unabstract) model family.

7.1 Experimental setup

All of our abstractions are applied using our fPromela
Reconfigurator (source-TO-source) transformation
tool3 as described in Section 6. We investigate improve-
ments in performance (Time) and memory consumption
(Space) on two benchmarks: MinePump and Elevator
family-models [11,12], that come with the installation
of SNIP. We do a case study on both benchmarks by
verifying a range of properties using SNIP and SPIN
model checkers. We show how various variability abstrac-
tions may be tailored for analysis of properties of the
MinePump and the Elevator.

All experiments were executed on a 64-bit Mac OS X
10.10 machine, IntelrCoreTM i7 CPU running at 2.3 GHz
with 8 GB memory. The performance numbers reported
(Time) constitute the median runtime of five independent
executions. For each experiment, we report: Time which
is the time to model check in seconds; and Space which
is the number of explored states plus the number of
re-explored states (this is equivalent to the number of
transitions fired). In the case of SNIP, the verification
time includes the times to parse the fPromela model,
to build the initial FTS, and to run the verification
procedure. In the case of SPIN, we measure the times
to generate a process analyser (pan) and to execute it.
We do not count the time for compiling pan, as it is due
to a design decision in SPIN rather than its verification
algorithm. The same measurement technique was used
in the experiments in [11,12].

7.2 Warming-up example: from infeasible to feasible
analysis

Combinatorically, the number of variant models grows
exponentially with the number of features, |F|, which
means that there is an inherent exponential blow-up in
the analysis time for the brute-force strategy, O(2|F|).
Consequently, for families with high variability, analysis

3 The fPromela Reconfigurator tool is available from: https:
//models-team.github.io/p3-tool/.

Fig. 8: The performance of “brute-force” family-based
model checking with SPIN as a function of the number
of features. The x-axis represents the number of features,
and the y-axis represents the verification time in seconds.

quickly becomes infeasible. They take too long time to
analyze.

As an experiment, we have tested the limits of family-
based model checking with SNIP and “brute force” (single-
system) model checking with SPIN, where all variants
of a given model family are verified one by one. We have
gradually added variability to the family-model in Fig. 6.
This was done by adding unconstrained optional features
and by sequentially composing gd statements guarded
by all existing features. For example, the fPromela
process foo with three features A, B, and C is:

int i := 0;
gd :: f.A ⇒ i++ :: else ⇒ skip dg;
gd :: f.B ⇒ i++ :: else ⇒ skip dg;
gd :: f.C ⇒ i++ :: else ⇒ skip dg;
assert(i≥ 0);

Already for |F| = 11 (for which |K| = 211 = 2, 048 vari-
ants) SNIP crashes with an out-of-memory error, whereas
analysis time to check the assertion using “brute force”
with SPIN becomes almost a minute. For |F| = 25, anal-
ysis time ascends to almost a year. Figure 8 depicts this
phenomenon. It shows the accumulated time (in seconds)
of using SPIN to “brute-force” verify the assertion “i ≥ 0”
on all individual variant models of the family-model in
Fig 6, sequentially, for increasing number of features, |F|.
On the other hand, if we apply the variability abstraction,
αjoin (confounding all configurations), prior to analysis,
we are able to verify the same assertion by only one
call to SPIN on the abstracted model in 0.03 seconds
for |F| = 11 and in 0.04 seconds for |F| = 25, effectively
eliminating the exponential blow up (cf. Objective O1).

7.3 Case studies: devising abstractions for properties

We perform case studies on two benchmarks: MinePump
and Elevator, by showing how various variability ab-
stractions can be tailored for their analysis.

7.3.1 MinePump

Characterization. The MinePump system was intro-
duced in the CONIC project [34]. Based on the original

https://models-team.github.io/p3-tool/
https://models-team.github.io/p3-tool/

Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions 13

unabstracted abstracted improvement
|F| |K| Time Space |α(K)| Time Space Time Space
4 16 0.98 s 67 k 1 0.03 s 18 k 33 × 3.8 ×
7 128 2.96 s 251 k 1 0.04 s 34 k 74 × 7.4 ×
9 512 6.05 s 523 k 1 0.05 s 57 k 121 × 9.2 ×
11 2,048 58.55 s 4,585 k 1 0.07 s 114 k 836 × 40.3 ×
12 4,096 — ?crash? — 1 0.09 s 171 k infeasible → feasible

Fig. 9: Verifying deadlock absence in MinePump for increasing levels of variability (without vs. with maximal
abstraction, α = αjoin, confounding all configurations).

system, an fPromela model was created in [12] as part
of the SNIP project. The fPromela MinePump family
contains about 200 LOC and 7 (non-mandatory) inde-
pendent optional features: Start, Stop, MethaneAlarm,
MethaneQuery, Low, Normal, and High, thus yielding 27

= 128 variants. Its FTS has 21,177 states and all variants
combined have 889,252 states. It consists of 5 communi-
cating processes: a controller, a pump, a watersensor,
a methanesensor, and a user. When activated, the con-
troller should switch on the pump when the water level
is high, but only if there is no methane in the mine.

Verification. We start by verifying the deadlock free-
dom property. Fig. 9 compares the effect (in terms of
both Time and Space) of analyzing the original (un-
abstracted) MinePump vs. analyzing it after it has
been variability abstracted using αjoin. Unabstracted
means running SNIP on MinePump; whereas abstracted
means running SPIN on αjoin(MinePump). Improve-
ment is the relative comparison of unabstracted vs. ab-
stracted. The rows of Fig. 9 represent different versions
of MinePump, with increasing levels of variability. The
“real” version has |K| = 128 variants. For the |K| = 16
version, we applied a projection to keep the four fea-
tures Start, Stop, MethaneAlarm, and High (eliminat-
ing features MethaneQuery, Low, and Normal). For the
|K| = 512 version, we turned implementation alternatives
(already present in the original MinePump, as comments)
into variability choices in the form of two new indepen-
dent features. Parts of the controller process exists with
and without race conditions (the former in comments); we
turned that into an optional feature, RaceCond. Similarly,
the watersensor process exists in two versions: standard
and alternative (the latter in comments); we turned that
into an optional feature, Standard. For |K| = 2, 048
and |K| = 4, 096, we inflated variability by adding in-
dependent optional features and gd statements to the
methanesensor process, preserving the overall behavior
of the process (differing only with respect to the value of
an otherwise uninteresting local variable, i).

Unsurprisingly, analysis Time and Space increase
exponentially with the number of features, O(|F|). How-
ever, the Time and Space it takes to verify the deadlock
absence in the abstracted model do not increase signif-
icantly with the number of variants, when using the

Φ property

ϕ0
(GF readCommand) ∧ (GF readAlarm) ∧
(GF readLevel)
Fairness: The system will infinitely often read
messages of various types.

ϕ1 Absence of deadlock.

ϕ2
G (¬pumpOn ∨ stateRunning)
If the pump is switched on, then the controller
state is “running”.

ϕ3

ϕ0 ⇒ (¬GF (¬pumpOn ∧¬methane ∧ highWater))
Assuming fairness (ϕ0), the pump is never
indefinitely off when the water level is high
and there is no methane.

ϕ4

G ((¬pumpOn ∧ lowWater ∧ F highWater) ⇒
(¬pumpOn U highWater))
When the pump is off and the water level is low
then the the pump will be switched off
until the water level is high again.

ϕ5
¬(GF pumpOn)
The pump cannot be switched on infinitely often

ϕ6

ϕ0 ⇒ ¬FG (pumpOn ∧ methane)
Assuming fairness (ϕ0), the system cannot be
in a state where the pump is on indefinitely
in the presence of methane.

Fig. 10: Properties for the MinePump (taken from [12]).

maximal abstraction, αjoin. For |K| = 2, 048 variants,
SNIP terminates after almost a minute (checking 4.6 mil-
lion transitions) whereas calling SPIN on the abstracted
system obtains the verification results after a mere 0.07
seconds visiting only 113, 775 transitions. For |K| = 4, 096
variants, SNIP crashes after 88 seconds exploring 6.3 mil-
lion transitions. SPIN, on the other hand, is capable of
analyzing the abstracted system in 0.09 seconds exploring
170, 670 transitions (cf. Objectives O1 and O2).

Now we continue by verification of some interesting
properties of MinePump. First, we consider four univer-
sal properties, ϕ1 to ϕ4 (taken from [12], see Fig. 10),
that are intended to be satisfied by all variants. Prop-
erty ϕ0 is an auxiliary fairness assumption used in ϕ3;
and then later in ϕ6. By applying the αjoin abstrac-
tion on the system, we can verify those properties ef-
ficiently by only one call to SPIN on the abstracted
family-model, αjoin(MinePump) which has only one con-

14 Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions

prop- unabstracted abstracted improvement
-erty |K| Time Space |α(K)| Time Space Time Space
ϕ1 128 2.96 s 251 k 1 0.04 s 34 k 74 × 7.4 ×
ϕ2 128 4.28 s 326 k 1 0.05 s 34 k 86 × 9.6 ×
ϕ3 128 6.37 s 441 k 1 0.09 s 161 k 71 × 2.7 ×
ϕ4 128 5.98 s 420 k 1 0.05 s 57 k 120 × 7.3 ×
ϕ5 128 3.20 s 207 k 3 0.11 s 12 k 29 × 16.6 ×
ϕ6 128 4.54 s 309 k 4 0.16 s 42 k 28 × 7.3 ×

Fig. 11: Verification of MinePump properties using tailored abstractions.

figuration, |αjoin(KMinePump)| = 1. The first four rows of
Fig. 11 organizes the results of maximally abstracting the
MinePump prior to verfication of properties, ϕ1 to ϕ4.
Consistent with our expectations and previous results
(cf. Fig. 9), maximal abstraction translates to massive
improvements in both Time and Space on a family-
model with many variants (here, |K| = 128). In fact,
model checking is between 71 and 120 times faster (cf.
Objective O2).

We now consider non-universal properties which are
preserved by some variants and violated by others: ϕ5
and ϕ6 (see Fig. 10). Property ϕ5 (concerning the pump
being switched on), is violated by all variants, 32 in
total, for which Start ∧ High is satisfied (since these
two features are required for the pump to be switched
on in the first place). Given sufficient knowledge of the
system and the property, we can easily tailor an abstrac-
tion for analyzing the system more effectively: First, we
calculate three projections of the MinePump family-
model: πStart∧High (corresponding to the above 32 con-
figurations), π¬Start (64 configurations), and π¬High (64
configurations). Second, we apply αjoin on all three pro-
jections. Third and finally, we invoke SPIN three times
to verify ϕ5 on each of them. For the first abstracted pro-
jection, αjoin(πStart∧High(MinePump)), SPIN correctly
identifies an “abstract” counter-example violating the
property, that is shared by all violating variants. For the
remaining abstracted projections, SPIN reports that ϕ5
is satisfied.

We now turn to ϕ6 (again involving the pump, this
time in the presence of methane). Since the features
Start and High are required for the pump to be on (as
in ϕ5), this violation now occurs when the MethaneAlarm
feature is disabled in a variant. Property ϕ6 is thus vio-
lated whenever Start∧High∧¬MethaneAlarm is satisfied
(corresponding to 16 variants, in total). As before, we
may concoct our abstraction: We first calculate (this time
four) projections of the system: πStart∧High∧¬MethaneAlarm,
π¬Start, π¬High, and πMethaneAlarm. We then apply αjoin

on all projections. Finally, we invoke SPIN (four times)
to verify φ6. We obtain that φ6 is violated by the first
abstracted projection along with an “abstract” counter-
example, shared by all violating products. Further, SPIN
finds that φ6 is satisfied for the remaining abstractions.

Overall, we can see that our approach is significantly
faster (cf. Objective O2). The second-last row of Fig. 11
shows that analysis time drops from 3.20 seconds when ϕ5
verified with SNIP, to 0.11 seconds when running SPIN
“brute-force” on our three abstracted projections. The last
row shows the results of a similar development for the
property, ϕ6. It takes 4.54 seconds using SNIP, but may
be verified by four “brute-force” invocations of SPIN in
only 0.16 seconds. Verification of both properties consti-
tute an almost 30 times speed up (using considerably less
memory).

We can also use αfignore abstraction to speed up the
family-based model checker itself (cf. Objective O3). For
property ϕ5, we call SNIP onαfignore

F\{Start,High}(MinePump),
and we obtain the same counter-examples as in the unab-
stracted case for the variants in Start ∧ High. However,
the verification time is reduced from 3.20 to 0.97 sec-
onds, and the number of examined transitions is reduced
from 207, 377 to 54, 376. Similarly, for property ϕ6, we
call SNIP on αfignore

F\{Start,High,MethaneAlarm}(MinePump) ob-
taining that ϕ6 is violated by products described with:
Start∧High∧¬MethaneAlarm. The verification time is
now reduced from 4.54 to 1.34 seconds, and the num-
ber of examined transitions is reduced from 308, 812 to
79, 450.

7.3.2 Elevator

Characterization. The Elevator was designed by
Plath and Ryan [40]. The corresponding fPromela
model was created in [11,17]. The fPromela Elevator
family contains about 300 LOC and 8 (non-mandatory)
independent optional features: Empty, Exec, OpenIfIdle,
Overload, Park, QuickClose, Shuttle, and TTFull, thus
yielding 28 = 256 variants. Its FTS has 58,945,690 states.
It consists of 3 communicating processes: a controller,
and two persons. It serves a number of floors (which is
four in our case) such that the priority is given to the
nearest floor in current direction movement.

Verification. We consider four properties [17], ϕ1 to
ϕ4, shown in Fig. 12. The property ϕ1 is satisfied by
all variants. Thus, by applying the αjoin abstraction on
Elevator, we can verify this property by only one call
to SPIN. The property ϕ2 (resp., ϕ3) is violated by prod-

Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions 15

Φ property

ϕ1
GF progress ⇒ (¬FG dopen)
The door should never remain open indefinitely.

ϕ2
¬F ((cb0 ∨ cb1 ∨ cb2 ∨ cb3) ∧
¬ (p0in ∧ p1in) ∧ dclosed)
It is impossible that cabin buttons are pressed
and nobody is inside.

ϕ3

¬F (p0in ∧ p1in ∧ dclosed))
There cannot be two persons in the elevator
at the same time.

ϕ4

GF (progress ∨ waiting) ⇒ (¬FG dopen)
The same as ϕ1 but accounting
for the waiting time.

Fig. 12: Properties for the Elevator.

ucts for which ¬Empty (resp., ¬Overload) is satisfied. We
can verify both by two calls to SPIN. For ϕ2, we verify
αjoin(π¬Empty(Elevator)) and αjoin(πEmpty(Elevator)).
For the first abstracted projection, SPIN reports an ’ab-
stract’ counter-example, whereas the second abstracted
projection satisfies ϕ2. In a similar way, we can verify
the property ϕ3 by constructing projections π¬Overload
and πOverload. The property ϕ4 (concerning that the door
never remains open indefinitely) is violated by prod-
ucts that satisfy: Park∨OpenIfIdle∨¬QuickClose. If
these features are present, then the lift may keep its
door indefinitely open since persons might keep push-
ing buttons indefinitely or stop. We use SPIN to ver-
ify satisfaction of ϕ4 against four models obtained by
applying αjoin on the following projections of Eleva-
tor: π¬Park∧¬OpenIfIdle∧QuickClose, πPark, πOpenIfIdle, and
π¬QuickClose. We obtain that ϕ4 is satisfied by the first
abstracted projection, and is violated by the remaining
three abstracted projections.

We can see in Fig. 13 that abstractions achieve impres-
sive speed-ups in both Time and Space. The verifications
are performed between 114 and 1570 times faster (cf. Ob-
jective O2). For the property ϕ2, the analysis with SNIP
ran more than 135 seconds until it eventually produced
an out-of-memory error, whereas with 2 calls to SPIN we
completed the verification in 0.35 seconds (cf. Objective
O1).

We are also able to use αfignore abstraction to speed
up verification with SNIP. For property ϕ3, we call SNIP
on αfignore

F\{Overload}(Elevator), which contains only 2 prod-
ucts, and we obtain that the Overload product satisfies
ϕ3 whereas ¬Overload violates ϕ3. The verification time
compared to the concrete model Elevator is reduced
from 197.23 to 6.14 seconds, and the number of examined
transitions is reduced from 33, 204, 216 to 896, 392 (cf.
Objective O3).

7.4 Discussion

In conclusion, by exploiting the knowledge of a family-
model and property, we may carefully devise variability
abstractions that are able to verify non-trivial properties
in only a few calls to SPIN.

Of course, much of the performance improvement is
due to the highly-optimized industrial-strength SPIN tool
compared to the SNIP research prototype. SPIN contains
many optimisation algorithms, which are result of more
than three decades research on advanced computer aided
verification. For example, partial order reduction, data-
flow analysis and statement merging are not implemented
in SNIP yet. Previous work attributes a factor of two
advantage for “brute force” approach with SPIN over
SNIP [12]. However, for models with more variability
(larger values of |F|), a constant factor will be dwarfed
by the inherent exponential blow up.

8 A Note on Automatic Verification

As we have discussed in Section 7.4, a user of our ap-
proach needs to have a good knowledge of a variational
model and property in order to manually devise vari-
ability abstractions that will enable efficient verification.
We now give an overview of an algorithm, which aims
to automate our verification approach. It is based on
an abstraction refinement procedure (ARP), which itera-
tively refines an abstract variational model until either a
genuine counter-example is found or the property satis-
faction is shown. The ARP for checking F |= [χ]φ, where
F=(S,Act,trans,I,AP,L,F,K, δ), is as follows.

1 Let α = αjoin be the initial abstraction used to build
α(F) and α(χ). Check α(F) |= [α(χ)]φ?

2 If the property is satisfied, then return that φ is satis-
fied for all products in K ∩ [[χ]].

3 Otherwise, if a spurious counter-example is found, find
the feature expression associated with its transitions
in F : ψ1 ∧ . . . ∧ ψn. Since the counter-example is
spurious, the formula ψ = (

∨
k∈K k)∧χ∧ψ1∧. . .∧ψn is

unsatisfiable. First, we find the minimal unsatisfiable
core ψc of ψ, which contains a subset of conjuncts in
ψ, such that ψc is still unsatisfiable and if we drop
any single conjunct in ψc then the result becomes
satisfiable. We group conjuncts in ψc in two groups
X and Y such that ψc = X ∧ Y = false. Then the
feature expression ψ′ is determined by means of Craig
interpolation [38]. Namely, the interpolant ψ′ is such
that: 1) X =⇒ ψ′, 2) ψ′ ∧ Y = false, 3) ψ′ refers
only to common variables of X and Y . Intuitively, we
can think of the interpolant ψ′ as a way of filtering
out irrelevant information from X. In particular, ψ′
summarizes and translates why X is inconsistent with
Y in their shared language. We generate F1 =π[[ψ′]](F)
and F2 =π[[¬ψ′]](F), and go to Step 1 to check F1 |=

16 Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions

prop- unabstracted abstracted improvement
-erty |K| Time Space |α(K)| Time Space Time Space
ϕ1 256 753.62 s 110 M 1 0.48 s 1.25 M 1570 × 88 ×
ϕ2 256 — ?crash? — 2 0.35 s 0.54 M infeasible → feasible
ϕ3 256 197.23 s 33.2 M 2 0.39 s 0.64 M 505 × 52 ×
ϕ4 256 63.94 s 9.13 M 4 0.56 s 0.65 M 114 × 14 ×

Fig. 13: Verification of Elevator properties using tailored abstractions.

[χ]φ for products in K1 = [[ψ′]]∩K and F2 |= [χ]φ for
products in K2 = [[¬ψ′]] ∩K.

4 Otherwise, if a genuine counter-example is found, find
the feature expression associated with its transitions
in F : ψ = ψ1 ∧ . . . ∧ ψn. Report that the property is
violated for products in K ∩ [[χ]] ∩ [[ψ]]. We generate
F ′ = π[[¬ψ]](F), and go to Step 1 to check F ′ |= [χ]φ
for products in K′ = [[¬ψ]] ∩K.

Example 7. Recall the FTS F = VendingMachine in
Fig. 2 with K = {{v, s}, {v, s, t, f}, {v, s, c}, {v, s, c, f}}.
Let us check the formula φ = G (selected =⇒ F open)
using the ARP. We first check αjoin(F) |= φ? Assume
that the spurious counter-example 1© pay−→ 2© change−→ 3© tea−→
6© serveTea−→ 7© take−→ 1© . . . is reported. The associated fea-
ture expression is: (v∧¬f)∧v∧t∧f . The minimal unsatis-
fiable core is: (v∧¬f)∧f , and the found interpolant is ¬f .
In this way, we have found that the feature f is respon-
sible for the spuriousness of the given counter-example.
Thus, in the next iteration we check αjoin(π[[¬f]](F)) |= φ
and αjoin(π[[f]](F)) |= φ, as explained in Example 4. ut

9 Related Work

In the last decade, researchers have introduced family-
based (lifted) analyses and verification techniques for
program families (software product lines). They work
at the family level and thus do not explicitly check all
variants, one by one (see [44] for survey). Family-based
techniques are able to pinpoint errors directly in the
family, as opposed to reporting errors in individual vari-
ants. We divide our discussion of related work into several
categories: family-based model checking on FTSs; abstrac-
tions for family-based model checking on FTSs; other
family-based model checking approaches; other family-
based abstractions; and family-based static analysis.

Family-based model checking on FTSs. Classen et
al. have proposed FTSs in [14,12] as the foundation
for behavioural specification and verification of varia-
tional systems. In [11], they show how the theory on
(explicit) family-based model checking algorithms for ver-
ifying FTSs against fLTL properties is implemented in
the SNIP model checker. In [13], Classen et al. present
symbolic family-based model checking algorithms for ver-
ifying FTSs against fCTL properties. The algorithms

are implemented as an extension of the NuSMV model
checker [8]. Variational models are specified using the
fSMV modelling language introduced by Plath and Ryan
[40], which is feature-oriented extension of the input
language of NuSMV. However, in contrast to SNIP, this
model checker reports a counter-example only for the first
violating product found. The FMC tool [42] is used for
family-based model checking of FTSs with a µ-calculus
variant, where FTSs are automatically transformed into
a process-algebraic model that can directly serve as input
for the FMC. In order to make all these approaches based
on FTSs more scalable abstractions need to be applied.

Abstractions for family-based model checking on
FTSs. Simulation-based abstraction for family-based
model checking was introduced in [16]. The concrete FTS
is related with its abstract version by defining a simula-
tion relation on the level of states (as opposed to Galois
connections here). Several abstract (and thus smaller)
models are induced by studying quotients of concrete
FTSs under such a simulation relation. Any behaviour of
the concrete FTS can be reproduced in its abstraction,
and therefore the abstraction preserves satisfiability of
LTL formulae. Only states and transitions that can be
simulated are reduced by this approach. However, this
approach [16] results in small model reductions and only
marginal efficiency gains of verifications times (the evalu-
ation reports reductions of 8-9%). Since abstractions are
applied directly on FTSs, the computation time for cal-
culating abstracted FTSs takes about 10% of the overall
verification time. This approach has been extended in [4],
where the definition of branching feature bisimulation
for FTSs is given. A minimization algorithm is also pre-
sented to compute, given an FTS, a minimal FTS that
is a branching feature bisimilar.

Variability-aware abstraction procedures based on
counterexample guided abstraction refinement (CEGAR)
have been proposed in [17]. Abstractions on FTSs are
introduced by using existential F-abstraction functions,
and simulation relation is used to relate different abstrac-
tion levels. Three types of FTSs abstractions are consid-
ered: state abstractions that only merge states, feature
abstractions that only modify the variability information,
and mixed abstractions that combine the previous two
types. Feature abstractions [17] are similar to ours since
they also aim to reduce variability specific information in
SPLs. However, there are many differences between them.

Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions 17

Different levels of precision of feature abstractions in [17]
are defined by simply enriching (resp., reducing) the sets
of variants for which transitions are enabled. In contrast,
our variability abstractions are capable to change not
only the feature expression labels of transitions but also
the sets of available features and valid configurations.
Moreover, the user can use those abstractions to express
various verification scenarios for their families. While the
abstractions in [17] are applied on FPGs, we apply our
abstractions as preprocessor transformations directly on
high-level modelling languages thus avoiding to generate
any intermediate concrete semantic model in the memory.

Other family-based model checking approaches.
One of the earliest approaches for modelling behavioral
variability is by using modal transition systems (MTSs)
[26,43] or variable I/O automata [35]. In MTSs, transi-
tions can be mandatory (“must”) or optional (“may”),
such that optional transitions are used to model variabil-
ity. Beek et al. [43] have implemented a model checking
tool, called VMC, for the specification and verification of
behavioral variability in product lines modelled as MTSs
with logical variability constraints, where the properties
are expressed as v-ACTL formulae. Lauenroth et al. [35]
have proposed an explicit CTL model checking algorithm
for product lines specified with variable I/O automata.

Process-algebraic approaches have also been proposed
for modelling and verifying the behaviour of product lines.
PL-CCS [29] is an extension of Milner’s process algebra
CCS, which is enriched with a variant operator as a means
to implement variability. Delta-CCS [36] is another delta-
oriented extension of CCS, in which variability is achieved
by decomposing the product line into a core process and
a set of delta modules that encapsulate change direc-
tives based on term rewriting semantics. Model checking
algorithms are also described in [29,36] for system fam-
ilies specified in both PL-CCS and Delta-CCS against
properties specified in modal µ-calculus.

Variability encoding [2] and configuration lifting [41]
are based on generating a family simulator which sim-
ulates the behaviour of all variants in the family. Both
approaches use a classical off-the-shelf model checker to
verify the generated family simulator, so that an erro-
neous violating variant can be reconstructed/decoded
from a found counter-example. A problem with these ap-
proaches is that they stop once a single counter-example
is found. Thus, they cannot be used to find the variants
that satisfy the given property. This also makes it difficult
to find which features are responsible for the violations.

An approach for family-based software model checking
using game semantics has been proposed in [22]. Specifi-
cally designed family-based model checking algorithms
are employed for verifying safety of #ifdef-based pro-
grams containing undefined components (free identifiers),
which are compactly represented using symbolic game
semantics models [21].

Other family-based abstractions. Thüm et. al. in
[46] use variability hiding to facilitate the efficient de-
ductive verification based on method contracts of two
dependent product lines (implemented using feature mod-
ules). They propose three strategies to hide features of
one product line for the other product line. The first two
strategies, namely false- and true-configuration, verify
only a subset of all possible configurations (where given
features are disabled or enabled) of the reused product
line, and thus they closely resemble to our projection op-
erator. The third strategy, hidden-configuration, removes
features by considering that the given features can be
both disabled and enabled. In this way, this strategy is
similar to our αfignore

A operator, which generates an over-
approximation of an FTS by assuming that the feature
A have both possible values.

Family-based Static Analysis. As mentioned before,
various lifted techniques have been proposed, which lift
existing analysis and verification techniques to work on
the level of families, rather than on the level of single
programs/systems. This includes lifted syntax checking
[33], lifted type checking [7,32], lifted data-flow analysis
[6,5], lifted theorem proving [45], etc.

A formal methodology for systematic derivation of
lifted data-flow (static) analyses for program families with
#ifdef-s is proposed in [39]. The method uses the calcu-
lational approach to abstract interpretation of Cousot [18]
in order to derive a directly operational lifted analysis. In
[24,25], an expressive calculus of variability abstractions
is also devised for deriving abstracted lifted data-flow
analyses. Such variability abstractions enable deliberate
trading of precision for speed in lifted data-flow analysis.
Hence, they tame the exponential blow-up caused by
the large number of features and variants in an program
family. We show the effectiveness of that approach by
evaluating two client data-flow analyses: reaching defini-
tions and uninitialized variables, on three real-world Java
program families. Here, we pursue this line of work by
adapting variability abstractions to lifted model checking
as opposed to data-flow analysis in [24]. Moreover, the
abstractions in [24] are directed at reducing the configura-
tion space |K| since the elements of the property domain
are |K|-sized tuples, whereas the abstractions defined
here aim at reducing the space of feature expressions
since the variability-sensitive information in FTSs, fLTL
formulae, and fPromela models is encoded by using
feature expressions.

10 Conclusion

We have proposed variability abstractions to derive ab-
stract model checking for families of related systems. The
abstractions are applied before semantic model genera-
tion directly on fPromela defined system-families as

18 Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions

source to source transformations. The evaluation con-
firms that interesting properties can be efficiently verified
in this way by only a few calls to SPIN. As a future work,
we plan to implement and experiment with the abstrac-
tion refinement procedure for automatic generation of
suitable abstractions.

References

1. Sven Apel, Don S. Batory, Christian Kästner, and Gunter
Saake. Feature-Oriented Software Product Lines - Con-
cepts and Implementation. Springer, 2013.

2. Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander
von Rhein, and Dirk Beyer. Detection of feature interac-
tions using feature-aware verification. In 26th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE 2011), pages 372–375, 2011.

3. Christel Baier and Joost-Pieter Katoen. Principles of
model checking. MIT Press, 2008.

4. Tessa Belder, Maurice H. ter Beek, and Erik P. de Vink.
Coherent branching feature bisimulation. In Proceedings
6th Workshop on Formal Methods and Analysis in SPL
Engineering, FMSPLE 2015, volume 182 of EPTCS, pages
14–30, 2015.

5. Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus
Brabrand, Paulo Borba, and Mira Mezini. Spllift: stati-
cally analyzing software product lines in minutes instead
of years. In ACM SIGPLAN Conference on PLDI ’13,
pages 355–364, 2013.

6. Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, Johnni
Winther, and Paulo Borba. Intraprocedural dataflow anal-
ysis for software product lines. Transactions on Aspect-
Oriented Software Development, 10:73–108, 2013.

7. Sheng Chen, Martin Erwig, and Eric Walkingshaw. An
error-tolerant type system for variational lambda calcu-
lus. In ACM SIGPLAN International Conference on
Functional Programming, ICFP’12, pages 29–40, 2012.

8. Alessandro Cimatti, Edmund M. Clarke, Fausto
Giunchiglia, and Marco Roveri. NUSMV: A new symbolic
model checker. STTT, 2(4):410–425, 2000.

9. Edmund M. Clarke, Orna Grumberg, and David E. Long.
Model checking and abstraction. ACM Trans. Program.
Lang. Syst., 16(5):1512–1542, 1994.

10. Andreas Classen, Quentin Boucher, and Patrick Heymans.
A text-based approach to feature modelling: Syntax and
semantics of TVL. Sci. Comput. Program., 76(12):1130–
1143, 2011.

11. Andreas Classen, Maxime Cordy, Patrick Heymans, Axel
Legay, and Pierre-Yves Schobbens. Model checking soft-
ware product lines with SNIP. STTT, 14(5):589–612,
2012.

12. Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens,
Patrick Heymans, Axel Legay, and Jean-François Raskin.
Featured transition systems: Foundations for verifying
variability-intensive systems and their application to LTL
model checking. IEEE Trans. Software Eng., 39(8):1069–
1089, 2013.

13. Andreas Classen, Patrick Heymans, Pierre-Yves
Schobbens, and Axel Legay. Symbolic model checking
of software product lines. In Proceedings of the 33rd

International Conference on Software Engineering, ICSE
2011, pages 321–330, 2011.

14. Andreas Classen, Patrick Heymans, Pierre-Yves
Schobbens, Axel Legay, and Jean-François Raskin. Model
checking lots of systems: efficient verification of temporal
properties in software product lines. In Proceedings
of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE 2010, pages
335–344, 2010.

15. Paul Clements and Linda Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley, 2001.

16. Maxime Cordy, Andreas Classen, Gilles Perrouin, Pierre-
Yves Schobbens, Patrick Heymans, and Axel Legay.
Simulation-based abstractions for software product-line
model checking. In Proceedings of the 34th International
Conference on Software Engineering, ICSE 2012, pages
672–682, 2012.

17. Maxime Cordy, Patrick Heymans, Axel Legay, Pierre-Yves
Schobbens, Bruno Dawagne, and Martin Leucker. Coun-
terexample guided abstraction refinement of product-line
behavioural models. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, (FSE-22), pages 190–201, 2014.

18. Patrick Cousot. The calculational design of a generic
abstract interpreter. In M. Broy and R. Steinbrüggen,
editors, Calculational System Design. NATO ASI Series
F. IOS Press, Amsterdam, 1999.

19. Krzysztof Czarnecki and Michal Antkiewicz. Mapping
features to models: A template approach based on su-
perimposed variants. In Generative Programming and
Component Engineering, 4th Int. Conf., GPCE 2005, vol-
ume 3676 of LNCS, pages 422–437, 2005.

20. Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract
interpretation of reactive systems. ACM Trans. Program.
Lang. Syst., 19(2):253–291, 1997.

21. Aleksandar S. Dimovski. Program verification using sym-
bolic game semantics. Theor. Comput. Sci., 560:364–379,
2014.

22. Aleksandar S. Dimovski. Symbolic game semantics for
model checking program families. In Model Checking
Software - 23nd International Symposium, SPIN 2016,
Proceedings, volume 9641 of LNCS, pages 19–37. Springer,
2016.

23. Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus
Brabrand, and Andrzej Wasowski. Family-based model
checking without a family-based model checker. In Model
Checking Software - 22nd International Symposium, SPIN
2015, Proceedings, volume 9232 of LNCS, pages 282–299.
Springer, 2015.

24. Aleksandar S. Dimovski, Claus Brabrand, and Andrzej
Wasowski. Variability abstractions: Trading precision for
speed in family-based analyses. In 29th European Con-
ference on Object-Oriented Programming, ECOOP 2015,
volume 37 of LIPIcs, pages 247–270. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015.

25. Aleksandar S. Dimovski, Claus Brabrand, and Andrzej
Wasowski. Variability abstractions: Trading precision for
speed in family-based analyses (extended version). CoRR,
abs/1503.04608, 2015.

26. Alessandro Fantechi and Stefania Gnesi. A behavioural
model for product families. In Proceedings of the 6th joint
meeting of the European Software Engineering Conference

Aleksandar S. Dimovski et al.: Efficient family-based model checking via variability abstractions 19

and the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2007, pages 521–
524. ACM, 2007.

27. María-del-Mar Gallardo, Jesús Martínez, Pedro Merino,
and Ernesto Pimentel. αspin: A tool for abstract model
checking. STTT, 5(2-3):165–184, 2004.

28. María-del-Mar Gallardo, Pedro Merino, and Ernesto Pi-
mentel. Refinement of LTL formulas for abstract model
checking. In Static Analysis, 9th International Sympo-
sium, SAS 2002, Proceedings, volume 2477 of LNCS, pages
395–410. Springer, 2002.

29. Alexander Gruler, Martin Leucker, and Kathrin D. Schei-
demann. Modeling and model checking software product
lines. In Formal Methods for Open Object-Based Dis-
tributed Systems, 10th IFIP WG 6.1 International Con-
ference, FMOODS 2008, Proceedings, volume 5051 of
LNCS, pages 113–131. Springer, 2008.

30. Gerard J. Holzmann. The SPIN Model Checker - primer
and reference manual. Addison-Wesley, 2004.

31. Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, and A. Spencer Peterson. Feature-
Oriented Domain Analysis (FODA) feasibility study.
Technical report, Carnegie-Mellon University Software
Engineering Institute, November 1990.

32. Christian Kästner, Sven Apel, Thomas Thüm, and Gunter
Saake. Type checking annotation-based product lines.
ACM Trans. Softw. Eng. Methodol., 21(3):14, 2012.

33. Christian Kästner, Paolo G. Giarrusso, Tillmann Ren-
del, Sebastian Erdweg, Klaus Ostermann, and Thorsten
Berger. Variability-aware parsing in the presence of lexi-
cal macros and conditional compilation. In Proceedings of
the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA 2011, part of SPLASH 2011, pages
805–824, 2011.

34. Jeff Kramer, Jeff Magee, Morris Sloman, and Andrew
Lister. Conic: An integrated approach to distributed
computer control systems. IEE Proc., 130(1):1–10, 1983.

35. Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model
checking of domain artifacts in product line engineering.
In ASE 2009, 24th IEEE/ACM International Conference
on Automated Software Engineering, 2009, pages 269–280.
IEEE Computer Society, 2009.

36. Malte Lochau, Stephan Mennicke, Hauke Baller, and Lars
Ribbeck. Incremental model checking of delta-oriented
software product lines. J. Log. Algebr. Meth. Program.,
85(1):245–267, 2016.

37. Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed
Bouajjani, and Saddek Bensalem. Property preserving
abstractions for the verification of concurrent systems.
Formal Methods in System Design, 6(1):11–44, 1995.

38. Kenneth L. McMillan. Applications of craig interpolants
in model checking. In Tools and Algorithms for the Con-
struction and Analysis of Systems, 11th International
Conference, TACAS 2005, Proceedings, volume 3440 of
LNCS, pages 1–12. Springer, 2005.

39. Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand,
and Andrzej Wasowski. Systematic derivation of cor-
rect variability-aware program analyses. Sci. Comput.
Program., 105:145–170, 2015.

40. Malte Plath and Mark Ryan. Feature integration using a
feature construct. Sci. Comput. Program., 41(1):53–84,
2001.

41. Hendrik Post and Carsten Sinz. Configuration lift-
ing: Verification meets software configuration. In 23rd
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2008), pages 347–350, 2008.

42. Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi,
and Franco Mazzanti. Using FMC for family-based analy-
sis of software product lines. In Proceedings of the 19th In-
ternational Conference on Software Product Line, SPLC
2015, pages 432–439. ACM, 2015.

43. Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi,
and Franco Mazzanti. Modelling and analysing variability
in product families: Model checking of modal transition
systems with variability constraints. J. Log. Algebr. Meth.
Program., 85(2):287–315, 2016.

44. Thomas Thüm, Sven Apel, Christian Kästner, Ina Schae-
fer, and Gunter Saake. A classification and survey of
analysis strategies for software product lines. ACM Com-
put. Surv., 47(1):6, 2014.

45. Thomas Thüm, Ina Schaefer, Martin Hentschel, and Sven
Apel. Family-based deductive verification of software
product lines. In Generative Programming and Compo-
nent Engineering, GPCE’12, pages 11–20. ACM, 2012.

46. Thomas Thüm, Tim Winkelmann, Reimar Schröter, Mar-
tin Hentschel, and Stefan Krüger. Variability hiding in
contracts for dependent software product lines. In Pro-
ceedings of the Tenth International Workshop on Variabil-
ity Modelling of Software-intensive Systems, 2016, pages
97–104. ACM, 2016.

