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A B S T R A C T

Fault localization aims to automatically identify the cause of an error in a program by localizing the error to a
relatively small part of the program. In this paper, we present a novel technique for automated fault localization
via error invariants inferred by abstract interpretation. An error invariant for a location in an error program
over-approximates the reachable states at the given location that may produce the error, if the execution of
the program is continued from that location. Error invariants can be used for statement-wise semantic slicing
of error programs and for obtaining concise error explanations. We use an iterative refinement sequence of
backward–forward static analyses by abstract interpretation to compute error invariants, which are designed
to explain why an error program violates a particular assertion.

Furthermore, we present a practical application of the fault localization technique for automatic repair of
programs. Given an erroneous program, we first use the fault localization to automatically identify statements
relevant for the error, and then repeatedly mutate the expressions in those relevant statements until a correct
program that satisfies all assertions is found. All other statements classified by the fault localization as
irrelevant for the error are not mutated in the program repair process. This way, we significantly reduce the
search space of mutated programs without losing any potentially correct program, and so locate a repaired
program much faster than a program repair without fault localization.

We have developed a prototype tool for automatic fault localization and repair of C programs. We
demonstrate the effectiveness of our approach to localize errors in realistic C programs, and to subsequently
repair them. Moreover, we show that our approach based on combining fault localization and code mutations
is significantly faster that the previous program repair approach without fault localization.
1. Introduction

Software programs play an important role in any aspect of our
lives today. They are employed in many security and safety-critical
systems in industries such as medicine, aeronautics, and automotive.
Software errors in such systems have already caused serious conse-
quences, including fatal accidents, shut down of vital systems, and
loss of money. As a result, debugging [1] has become one of the
most expensive and time consuming tasks of software development.
Debugging consists of three steps: detecting the error in a program;
localizing the error; and repairing the error. Many static analyzers and
verification tools [2–5] are today often applied to find errors in real-
world programs. They usually return an error report, which shows how
an assertion can be violated. However, the programmers still need to
process the error report, in order to isolate the cause of an error to a
manageable number of statements and variables that are relevant for
the error and whose change eliminates the error. Using this informa-
tion, they can subsequently repair the given program either manually
or automatically by running specialized program repair tools [6,7].
Therefore, fault localization [7–12] is an important step in debugging,
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and the automated fault localization can significantly improve manual
debugging and the usability of program verification tools.

Some of the most successful formal approaches for fault localization
are based on logic formulae [8,10,12]. They represent an error trace us-
ing an SMT formula and analyze it to find suspicious locations. Hence,
they assume the existence of error traces on input. The error traces
are usually obtained either from failing test cases or from counterex-
amples produced by external verification tools. These formula-based
approaches include using error invariants calculated by Craig inter-
polants and SMT queries [8,10], maximum satisfiability [12], and
weakest preconditions [9]. The above approaches reason about loops by
unrolling them and so are very sensitive to the degree of unrollment;
they can handle only properties expressed as SMT formulae; and the
phases of error detection and error localization are completely sepa-
rated. In order to address these problems of formula-based approaches,
we employ abstract interpretation [13,14] to define a fault local-
ization approach possessing the following distinctive characteristics:
full automation, support for unbounded loops and infinite number of
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execution paths, parametrization by a choice of an abstract domain, a
possibility to scale up to large programs, and a full integration of error
detection and error localization since the approach is directly applied
to programs and there is no need for error traces extracted from other
tools.

In this paper, we present a novel technique for automated fault
ocalization, which automatically generates concise error explanations
n the form of statements relevant for a given error that describe the
ssence of why the error occurred. In particular, we describe a fault
ocalization technique based on so-called error invariants inferred via
bstract interpretation. An error invariant for a given location in a
rogram captures states that may produce the error, that is, there may
e executions of the program continued from that location violating a
iven assertion. We observe that the same error invariants that hold for
onsecutive locations characterize statements in the program that are
rrelevant for the error. A statement that is enclosed by the same error
nvariant does not change the nature of the error. Hence, error invari-
nts can be used to find only relevant statements and information about
eachable states that helps to explain the cause of an error. They also
dentify the relevant variables whose values should be tracked when
xecuting the program. The obtained relevant statements constitute the
o-called statement-wise semantic slicing of the error program, which can
e changed (repaired) to make the entire program correct.

Abstract interpretation [13,14] is a general theory for approxi-
ating the semantics of programs. It has been successfully applied

o deriving computable and approximated static analysis that infer
ynamic properties of programs, due to its soundness guarantee (all
onfirmative answers are indeed correct) and scalability (with a good
rade-off between precision and cost). In this paper, we focus on apply-
ng abstract interpretation to automate fault localization via inferring
rror invariants. More specifically, we use a combination of back-
ard and forward refining analyses based on abstract interpretation

o infer error invariants from an error program. Each next iteration
f backward–forward analyses produces more refined error invariants
han the previous iteration. Finally, the error invariants found in the
ast iteration are used to compute a slice of the error program that
ontains only relevant statements for the error.

The backward (over-approximating) numerical analysis is used for
omputing the necessary preconditions of violating the target assertion,
hus reducing the input state space at the initial location that needs fur-
her exploration. Error invariants are constructed by going backwards
tep-by-step starting at the property violation, i.e. by propagating the
egated assertion backwards from the end of the program. The negated
ssertion represents an error state space at the assertion (final) location.
hen there is a precision loss caused by merging the branches of an
f statement, we collect in a set of predicates the branching condition
f that conditional. Subsequently, the forward (over-approximating)
umerical analysis of a program with reduced abstract input state space
t the initial location is employed to refine error invariants in all
ocations, thus also refining (reducing) the abstract error state space at
he assertion (final) location. Based on the inferred error invariants, we
an find the relevant statements and relevant variables for the assertion
iolation. Initially, in the first iteration, both analyses are performed
n a base abstract domain (e.g., intervals, octagons, polyhedra). In
he subsequent iterations, we use the set of predicates generated by
he previous backward analysis to design a binary decision diagram
BDD) abstract domain functor, which can express disjunctive proper-
ies with respect to the given set of predicates. A decision node in a
DD abstract element stores a predicate, and each leaf node stores an
bstract value from a base abstract domain under specific evaluation
esults of predicates. When the obtained set of predicates as well as
he abstract error state sub-space stay the same over two iterations,
he iterative process stops and reports the inferred error invariants.
therwise, the refinement process continues by performing backward–

orward analyses on a BDD abstract domain based on the refined set of
2

redicates as well as on a reduced error state sub-space at the assertion
(final) location. The BDD abstract domain and the reduced error state
sub-space enable our analyses in the subsequent iterations to focus on
smaller state sub-spaces, i.e. partitionings of the total state space, in
each of which the program may involve fewer disjunctive or non-linear
behaviors and thus the analyses may produce more precise results.

Finally, we present an interesting application of our approach for
fault localization to automatic program repair. Program repair is de-
fined to be a code transformation, where the repaired transformed
program satisfies a given specification (e.g., assertion). This repre-
sents an important problem since even if an error is identified in
the verification phase, the manual repair is a difficult time-consuming
task that requires the close knowledge of the program. Automated
program repair has gained popularity due to its potential to reduce
the manual effort by automatically suggesting repairs for given errors.
Recently, several successful tools for automated program repair were
proposed [6,15–17] by using various formal techniques ranging from
symbolic execution to deductive reasoning. They are extensively exam-
ined in software engineering as a way to efficiently maintain software
systems. However, the high computational complexity of automati-
cally generated repairs remains a great barrier to the adoption of this
technology in practice.

In this paper, we combine our technique for fault localization
and the mutation-based program repair [7,16]. Given an erroneous
program, our fault localization approach suggests statements in the
program that are relevant for the given error, and the mutation-based
program repair algorithm [7,16] then attempts to change (mutate)
those statements in order to eliminate the error. The mutation-based
repair algorithm [7,16] generates mutated programs (mutants) by using
a predefined set of syntactic changes (mutations) applied to original
program code. Thus, we can apply some syntactic changes to arithmetic
operators (e.g., replacing + by -), Boolean operators (e.g., replacing
∧ by ∨), relational operators (e.g., replacing < by ≤), etc. The repair
algorithm goes through an iterative generate-and-verify procedure,
where the generate phase produces a mutant and the verify phase
checks if the mutant is correct. The iterative procedure is implemented
in an incremental manner, where the learned information in one iter-
ation is re-used in the following one. By applying only mutations to
statements relevant for the error as identified by the fault localization,
we significantly narrow down the search space of all possible mutants,
thus speeding up the original repair algorithm without any precision
loss.

We have implemented our abstract interpretation-based approach
for fault localization of C programs in a prototype tool. It takes as
input a C program with an assertion, and returns a set of statements
whose replacement can eliminate the error. The tool uses the numerical
abstract domains (e.g., intervals, octagons, polyhedra) from the APRON
library [18], and the BDD abstract domains from the BDDAPRON
ibrary [19]. BDDAPRON uses any abstract domain from the APRON

library for the leaf nodes. The tool also calls the Z3 SMT solver [20]
to compute the error invariants from the information inferred via
abstract interpretation-based analyses. Moreover, we have integrated
our fault localization tool with the AllRepair tool [7,16] for repairing C
programs. We discuss a set of C programs from the literature, SV-COMP
and TCAS suites that demonstrate the usefulness of our tools to discover
the precise cause of the error and to repair them.

In summary, this work makes the following contributions:

(1) We define error invariants as abstract representations of the reason
why the program may go wrong if it is continued from that
location;

(2) We propose iterative abstract interpretation-based analyses to com-
pute error invariants of a program. They are used to identify
statements and program variables that are relevant for the fault

in the program;



Journal of Computer Languages 80 (2024) 101288A.S. Dimovski

a

t
i
F

v
𝑖

Fig. 1. program1.

(3) We show how our fault localization technique can be incorporated
into a mutation-based repair algorithm for reducing its mutant
search space;

(4) We have implemented the proposed approaches for fault localiza-
tion and program repairs in prototype tools;

(5) We evaluate our approaches for fault localization and program
repairs on a set of C benchmarks.

This work extends and revises the SAS conference article [21]. Ad-
ditional material that did not appear in the conference version include:
(1) an application of our fault localization approach to automatic pro-
gram repair; (2) proof sketches for the main formal results in the work
(Propositions 1 and 5); (3) additional illustrations, explanations, and
examples; (4) more evaluation results including experiments for our
program repair approach, more benchmarks, and more performance
results. The paper proceeds with motivating examples that illustrate
our new approach for automated fault localization and its applications
to program repair. The programming language, its concrete and ab-
stract (forward and backward) analyses are introduced in Section 3.
Section 4 presents our novel algorithms based on iterative abstract
analyses for inferring error invariants. In Section 5, we combine our
fault localization approach and the mutation-based program repair
algorithm. Section 6 describes the implementation and the evaluation
of our approaches on benchmarks taken from the literature, SV-COMP
and TCAS suites. Finally, we discuss related work and conclude.

2. Motivating examples

We demonstrate our technique for fault localization using the illus-
trative examples in Figs. 1, 2, and 3. The first example, program1,
in Fig. 1 shows a program code that violates the assertion (𝑦 < 𝑛) for
ll values of the parameter 𝑛, since 𝑦 = 𝑛 + 1 holds at the end of the

program. A static analysis of this program will establish the assertion
violation. However, the static analysis returns a full list of invariants in
all locations of the program, including details that are irrelevant for the
specific error. Similarly, other verification tools will also report many
irrelevant details for the error (e.g. full execution paths).

Our fault localization technique, denoted FaultLoc, works as
follows. We begin with the first iteration of the backward–forward
abstract analyses. The backward analysis defined over the Polyhedra
domain starts with the negated assertion (𝑦 ≥ 𝑛) at loc. 4⃝. By
propagating it backwards, it infers the preconditions: (𝑦 ≥ 𝑛) at loc.
3⃝, (𝑧 ≥ 𝑛) at loc. 2⃝, and ⊤ at loc. 1⃝. The subsequent forward analysis

starts with invariant ⊤ at loc. 1⃝, and then infers invariants: (𝑧 = 𝑛+1)
at loc. 2⃝, (𝑧 = 𝑛+ 1 ∧ 𝑦 = 𝑛+ 1) at loc. 3⃝, and (𝑧 = 𝑛+ 2 ∧ 𝑦 = 𝑛+ 1) at
loc. 4⃝. Note that we use boxed code, such as 𝑧 = 𝑛 + 1 , to highlight
he inferred error invariants by our technique. The computed error
nvariants after one iteration of backward–forward analysis, shown in
ig. 1, are: ⊤ , 𝑧 = 𝑛 + 1 , 𝑦 = 𝑛 + 1 , 𝑦 = 𝑛 + 1 in locs. 1⃝ to 4⃝,
3

Fig. 2. program2 (𝐵≡ (𝑦 < 𝟶)).

Fig. 3. program3.

respectively. Note how the results of backward analysis are refined
using the forward analysis to compute more precise error invariants.
For example, the error invariant at loc. 3⃝, 𝑦 = 𝑛 + 1 , is obtained by

refining the backward precondition (𝑦 ≥ 𝑛) using the forward invariant
(𝑧 = 𝑛+1∧𝑦 = 𝑛+1) at loc. 3⃝. By analyzing the inferred error invariants,
we get a set of relevant statements that are potential indicators of the
error. Since the error invariants at locs. 3⃝ and 4⃝ are the same, the
statement at loc. 3⃝, 𝑧 ∶= 𝑧 + 1, is dropped from the resulting program
slice. That is, the program will remain erroneous even if 𝑧 ∶= 𝑧 + 1
is removed from the program. Hence, this statement is irrelevant for
the error. In effect, the computed program slice of relevant statements
for the error consists of statements at locs. 1⃝ and 2⃝. A fix of the error
program would be to change some of those statements. Error invariants
also provide information about which variables are responsible for the
error. After executing the statement at loc. 2⃝, 𝑦 ∶= 𝑧, we can see from
the error invariant 𝑦 = 𝑛 + 1 that 𝑧 is no longer relevant and only 𝑛
and 𝑦 has to be considered to the end of the program.

Consider program2 in Fig. 2 taken from [8]. The assertion is
iolated if main is called with a value less than 42 for the parameter
𝑛𝑝𝑢𝑡. In this case, the assignment at loc. 4⃝ is executed and the assigned

value 0 to 𝑥 makes the assertion fail. The backward analysis in the first
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iteration of our procedure starts with the negated assertion (𝑥 ≤ 0), and
it infers that the precondition of then branch is ⊤ and the precondition
of else branch is (𝑥 ≤ 0). Their join ⊤ is the precondition before
he if statement at loc. 3⃝, which is then propagated back to loc.
1 . Hence, there is a precision loss in analyzing the if statement,
o we record the if condition (𝑦 < 0), denoted as 𝐵, in the set of
redicates P. As a result of this precision loss, the error invariants
nferred after first backward–forward iteration are: ⊤ for locs. 1⃝–
4 , (𝑥 = 1) for locs. 5⃝, 7⃝, and ⊥ for loc. 6⃝. In effect, we would

drop the statement at loc. 2⃝, 𝚢 ∶= 𝑖𝑛𝑝𝑢𝑡 − 42, as irrelevant for the error.
However, the second iteration is performed on the refined BDD abstract
domain defined over the Polyhedra leaf domain and the set P = {𝐵 ≡
(𝑦 < 0)} of predicates for decision nodes. Thus, we can analyze the if
statement more precisely and obtain more precise analysis results. From
the obtained error invariants, shown in Fig. 2, we can see that statement
at loc. 2⃝ is now relevant for the error, while statement at loc. 1⃝,
𝑥 ∶= 1, is encompassed with the same invariants, so it can be dropped
from the resulting program slice as irrelevant for the error. Consider a
variant of program2, denoted program2-a, where the assertion in
loc. 7⃝ is changed to (𝑥 ≤ 0). The single backward analysis infers very
imprecise results by reporting that all statements are relevant for the
error. However, our approach FaultLoc based on the refined BDD
abstract domain finds more precise results inferring that the whole if
tatement (locs. 3⃝– 6⃝) is irrelevant for the error since it cannot set 𝑥
o a positive value that contradicts the assertion.

Consider program3 in Fig. 3. The error due to the violation of
he assertion occurs when main is called with a value greater than 10
or the parameter 𝑛. In this case, at the end of the while loop, the
alue of 𝑥 becomes equal to 𝑛, thus conflicting the given assertion. Our
echnique for fault localization works as follows. In the first iteration,
he backward analysis starts with the invariant (𝑥 ≥ 11) at the assertion

location 7⃝. After computing the error invariants at the end of the
first backward–forward iteration, we infer the more precise invariant
(𝑛 ≥ 11∧𝑥 = 𝑛) at loc. 7⃝. We also obtain the error invariant ⊤ for locs.
4 , 5⃝, and 6⃝, which would make the body of while irrelevant for

the error. Since the error state space at loc. 7⃝ is refined from (𝑥 ≥ 11)
o (𝑛 ≥ 11 ∧ 𝑥 = 𝑛) after the first iteration, we continue with the second
teration on the reduced error state sub-space. Therefore, the second
teration starts with the invariant (𝑛 ≥ 11 ∧ 𝑥 = 𝑛) at loc. 7⃝. It infers

the error invariants shown in Fig. 3. We can see that statements at locs.
2⃝ and 5⃝ are redundant and can be eliminated as irrelevant. Moreover,

the error invariants imply that variables 𝑛 and 𝑥 are relevant, while 𝑦
s completely irrelevant for the assertion violation.

Finally, we illustrate how the inferred results by our FaultLoc
pproach can be applied to automatic program repair. One of the most
uccessful automatic program repair tools, called AllRepair [16], ap-
lies a predefined set of syntactic mutations to all program expressions
ound in statements that can be changed in the program (e.g., assertions
annot be changed), and then explores the search space of all mutants
o find a correct one. However, the space of mutants grows very rapidly
s the number of statements that can be changed grows. We want to use
ur approach in order to reduce the search space of mutants without
ropping possibly correct programs.

Consider program1 in Fig. 1. Our approach has identified the
tatement 𝑧 ∶= 𝑧+1 at loc. 3⃝ as irrelevant for the error, while the
tatements 𝑧 ∶= 𝑛+1 at loc. 1⃝ and 𝑦 = 𝑧 at loc. 2⃝ are relevant
or the error. Therefore, the mutation-based program repair tool will
utate only program expressions (which are right-hand sides (RHSs)

f assignments) 𝑛+1 and 𝑧 found in the relevant statements, whereas
he program expression 𝑧+1 in the irrelevant statement will not be
utated at all. We use the following pre-defined mutations: a variable/-
arameter can be replaced by any other parameter in the program; an
rithmetic operator from the set {+,−, ∗,%,÷} can be replaced by any

other operator from the same set; an integer constant can be increased
and decreased by one; and a relational operator from the set {<, ≤
, >, ≥} can be replaced by any other operator from the same set.
4

This way, if we mutate expressions 𝑛+1, 𝑧, and 𝑧+1, we would obtain
2 ∗ 32 ∗ 52 = 900 mutants in the original AllRepair tool. However,
f we combine fault localization with the AllRepair, we will mutate
nly expressions 𝑛+1 and 𝑧, thus reducing the space of mutants to
∗ 3 ∗ 5 = 30. Note that AllRepair does not explore the space of all
ossible mutants in general. When a possible solution is found, then all
upersets of the found solutions (i.e., mutants that contain at least the
utations in the solutions) are not further explored. Thus, the explored

earch space and the running time have also been reduced from 546 and
.645 s using AllRepair to 24 and 0.005 + 0.367 = 0.372 s using
aultLoc+AllRepair. Both approaches generate the same repaired
rograms, such as the one obtained by replacing statement 𝑧 ∶= 𝑛+1 at
oc. 1⃝ with 𝑧 ∶= 𝑛−1.

Consider program2-a in Fig. 2, where the assertion is (𝑥 ≤ 0). We
ave established that statements at loc. 1⃝ and 2⃝ are relevant for the
rror so the corresponding expressions 1 and 𝑖𝑛𝑝𝑢𝑡−42 will be mutated,
hereas the if statement is irrelevant so it will not be mutated. In
ffect, the total space of mutants (resp., the explored space of mutants
nd the running time) is reduced from 3240 (resp., 1536 and 8.187 s)
or AllRepair to 45 (resp., 31 and 0.022 + 0.474 = 0.496 s) for
aultLoc+AllRepair. Both approaches generate the same repaired
rogram, where the statement 𝑥 ∶= 1 at loc. 1⃝ is changed to 𝑥 ∶= 0.

Consider program3 in Fig. 3. Our approach has classified state-
ents at locs. 2⃝ and 5⃝ as irrelevant for the error, so they will not be
utated by the program repair algorithm. In effect, the explored/total
utant search space and running time will be reduced from 1051∕21600

nd 22.546 s for AllRepair to 65∕720 and 1.461 s for Fault-
oc+AllRepair. Both approaches repair the program by replacing
𝑥 < 𝑛) at loc. 3⃝ with (𝑥 > 𝑛), and 𝑥 ∶= 𝑥+1 at loc. 4⃝ with 𝑥 ∶= 𝑥−1.

. The programming language: Syntax and semantics

In this section, we describe a small language that will be used
o illustrate our work as well as its concrete and abstract semantics.
oreover, we show how to compute error invariants from a program’s

emantics as a way to rule out irrelevant statements for the error in a
rogram.

.1. Syntax

We consider a simple C-like sequential non-deterministic program-
ing language. The program variables 𝑉 𝑎𝑟 are statically allocated and

he only data type is the set Z of mathematical integers. The control
ocations before and after each statement are associated to unique
yntactic labels 𝑙 ∈ L.

(𝑠∈𝑆𝑡𝑚) ∶∶= 𝚜𝚔𝚒𝚙 ∣𝚡 ∶=𝑎𝑒 ∣𝑠; 𝑠 ∣𝚒𝚏 (𝑏𝑒) 𝚝𝚑𝚎𝚗 𝑠 𝚎𝚕𝚜𝚎 𝑠

∣𝚠𝚑𝚒𝚕𝚎 (𝑏𝑒) 𝚍𝚘 𝑠 ∣𝚊𝚜𝚜𝚎𝚛𝚝(𝑏𝑒)

𝑒 (𝑎𝑒∈𝐴𝐸𝑥𝑝) ∶∶= 𝑛 ∣ [𝑛, 𝑛′] ∣ 𝚡 ∈ 𝑉 𝑎𝑟 ∣ 𝑎𝑒⊕𝑎𝑒,

𝑒 (𝑏𝑒∈𝐵𝐸𝑥𝑝) ∶∶= 𝑎𝑒⋈𝑎𝑒 ∣ ¬𝑏𝑒 ∣ 𝑏𝑒 ∧ 𝑏𝑒 ∣ 𝑏𝑒 ∨ 𝑏𝑒

here 𝑛 ranges over integers Z, [𝑛, 𝑛′] over integer intervals, 𝚡 over
rogram variables 𝑉 𝑎𝑟, and ⊕ ∈ {+, −, ∗, ∕}, ⋈ ∈ {<, ≤, =, ≠}.
ithout loss of generality, we assume that a program is a sequence of

tatements followed by a single assertion. That is, a program 𝑝 ∈ 𝑃𝑟𝑜𝑔
s of the form: 𝑙𝑖𝑛∶𝑠;𝑙𝑎𝑠𝑠∶ 𝚊𝚜𝚜𝚎𝚛𝚝(𝑏𝑒𝑎𝑠𝑠).

.2. Concrete semantics

A store 𝜎 ∈ 𝛴 = 𝑉 𝑎𝑟 → Z is a mapping from program variables to
alues. The semantics of arithmetic expressions [[𝑎𝑒]] ∶ 𝛴 → (Z) (resp.,
oolean expressions [[𝑏𝑒]] ∶ 𝛴 → ({true, false})) is the set of possible
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integer (resp., Boolean) values for expression 𝑎𝑒 (resp., 𝑏𝑒) in a store 𝜎.
Thus,

[[𝑛]] 𝜎 = {𝑛}, [[ [𝑛, 𝑛′] ]] 𝜎 = {𝑛,… , 𝑛′}, [[𝚡]] 𝜎 = {𝜎(𝚡)},

[𝑎𝑒0 ⊕ 𝑎𝑒1]] 𝜎 = {𝑛0 ⊕ 𝑛1 ∣ 𝑛0 ∈ [[𝑎𝑒0]] 𝜎, 𝑛1 ∈ [[𝑎𝑒1]] 𝜎}

[[𝑎𝑒0 ⋈ 𝑎𝑒1]] 𝜎 = {𝑛0 ⋈ 𝑛1 ∣ 𝑛0 ∈ [[𝑎𝑒0]] 𝜎, 𝑛1 ∈ [[𝑎𝑒1]] 𝜎}

[[¬𝑏𝑒]] 𝜎 = {¬𝑡 ∣ 𝑡 ∈ [[𝑏𝑒]] }

[[𝑏𝑒0 ∧ 𝑏𝑒1]] 𝜎 = {𝑡0 ∧ 𝑡1 ∣ 𝑡0 ∈ [[𝑏𝑒0]] 𝜎, 𝑡1 ∈ [[𝑏𝑒1]] 𝜎}

[[𝑏𝑒0 ∨ 𝑏𝑒1]] 𝜎 = {𝑡0 ∨ 𝑡1 ∣ 𝑡0 ∈ [[𝑏𝑒0]] 𝜎, 𝑡1 ∈ [[𝑏𝑒1]] 𝜎}

We define a necessary precondition (backward) semantics and an in-
ariance (forward) semantics on complete lattice
L ↦ (𝛴), ⊆̇, ∪̇, ∩̇, 𝜆𝑙.∅, 𝜆𝑙.𝛴⟩ by induction on the syntax of programs.

The dotted operators ⊆̇, ∪̇, ∩̇ defined on L ↦ (𝛴) are obtained by
point-wise lifting of the corresponding operators ⊆,∪,∩ defined on
(𝛴). The above semantics work on functions from labels to sets of
stores. The necessary precondition semantics backtracks from an user-
supplied property to its origin [22], so it associates to each label 𝑙 ∈ L a
necessary precondition in the form of a set of possible stores 𝑆 ∈ (𝛴)
that may lead to the execution of the user-supplied property. The stores
resulting from the necessary precondition semantics ⃖⃖⃖⃖⃖⃖[[𝑠]] ∶ (𝛴) → (𝛴)
are built backwards: each function ⃖⃖⃖⃖⃖⃖[[𝑠]] takes as input a set of stores 𝑆
at the final label of 𝑠 and outputs a set of possible stores before 𝑠 from
which stores in 𝑆 may be reached after executing 𝑠. The invariance
semantics [13] associates to each label 𝑙 ∈ L an invariant in the
form of a set of possible stores 𝑆 ∈ (𝛴) that may arise each time
the execution reaches the label 𝑙 from some initial store. The stores
resulting from the invariance semantics ⃖⃖⃖⃖⃖⃗[[𝑠]] ∶ (𝛴) → (𝛴) are built
forward: each function ⃖⃖⃖⃖⃖⃗[[𝑠]] takes as input a set of stores 𝑆 at the initial
label of 𝑠 and outputs a set of possible stores reached after executing 𝑠
from 𝑆. The complete definitions of functions ⃖⃖⃖⃖⃖⃖[[𝑠]] and ⃖⃖⃖⃖⃖⃗[[𝑠]] are given in
Fig. 4. Note that a while statement is given in a standard fixed-point
formulation [13] using the fix-point operator 𝚕𝚏𝚙, where the fixed-
point functionals ⃖⃖𝜙, ⃖⃗𝜙 ∶ (𝛴) → (𝛴) accumulate possible stores after
another while iteration from a set of stores 𝑋 going in a backward
and forward direction, respectively.

In this way, we can collect the set of possible stores denoting
necessary preconditions, written 𝙲𝚘𝚗𝚍 , and invariants, written 𝙸𝚗𝚟 , at
each label 𝑙 ∈ L of a program 𝑙𝑖𝑛∶𝑠;𝑙𝑎𝑠𝑠∶ 𝚊𝚜𝚜𝚎𝚛𝚝(𝑏𝑒𝑎𝑠𝑠). We assume that
at the assertion label 𝑙𝑎𝑠𝑠 the possible stores are  ∈ (𝛴), whereas
at the initial label 𝑙𝑖𝑛 are  ∈ (𝛴). That is, 𝙲𝚘𝚗𝚍 (𝑙𝑎𝑠𝑠) =  and
𝙸𝚗𝚟 (𝑙𝑖𝑛) = . For each statement 𝑙∶𝑠𝑙′ , the set 𝙲𝚘𝚗𝚍 (𝑙) ∈ (𝛴) (resp.,
𝙸𝚗𝚟 (𝑙′) ∈ (𝛴)) of possible necessary preconditions (resp., invariants)
at initial label 𝑙 (resp., final label 𝑙′), are:

⃖⃖⃖⃖⃖⃖ ′ ′ ⃖⃖⃖⃖⃖⃗
5

𝙲𝚘𝚗𝚍 (𝑙) = [[𝑠]] 𝙲𝚘𝚗𝚍 (𝑙 ), 𝙸𝚗𝚟 (𝑙 ) = [[𝑠]] 𝙸𝚗𝚟 (𝑙) o
In the case of while statement 𝑙∶𝚠𝚑𝚒𝚕𝚎 (𝑏𝑒) 𝚍𝚘 {𝑙𝑏∶𝑠;𝑙
′
𝑏 } 𝑙′ , necessary

precondition at final label of the loop body 𝑙′𝑏 is: 𝙲𝚘𝚗𝚍 (𝑙′𝑏) = {𝜎 ∈
𝙲𝚘𝚗𝚍 (𝑙′) ∣ false ∈ [[𝑏𝑒]] 𝜎}, whereas invariants at labels 𝑙 and 𝑙𝑏 are:
𝙸𝚗𝚟 (𝑙)=𝚕𝚏𝚙 ⃖⃗𝜙 and 𝙸𝚗𝚟 (𝑙𝑏)={𝜎∈𝙸𝚗𝚟 (𝑙) ∣ true ∈ [[𝑏𝑒]] 𝜎}.

We now define the error invariant map 𝙴𝚛𝚛𝙸𝚗𝚟 ∶ L → (𝛴) as
follows. Let  = {𝜎 ∈ 𝛴 ∣ [[𝑏𝑒𝑎𝑠𝑠]] 𝜎 = false} be a set of stores in which
𝚊𝚜𝚜𝚎𝚛𝚝(𝑏𝑒𝑎𝑠𝑠) is not valid. Given a set of stores 𝑆 ∈ (𝛴), we define
the set of unconstrained variables in 𝑆 as 𝑈𝑉 𝑎𝑟𝑆 = {𝑥 ∈ 𝑉 𝑎𝑟 ∣ ∀𝑦 ∈
𝑉 𝑎𝑟∖{𝑥}, (∃𝑛 ∈ Z.∃𝜎[𝑦 ↦ 𝑛] ∈ 𝑆 ⟹ ∀𝑛′ ∈ Z.∃𝜎′[𝑥 ↦ 𝑛′][𝑦 ↦ 𝑛] ∈ 𝑆)}.

he set of constrained variables of 𝑆 is 𝐶𝑉 𝑎𝑟𝑆 = 𝑉 𝑎𝑟∖𝑈𝑉 𝑎𝑟𝑆 . That is, a
variable 𝑥 ∈ 𝑉 𝑎𝑟 is constrained in 𝑆 if it cannot take any value from Z in
the stores of 𝑆 in any context (i.e., for any assignment of values to other
variables). Given a store 𝜎 ∈ 𝛴, let 𝜎 ∣𝑉 𝑎𝑟′ denote the restriction of 𝜎 to
the sub-domain 𝑉 𝑎𝑟′ ⊆ 𝑉 𝑎𝑟, such that 𝜎 ∣𝑉 𝑎𝑟′ (𝑥) = 𝜎(𝑥) for all 𝑥 ∈ 𝑉 𝑎𝑟′.
Given a set of stores 𝑆 ∈ (𝛴), define 𝑆 ∣𝑉 𝑎𝑟′= {𝜎 ∣𝑉 𝑎𝑟′ ∣ 𝜎 ∈ 𝑆}. Then,
we define:

𝙴𝚛𝚛𝙸𝚗𝚟 (𝑙) = {𝜎 ∈ 𝙲𝚘𝚗𝚍 (𝑙) ∣ 𝜎 ∣𝐶𝑉 𝑎𝑟𝙲𝚘𝚗𝚍 (𝑙)
∈ 𝙸𝚗𝚟𝙲𝚘𝚗𝚍 (𝑙𝑖𝑛)(𝑙) ∣𝐶𝑉 𝑎𝑟𝙲𝚘𝚗𝚍 (𝑙)

}

(1)

That is, the error invariants at label 𝑙 is the set of necessary precondi-
tions 𝙲𝚘𝚗𝚍 (𝑙) restricted with respect to the constrained variables from
𝐶𝑉 𝑎𝑟𝙲𝚘𝚗𝚍 (𝑙) with the values they obtain in the set 𝙸𝚗𝚟𝙲𝚘𝚗𝚍 (𝑙𝑖𝑛)(𝑙) of
invariants at 𝑙 obtained by taking as the initial set of stores 𝙲𝚘𝚗𝚍 (𝑙𝑖𝑛).
For example, let 𝑉 𝑎𝑟 = {𝑥, 𝑦, 𝑧}, 𝙲𝚘𝚗𝚍 (𝑙) = {𝜎 ∈ 𝛴 ∣ 𝜎(𝑥) = 𝜎(𝑦)}, and
𝙸𝚗𝚟𝙲𝚘𝚗𝚍 (𝑙𝑖𝑛)(𝑙) = {[𝑥 ↦ 2, 𝑦 ↦ 2, 𝑧 ↦ 3]}. Then, we have 𝐶𝑉 𝑎𝑟𝙲𝚘𝚗𝚍 (𝑙) =
{𝑥, 𝑦}, 𝑈𝑉 𝑎𝑟𝙲𝚘𝚗𝚍 (𝑙) = {𝑧}, and 𝙴𝚛𝚛𝙸𝚗𝚟 (𝑙) = {[𝑥 ↦ 2, 𝑦 ↦ 2, 𝑧 ↦ 𝑛] ∣ 𝑛 ∈
}.

We now show that the error invariants enable us to locate irrelevant
tatements for the error as the ones that do not change the occurrence
f the error if they are replaced by 𝚜𝚔𝚒𝚙.

roposition 1. Let 𝑝[𝑙1∶−𝑙2 ] be a program with a missing hole that
represents a statement between labels 𝑙1 and 𝑙2, and let  be a set of
final error states. Let 𝙴𝚛𝚛𝙸𝚗𝚟 and 𝙴𝚛𝚛𝙸𝚗𝚟

′ be the error invariants for
the programs 𝑝[𝑙1∶𝑠𝑙2 ]1 and 𝑝[𝑙1∶𝚜𝚔𝚒𝚙 𝑙2 ], respectively. If 𝙴𝚛𝚛𝙸𝚗𝚟 (𝑙1) =
𝚛𝚛𝙸𝚗𝚟 (𝑙2), then 𝙴𝚛𝚛𝙸𝚗𝚟 (𝑙) = 𝙴𝚛𝚛𝙸𝚗𝚟

′(𝑙) for all 𝑙 ∈ L.

roof Sketch. The proof is by structural induction on statements
that can be inserted in the hole − of 𝑝[−]. We consider the case

f assignment 𝚡 ∶=𝑎𝑒. Let 𝙴𝚛𝚛𝙸𝚗𝚟 be the error invariants inferred

1 𝑝[𝑙1∶𝑠𝑙2 ] is a complete program in which statement 𝑠 is inserted at the place
f hole.



Journal of Computer Languages 80 (2024) 101288A.S. Dimovski

n
𝛼
(
r

for 𝑝[𝑙1∶𝑠𝑙2 ]. Since 𝙴𝚛𝚛𝙸𝚗𝚟 (𝑙1) = 𝙴𝚛𝚛𝙸𝚗𝚟 (𝑙2), the variable x must
be unconstrained in 𝙲𝚘𝚗𝚍 (𝑙1) and 𝙲𝚘𝚗𝚍 (𝑙2) due to the definition of
𝙴𝚛𝚛𝙸𝚗𝚟 (𝑙) (see Eq. (1)). Therefore, the assignment 𝚡 ∶=𝑎𝑒 has no effect
on 𝙲𝚘𝚗𝚍 and 𝙴𝚛𝚛𝙸𝚗𝚟 due to the definition of ⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖[[𝚡 ∶= 𝑎𝑒]] (see Fig. 4).
Note that ⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖[[𝚡 ∶= 𝑎𝑒]]𝑆 = 𝑆 when 𝚡 is unconstrained in 𝑆. That is,
𝙲𝚘𝚗𝚍 (𝑙1) = 𝙲𝚘𝚗𝚍 (𝑙2). Hence, we will obtain the same 𝙲𝚘𝚗𝚍 and
𝙴𝚛𝚛𝙸𝚗𝚟 for 𝑝[𝑙1∶𝚡 =𝑎𝑒 𝑙2 ] and 𝑝[𝑙1∶𝚜𝚔𝚒𝚙 𝑙2 ]. Similarly, we handle the
other cases. □

However, the necessary precondition semantics ⃖⃖⃖⃖⃖⃖[[𝑠]] and 𝙲𝚘𝚗𝚍 , the
invariance semantics ⃖⃖⃖⃖⃖⃗[[𝑠]] and 𝙸𝚗𝚟 , as well as the error invariants
𝙴𝚛𝚛𝙸𝚗𝚟 are not computable since our language is Turing complete. In
the following, we present their sound decidable abstractions by means
of abstract domains.

3.3. Abstract semantics

We now present computable abstract analyses that over-
approximate the concrete semantics [13,14]. We consider an abstract
domain (D, ⊑D), such that a concretization-based abstraction
⟨(𝛴), ⊆⟩ 𝛾D

←←←←←←←←←←←←←←←←←←⟨D, ⊑D⟩
2 exists that works only with a (monotonic) con-

cretization function 𝛾D ∶ D → (𝛴) expressing the meaning of abstract
elements from D in terms of concrete elements from (𝛴). We assume
that the abstract domain D is equipped with sound operators for
ordering ⊑D, least upper bound (join) ⊔D, greatest lower bound (meet)
⊓D, bottom ⊥D, top ⊤D, widening ▿D, and narrowing ▵D, as well as
sound transfer functions for assignments 𝙰𝚂𝚂𝙸𝙶𝙽D ∶ 𝑆𝑡𝑚 ×D → D, tests
𝙵𝙸𝙻𝚃𝙴𝚁D ∶ 𝐵𝐸𝑥𝑝 × D → D, and backward assignments 𝙱 − 𝙰𝚂𝚂𝙸𝙶𝙽D ∶
𝑆𝑡𝑚×D → D. We let 𝚕𝚏𝚙# denote an abstract fix-point operator, which
is derived using widening ▿D and narrowing ▵D operators [14]. They
enforce convergence of the abstract fix-point operator 𝚕𝚏𝚙#, such that
it over-approximates the concrete lfp. Finally, the concrete domain is
abstracted using ⟨L → (𝛴), ⊆̇⟩ �̇�D

←←←←←←←←←←←←←←←←←←⟨L → D, ⊑̇⟩.
For each statement 𝑠, its abstract necessary precondition semantics

⃖⃖⃖⃖⃖⃖[[𝑠]]♯ and its abstract invariance semantics ⃖⃖⃖⃖⃖⃗[[𝑠]]♯ are defined as mappings
D ↦ D. The complete definitions of functions ⃖⃖⃖⃖⃖⃖[[𝑠]]♯ and ⃖⃖⃖⃖⃖⃗[[𝑠]]♯ are given
in Fig. 5. For a while loop, 𝚕𝚏𝚙♯ ⃖⃖ ⃖⃖𝜙♯ and 𝚕𝚏𝚙♯ ⃖⃖⃖⃗𝜙♯ are the limits of the
increasing chains:

𝑦0 = 𝙵𝙸𝙻𝚃𝙴𝚁D(¬𝑏𝑒, 𝑑), 𝑦𝑛+1 = 𝑦𝑛▿D
⃖⃖ ⃖⃖𝜙♯(𝑦𝑛) for backward analysis

𝑦0 = 𝑑, 𝑦𝑛+1 = 𝑦𝑛▿D
⃖⃖⃖⃗𝜙♯(𝑦𝑛) for forward analysis

Suppose that at the assertion label 𝑙𝑎𝑠𝑠 the abstract element is 𝑑 ∈ D,
whereas at the initial label 𝑙𝑖𝑛 is 𝑑 ∈ D. Thus, 𝙲𝚘𝚗𝚍♯𝑑 (𝑙𝑎𝑠𝑠) = 𝑑 and
𝙸𝚗𝚟

♯
𝑑
(𝑙𝑖𝑛) = 𝑑 . For a statement 𝑙∶𝑠𝑙′ , abstract element 𝙲𝚘𝚗𝚍♯𝑑 (𝑙) (resp.,

𝙸𝚗𝚟
♯
𝑑
(𝑙′)) of necessary preconditions (resp., invariants) at initial label

𝑙 (resp., final label 𝑙′), are:

𝙲𝚘𝚗𝚍
♯
𝑑
(𝑙) = ⃖⃖⃖⃖⃖⃖[[𝑠]]♯ 𝙲𝚘𝚗𝚍♯𝑑 (𝑙

′), 𝙸𝚗𝚟
♯
𝑑
(𝑙′) = ⃖⃖⃖⃖⃖⃗[[𝑠]]♯ 𝙸𝚗𝚟♯𝑑 (𝑙)

In the case of while statement 𝑙∶𝚠𝚑𝚒𝚕𝚎 (𝑏𝑒) 𝚍𝚘 {𝑙𝑏∶𝑠;𝑙
′
𝑏 } 𝑙′ , neces-

sary precondition at label 𝑙′𝑏 is: 𝙲𝚘𝚗𝚍♯𝑑 (𝑙
′
𝑏) = 𝙵𝙸𝙻𝚃𝙴𝚁D(¬𝑏𝑒, 𝙲𝚘𝚗𝚍

♯
𝑑
(𝑙′)),

whereas invariants at labels 𝑙 and 𝑙𝑏 are: 𝙸𝚗𝚟♯𝑑 (𝑙)=𝚕𝚏𝚙♯ ⃖⃖⃖⃗𝜙♯, 𝙸𝚗𝚟♯𝑑 (𝑙𝑏)=
𝙵𝙸𝙻𝚃𝙴𝚁D(𝑏𝑒, 𝙸𝚗𝚟

♯
𝑑
(𝑙)).

The soundness of abstract semantics follows from the soundness of
the abstract domain D [13,14].

Proposition 2. Let  = 𝛾D(𝑑 ) and  = 𝛾D(𝑑 ). For any 𝑙 ∈ L, we have:
𝙲𝚘𝚗𝚍 (𝑙) ⊆ 𝛾D(𝙲𝚘𝚗𝚍

♯
𝑑
(𝑙)) and 𝙸𝚗𝚟 (𝑙) ⊆ 𝛾D(𝙸𝚗𝚟

♯
𝑑
(𝑙)).

2 Concretization-based abstraction is a relaxation of the known Galois con-
ection abstraction that is equipped with two monotonic functions: abstraction
and concretization 𝛾. However, some abstract domains often used in practice

e.g., Polyhedra domain [23]) do not enjoy Galois connection, but we can still
eason about their soundness through the concretization function 𝛾 and the
6

relaxed concretization-based abstraction [14].
Algorithm 1: AbsAnalysis(𝑠, 𝑑𝑒𝑟𝑟,D)
Input: Statement 𝑠, error state 𝑑𝑒𝑟𝑟, abstract domain D
Output: Error invariants 𝙴𝚛𝚛𝙸𝚗𝚟

♯
𝑑𝑒𝑟𝑟

, refined error state 𝑑′𝑒𝑟𝑟,
predicates set P

1 𝙲𝚘𝚗𝚍
♯
𝑑𝑒𝑟𝑟

,P ∶= ⃖⃖⃖⃖⃖⃖[[𝑠]]♯ 𝑑𝑒𝑟𝑟 ;

2 𝑑𝑖𝑛 ∶= 𝙲𝚘𝚗𝚍
♯
𝑑𝑒𝑟𝑟

(𝑙𝑖𝑛) ;

3 if (𝑑𝑖𝑛 = ⊥D) then {𝙴𝚛𝚛𝙸𝚗𝚟♯𝑑𝑒𝑟𝑟 ∶= 𝙲𝚘𝚗𝚍
♯
𝑑𝑒𝑟𝑟

; 𝑑′𝑒𝑟𝑟 ∶= ⊥D; P ∶= ∅ }
;

4 if (𝑑𝑖𝑛 ≠ ⊥D) then
5 𝙸𝚗𝚟

♯
𝑑𝑖𝑛

∶= ⃖⃖⃖⃖⃖⃗[[𝑠]]♯ 𝑑𝑖𝑛;

6 𝙴𝚛𝚛𝙸𝚗𝚟
♯
𝑑𝑒𝑟𝑟

∶= MinSupport(𝙸𝚗𝚟♯𝑑𝑖𝑛 ⊓D 𝙲𝚘𝚗𝚍
♯
𝑑𝑒𝑟𝑟

, 𝙲𝚘𝚗𝚍♯𝑑𝑒𝑟𝑟 ) ;

7 𝑑′𝑒𝑟𝑟 ∶= 𝙴𝚛𝚛𝙸𝚗𝚟
♯
𝑑𝑒𝑟𝑟

(𝑙𝑎𝑠𝑠)

8 return 𝙴𝚛𝚛𝙸𝚗𝚟
♯
𝑑𝑒𝑟𝑟

, 𝑑′𝑒𝑟𝑟,P;

Polyhedra abstract domain. The abstract domain D can be instantiated
with different numerical abstract domains including Intervals [13], Oc-
tagons [14], and Polyhedra [23]. They differ in precision and computa-
tional complexity. Each domain employs data structures and algorithms
specific to the shape of properties it represents and manipulates. In this
work, we will mainly use the Polyhedra domain due to its precision.
The Polyhedra domain [23], denoted as ⟨𝑃 , ⊑𝑃 ⟩, is a fully relational
numerical abstract domain, which allows manipulating conjunctions
of linear inequalities (constraints) of the form 𝛼1𝚡1 + ⋯ + 𝛼𝑛𝚡𝑛 ≥ 𝛽,
where x1, …, x𝑛 are variables and 𝛼𝑖, 𝛽 ∈ Q (rationals). The abstract
operations are defined in [23].

A property element is represented as a conjunction of linear con-
straints given in the matrix form ⟨|𝐀, �⃗�|⟩ which consists of a matrix
𝐀 ∈ Q𝑚×𝑛 and a vector �⃗� ∈ Q𝑚, where 𝑛 is the number of variables
and 𝑚 is the number of constraints. We present some operations. The
concretization function is:

𝛾𝑃 (⟨|𝐀, �⃗�|⟩) = {𝐯 ∈ Q𝑛 ∣ 𝐀 ⋅ 𝐯 ≥ �⃗�}

The meet ⊓𝑃 and the widening ∇𝑃 are defined as:

⟨|𝐀1,𝐛1|⟩⊓𝑃 ⟨|𝐀2,𝐛2|⟩= ⟨|

(𝐀1
𝐀2

)

,
(𝐛1
𝐛2

)

|⟩

⟨|𝐀1,𝐛1|⟩∇𝑃 ⟨|𝐀2,𝐛2|⟩= {𝑐 ∈ ⟨|𝐀1,𝐛1|⟩ ∣ ⟨|𝐀2,𝐛2|⟩⊑𝑃 {𝑐}}

where 𝑐 represents one constraint from ⟨|𝐀1,𝐛1|⟩. 𝙵𝙸𝙻𝚃𝙴𝚁𝑃 handles
precisely affine inequality tests by adding them to the input polyhedra.

𝙵𝙸𝙻𝚃𝙴𝚁𝑃 (
∑

𝑖
𝛼𝑖𝚡𝑖 ≥ 𝛽, ⟨|𝐀, �⃗�|⟩) = ⟨|

(

𝐀
𝛼1 … 𝛼𝑛

)

,
(

�⃗�
𝛽

)

|⟩

In all other cases, 𝙵𝙸𝙻𝚃𝙴𝚁𝑃 performs the sound identity operation.
Likewise, 𝙰𝚂𝚂𝙸𝙶𝙽𝑃 handles exactly affine assignments, and it performs
the sound non-deterministic assignment for all other (non-affine) cases.
The soundness of the abstract semantics based on Polyhedra is proved
in [23].

4. Abstract error invariants

In this section, we formalize our idea for using iterative abstract
analysis to infer abstract error invariants. First, we present one iteration
of the backward–forward analysis for generating abstract error invari-
ants. Then, we introduce our procedure for iterative abstract analysis.
Finally, we present the BDD abstract domain that is used to refine
inferred error invariants.

4.1. Abstract analysis
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Sound abstract error invariants can be computed automatically by
ackward abstract interpretation, 𝙲𝚘𝚗𝚍♯𝑑 , and forward abstract interpre-

tation, 𝙸𝚗𝚟♯𝑑 . Both analyses are parameterized by an abstract domain D
specifying the considered approximated properties 𝑑 ∈ D. In this work,
we combine backward and forward abstract analyses to generate for
each label the constraints, called (abstract) error invariants, that describe
states which are reachable from the input and may cause the target
assertion fail.

The AbsAnalysis(𝑠, 𝑑𝑒𝑟𝑟,D) procedure is given in Algorithm 1.
It takes as input a statement 𝑠, a target abstract error state 𝑑𝑒𝑟𝑟,
and a chosen abstract domain D. First, we call a backward abstract
analysis ⃖⃖⃖⃖⃖⃖[[𝑠]]♯ 𝑑𝑒𝑟𝑟 (Line 1), which computes the necessary precondi-
tions 𝙲𝚘𝚗𝚍

♯
𝑑𝑒𝑟𝑟

of statement 𝑠. Additionally, the backward analysis
computes a set of predicates P by selecting branch conditions of
if statements, where precision loss is observed. Given a conditional
𝑙∶𝚒𝚏 (𝑏𝑒) 𝚝𝚑𝚎𝚗 𝑙𝑡𝑡∶𝑠𝑡𝑡 𝚎𝚕𝚜𝚎

𝑙𝑓𝑓 ∶𝑠𝑓𝑓 , the precondition in 𝑙 is obtained by
joining the preconditions found in the then 𝑙𝑡𝑡 and else branches 𝑙𝑓𝑓 .
If those preconditions are not equal, that is 𝙲𝚘𝚗𝚍

♯
𝑑𝑒𝑟𝑟

(𝑙𝑡𝑡) ≠ 𝙲𝚘𝚗𝚍
♯
𝑑𝑒𝑟𝑟

(𝑙𝑓𝑓 ),
then we collect the corresponding branch condition 𝑏𝑒 in P since some
precision loss occurs. Subsequently, we check the precondition found
at the initial label 𝑑𝑖𝑛 = 𝙲𝚘𝚗𝚍

♯
𝑑𝑒𝑟𝑟

(𝑙𝑖𝑛) (Lines 2,3,4). If 𝑑𝑖𝑛 = ⊥D (which
means there is no concrete input state that violates the assertion), the
assertion must be valid and the procedure terminates with no further
computations (Line 3). Otherwise, a forward analysis ⃖⃖⃖⃖⃖⃗[[𝑠]]♯ 𝑑𝑖𝑛 is started
to refine the inferred 𝙲𝚘𝚗𝚍

♯
𝑑𝑒𝑟𝑟

(𝑙) and the abstract error state 𝑑𝑒𝑟𝑟 (Line
5). It takes as input the statement 𝑠 and the input abstract state 𝑑𝑖𝑛, and
computes invariants 𝙸𝚗𝚟

♯
𝑑𝑖𝑛

in all labels. The (abstract) error invariants
map 𝙴𝚛𝚛𝙸𝚗𝚟

♯
𝑑𝑒𝑟𝑟

is then generated using 𝙲𝚘𝚗𝚍
♯
𝑑𝑒𝑟𝑟

and 𝙸𝚗𝚟
♯
𝑑𝑖𝑛

as follows
Line 6): for any 𝑙 ∈ L

𝚛𝚛𝙸𝚗𝚟
♯
𝑑𝑒𝑟𝑟

(𝑙) = MinSupport(𝙸𝚗𝚟♯𝑑𝑖𝑛 (𝑙) ⊓D 𝙲𝚘𝚗𝚍
♯
𝑑𝑒𝑟𝑟

(𝑙), 𝙲𝚘𝚗𝚍♯𝑑𝑒𝑟𝑟 (𝑙)) (2)

where MinSupport is minimal support set. The procedure returns as
outputs 𝙴𝚛𝚛𝙸𝚗𝚟

♯
𝑑𝑒𝑟𝑟

, refined abstract error state 𝙴𝚛𝚛𝙸𝚗𝚟
♯
𝑑𝑒𝑟𝑟

(𝑙𝑎𝑠𝑠), and set
P.

We now show how the MinSupport is computed [24].

Definition 3. Let 𝑃 = {𝑝1,… , 𝑝𝑛} and 𝑝′1 ∧⋯ ∧ 𝑝′𝑘 be linear constraint
formulas over program variables, such that 𝑝1 ∧ ⋯ ∧ 𝑝𝑛 ⊧ 𝑝′1 ∧ ⋯ ∧ 𝑝′𝑘.
A subset 𝑃 ′ ⊆ 𝑃 supports the inference ⋀

𝑝𝑖∈𝑃 𝑝𝑖 ⊧ 𝑝′1 ∧ ⋯ ∧ 𝑝′𝑘 iff
⋀

𝑝𝑗∈𝑃 ′ 𝑝𝑗 ⊧ 𝑝′1 ∧⋯∧𝑝′𝑘. A support set 𝑃 ′ is minimal iff no proper subset
of 𝑃 ′ can support the inference.

For 𝑃 ⊧ 𝑝′1 ∧ ⋯ ∧ 𝑝′𝑘, let the MinSupport(𝑃 , 𝑝′1 ∧ ⋯ ∧ 𝑝′𝑘) denote the
′ ′
7

set of minimal supporting conjuncts in 𝑃 that imply 𝑝1 ∧ ⋯ ∧ 𝑝𝑘. An i
implementation of MinSupport through unsatisfiability cores is available
in existing SMT solvers (e.g., Z3 [20]) for many theories such as linear
arithmetic. That is, we ask the SMT solver to find the unsatisfiability
core of ⋀

𝑝𝑖∈𝑃 𝑝𝑖 ∧ ¬(𝑝′1 ∧ ⋯ ∧ 𝑝′𝑘) (which is negation of ⋀

𝑝𝑖∈𝑃 𝑝𝑖 ⟹

(𝑝′1 ∧ ⋯ ∧ 𝑝′𝑘)). The conjuncts in 𝑃 that are part of this unsatisfiability
core represent a minimal support set for (𝑝′1 ∧⋯ ∧ 𝑝′𝑘).

Example 4. Suppose that at a given program location the precondition
(𝑥 ≥ 0) is inferred by the backward analysis, while the invariant (𝑥 =
∧𝑧 = 𝑦+1) is inferred using the refined forward analysis. The formulas
1 ∶ 𝑥 = 1, 𝑝2 ∶ 𝑧 = 𝑦 + 1 together imply the formula 𝑝′ ∶ 𝑥 ≥ 0. By

checking the unsatisfiability core of the formula 𝑝1 ∧ 𝑝2 ∧ ¬𝑝′, we can
find that the subset {𝑝1} suffices to establish 𝑝′, and thus {𝑝1 ∶ 𝑥 = 1}
represents a minimal support set. □

We assume that the elements of the abstract domain are finite con-
junctions of linear constraints over program variables. The application
of MinSupport removes the redundant conjuncts from the invariants in
𝙸𝚗𝚟

♯
𝑑𝑖𝑛

(𝑙) ⊓D 𝙲𝚘𝚗𝚍
♯
𝑑𝑒𝑟𝑟

(𝑙). We can now show the soundness of 𝙴𝚛𝚛𝙸𝚗𝚟♯𝑑𝑒𝑟𝑟 .

Proposition 5. Let  =𝛾D(𝑑 ). For 𝑙 ∈ L, 𝙴𝚛𝚛𝙸𝚗𝚟 (𝑙) ⊆ 𝛾D(𝙴𝚛𝚛𝙸𝚗𝚟
♯
𝑑
(𝑙)).

roof Sketch. By definitions in Eqs. (1) and (2), 𝙴𝚛𝚛𝙸𝚗𝚟 and 𝙴𝚛𝚛𝙸𝚗𝚟
♯
𝑑

re obtained by refining 𝙲𝚘𝚗𝚍 and 𝙲𝚘𝚗𝚍
♯
𝑑

using results from 𝙸𝚗𝚟

nd 𝙸𝚗𝚟
♯
𝑑

(where  = 𝙲𝚘𝚗𝚍 (𝑑𝑖𝑛) and  = 𝛾D(𝑑 )), respectively. By
sing the soundness of 𝙲𝚘𝚗𝚍

♯
𝑑

(Proposition 2), we have 𝙴𝚛𝚛𝙸𝚗𝚟 (𝑙) ⊆

𝚘𝚗𝚍 (𝑙) ⊆ 𝛾D(𝙲𝚘𝚗𝚍
♯
𝑑
(𝑙)) for 𝑙 ∈ L. This means that 𝙲𝚘𝚗𝚍

♯
𝑑

can be
sed as sound error invariants albeit very imprecise (see the procedure
aultLoc_Single in Section 6). By using the soundness of 𝙸𝚗𝚟

♯
𝑑

Proposition 2), that is 𝙸𝚗𝚟 (𝑙) ⊆ 𝛾D(𝙸𝚗𝚟
♯
𝑑
(𝑙)), and definitions of

𝚛𝚛𝙸𝚗𝚟 in Eq. (1) and 𝙴𝚛𝚛𝙸𝚗𝚟
♯
𝑑

in Eq. (2), we have 𝙴𝚛𝚛𝙸𝚗𝚟 (𝑙) ⊆

D(𝙴𝚛𝚛𝙸𝚗𝚟
♯
𝑑
(𝑙)) for 𝑙∈L. □

.2. Iterative abstract analysis

The AbsAnalysis(𝑠, 𝑑𝑒𝑟𝑟,D) procedure may produce very impre-
ise abstract error invariants due to the over-approximation. One of
he major sources of imprecision is that the most commonly used base
bstract domains D (intervals, octagons, polyhedra) have limitations
n expressing disjunctive and non-linear properties, which are common

n programs. These domains can only express a conjunction of linear
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Algorithm 2: FaultLoc(𝑝,D)
Input: Program 𝑝 ≡𝑙𝑖𝑛∶ 𝑠;𝑙𝑎𝑠𝑠∶ assert(𝑏𝑒𝑎𝑠𝑠), abstract domain D
Output: Program slice 𝑝′

1 P ∶= ∅; P′ ∶= ∅; 𝑑𝑒𝑟𝑟 ∶= ⊥D; 𝑑′𝑒𝑟𝑟 ∶= FILTERD(¬𝑏𝑒𝑎𝑠𝑠, ⊤D); A ∶=
D ;

2 while (P≠P′) or (𝑑𝑒𝑟𝑟≠𝑑′𝑒𝑟𝑟) do
3 P ∶= P′; 𝑑𝑒𝑟𝑟 ∶= 𝑑′𝑒𝑟𝑟 ;
4 𝙴𝚛𝚛𝙸𝚗𝚟

♯
𝑑𝑒𝑟𝑟

, 𝑑′𝑒𝑟𝑟,P
′ ∶= AbsAnalysis(𝑠, 𝑑𝑒𝑟𝑟,D) ;

5 if (𝑑′𝑒𝑟𝑟=⊥D) then return skip ;
6 if (𝑑′𝑒𝑟𝑟≠⊥D) then D ∶= BD(P′,A) ;
7 if (𝑇 𝑖𝑚𝑒𝑜𝑢𝑡) then break ;

8 return 𝑆𝑙𝑖𝑐𝑒(𝑠, 𝙴𝚛𝚛𝙸𝚗𝚟♯𝑑𝑒𝑟𝑟 );

constraints over program variables. To address these issues, we propose
an iterative abstract analysis, wherein the refinement process makes use
of the predicates P inferred at the joins of if statements as well as the
educed abstract error state 𝑑𝑒𝑟𝑟. In particular, we use a BDD abstract
omain functor [25–27], denoted as BD(P,A), which can characterize

disjunctions of elements from domain A. A decision node in the BDD
bstract domain stores a predicate from P, and a leaf node stores
n abstract element from the base abstract domain A under specific
valuation results of predicates found in decision nodes up to the given
eaf. We refer to Section 4.3 for detailed description of the BDD domain.

The overall FaultLoc(𝑝,D) procedure is shown in Algorithm 2.
he procedure is called with the following parameters: a program 𝑝 of
he form 𝑙𝑖𝑛∶𝑠;𝑙𝑎𝑠𝑠∶ 𝚊𝚜𝚜𝚎𝚛𝚝(𝑏𝑒𝑎𝑠𝑠), and a base abstract domain D. Initially,

we call AbsAnalysis(𝑠, 𝙵𝙸𝙻𝚃𝙴𝚁D(¬𝑏𝑒𝑎𝑠𝑠, ⊤D),D) with the negated
assertion ¬𝑏𝑒𝑎𝑠𝑠 as error state space 𝑑𝑒𝑟𝑟 in order to infer error invariants
𝙴𝚛𝚛𝙸𝚗𝚟

♯
𝑑𝑒𝑟𝑟

, a refined abstract error sub-space 𝑑′𝑒𝑟𝑟, and predicate set
P′ (Line 4). If the refinement process is enabled, that is, the newly
obtained P′ and 𝑑′𝑒𝑟𝑟 are not the same as P and 𝑑𝑒𝑟𝑟 from the previous
iteration (Line 2), the call to AbsAnalysis is repeated again with
refined parameters 𝑑′𝑒𝑟𝑟 and BD(P′,A) (Line 6), where A is the input
base domain D. Note that, if P′ = ∅ then BD(P′,A) is simply A. The
procedure terminates when either the refinement is no longer enabled
(Line 2), or the assertion is proved true when 𝑑′𝑒𝑟𝑟 = ⊥D (which means
there is no concrete error state, so we return the program slice ‘‘skip’’
since no statement is relevant for the error) (Line 5), or a time limit is
reached (Line 7). The procedure 𝚂𝚕𝚒𝚌𝚎(𝑠, 𝙴𝚛𝚛𝙸𝚗𝚟♯𝑑𝑒𝑟𝑟 ) (Line 8) returns a
slice of program 𝑙𝑖𝑛∶𝑠;𝑙𝑎𝑠𝑠∶ 𝚊𝚜𝚜𝚎𝚛𝚝(𝑏𝑒𝑎𝑠𝑠) containing only the statements
relevant for the assertion failure. Given a statement 𝑙∶𝑠 𝑙′ , 𝚂𝚕𝚒𝚌𝚎 replaces
statement 𝑠 with 𝚜𝚔𝚒𝚙 if 𝙴𝚛𝚛𝙸𝚗𝚟♯𝑑𝑒𝑟𝑟 (𝑙) = 𝙴𝚛𝚛𝙸𝚗𝚟

♯
𝑑𝑒𝑟𝑟

(𝑙′). In this case, we
say 𝑠 is irrelevant for the error. That is, the statements for which we can
find an encompassing error invariant are not needed to reproduce the
error and can be dropped. Otherwise, Slice recursively pre-process
all sub-statements of compound statements or returns basic statements.
The complete definition of 𝚂𝚕𝚒𝚌𝚎(𝑠, 𝙴𝚛𝚛𝙸𝚗𝚟♯𝑑𝑒𝑟𝑟 ) is given in Fig. 6.

4.3. BDD abstract domain functor

The binary decision diagram (BDD) abstract domain functor [25–
27], denoted BD(P,A), plays an important role in the iterative abstract
analysis procedure. We exploit the well-known efficiency of BDDs,
introduced by Bryant [28] for representing Boolean functions [29], and
adapt them to represent disjunctive analysis properties. More specifi-
cally, the abstract elements of the domain BD(P,A) are disjunctions of
leaf nodes that belong to an existing base abstract domain A, which are
separated by the values of Boolean predicates from the set P organized
in decision nodes. Therefore, the state space (𝛴) is partitioned with
respect to the set of predicates P, such that each top-down path of
a BDD abstract element represents one or several partitionings of
(𝛴), and we store in the leaf node the property inferred for those
8

partitionings. s
We first consider a simpler form of binary decision diagrams called
binary decision trees (BDTs) [25–27]. A binary decision tree (BDT) 𝑡 ∈
BT(P,A) over the set P of predicates and the leaf abstract domain A
is either a leaf node ⟨|𝑎|⟩ with 𝑎 ∈ A and P = ∅, or [[𝑃 ∶ 𝑡𝑙, 𝑡𝑟]], where
𝑃 is the smallest element of P with respect to its ordering, 𝑡𝑙 is the left
subtree of 𝑡 representing its true branch, and 𝑡𝑟 is the right subtree of 𝑡
representing its false branch, such that 𝑡𝑙, 𝑡𝑟 ∈ BT(P∖{𝑃 },A). Note that,
P = {𝑃1,… , 𝑃𝑛} is a totally ordered set with ordering: 𝑃1 < ⋯ < 𝑃𝑛. The
eft and right subtrees are either both leafs or both rooted at decision
odes labeled with the same predicate.

However, BDTs contain some redundancy. There are three optimiza-
ions we can apply to BDTs in order to reduce their representation [28]:
1) Removal of duplicate leaves; (2) Removal of redundant tests; (3)
emoval of duplicate non-leaves. If we apply reductions (1)-(3) to a
DT 𝑡 ∈ BT(P,A) until no further reductions are possible, and moreover

f the ordering on the Boolean predicates from P occurring on any path
is fixed to the ordered list [𝑃1,… , 𝑃𝑛], then we obtain a reduced ordered
binary decision diagram (or only BDD for short) 𝑏 ∈ BD(P,A) [25–27].
Notice that BDDs have a canonical form, so any disjunctive property
from the BDT domain can be represented in an unique way by a BDD.
Furthermore, by applying the abstract operations and transfer functions
on BDDs in canonical forms, we obtain as result BDDs in canonical
forms.

Given a set of predicates P, an evaluation for P is a function 𝜇 ∶
→ {true, false}. 𝙴𝚟𝚊𝚕(P) denotes the set of all evaluations for P. Each

valuation 𝜇 ∈ 𝙴𝚟𝚊𝚕(P) can be represented as a formula ⋀

𝑃∈P 𝜈(𝑃 ),
here 𝜈(𝑃 ) = 𝑃 if 𝜇(𝑃 ) = true and 𝜈(𝑃 ) = ¬𝑃 if 𝜇(𝑃 ) = false. Given
BDD 𝑏 ∈ BD(P,A), the concretization function 𝛾BD returns 𝛾A(𝑎) for
∈ 𝙴𝚟𝚊𝚕(P), where 𝜇 satisfies the constraints reached along the top-

own path to the leaf node 𝑎 ∈ A. More formally, 𝛾BD(𝑏) = 𝛾BD[true](𝑏),
here function 𝛾BD is defined as:

𝛾BD[𝐶](⟨|𝑎|⟩)=(
⋁

𝜇∈𝙴𝚟𝚊𝚕(P),𝜇⊧𝐶𝜇) ∧ 𝛾A(𝑎),

𝛾BD[𝐶]([[𝑃 ∶ 𝑡𝑙, 𝑡𝑟]])=𝛾BD[𝐶 ∧ 𝑃 ](𝑡𝑙) ∨ 𝛾BD[𝐶 ∧ ¬𝑃 ](𝑡𝑟)

The abstract operations, transfer functions, and soundness of the
domain BD(P,A) are obtained by lifting the corresponding operations,
transfer functions, and soundness of the leaf domain A. We refer to [25–
27] for more details. However, the assignment transfer function needs
more care, since its application on a leaf node in one partitioning
(i.e., one evaluation of P) may cause its result to enter other par-
titionings. In such a case, the result in each partitioning is updated
to be the join of all elements which belong to that partitioning after
applying the transfer function to all leaf nodes of the current BDD. This
procedure is known as reconstruction on leaves [25]. Let 𝑏 ∈ BD(P,A) be
a BDD obtained after application of the assignment transfer function.
The reconstruction on leaves procedure proceeds as follows:

• Find all leaves in 𝑏: say 𝐿 = {𝑎1,… , 𝑎𝑛}.
• Given a top-down path of predicates 𝑃1 ⋅… ⋅ 𝑃𝑘 in the BDD 𝑏, we

calculate 𝑎′𝑖 = 𝑎𝑖 ⊓A 𝛼A(𝑃1 ∧ ⋯ ∧ 𝑃𝑘) for all leafs in 𝐿. The path
𝑃1 ⋅… ⋅ 𝑃𝑘 now leads to the new updated leaf: 𝑎′1 ⊔A … ⊔A 𝑎′𝑛.

Example 6. Suppose we have a BDD 𝑏 = [[(𝚡 ≤ 0) ∶ ⟨|𝚡 = 0|⟩, ⟨|1 ≤
≤ 10|⟩]] and an assignment 𝚡 ∶= 𝚡 − 𝟷. Note that the left leaf ⟨|𝚡= 0|⟩

atisfies the decision node (𝚡 ≤ 0), while the right leaf ⟨|1 ≤ 𝚡 ≤
0|⟩ satisfies its negation. After performing the (forward) assignment
ransfer function without reconstruction on leaves, we obtain: [[(𝚡 ≤
) ∶ ⟨|𝚡 = −1|⟩, ⟨|0 ≤ 𝚡 ≤ 9|⟩]]. Hence, the right leaf node (0 ≤ 𝚡 ≤ 9)
oes not satisfy the predicate leading to it: ¬(𝚡 ≤ 0). However, after the
econstruction on leaves, we obtain: [[(𝚡 ≤ 0) ∶ ⟨| − 1 ≤ 𝚡 ≤ 0|⟩, ⟨|1 ≤ 𝚡 ≤
|⟩]]. This is shown graphically in Fig. 7.

The efficiency of BDDs comes from the opportunity to share equal
ub-trees, in case some properties are independent from the value of

ome Boolean predicates.



Journal of Computer Languages 80 (2024) 101288A.S. Dimovski

5

c
F
l
r

5

f
f
p
n
s
i
b
a
a
t
u

𝚒

T
f
a
a
w
t
w
a
o
p
a
o

Fig. 6. Definition of 𝚂𝚕𝚒𝚌𝚎(𝑠, 𝙴𝚛𝚛𝙸𝚗𝚟♯𝑑𝑒𝑟𝑟 ), where ‘‘𝑙∶𝑠;𝑙′∶ ’’ is a statement in program whose error invariants map is 𝙴𝚛𝚛𝙸𝚗𝚟
♯
𝑑𝑒𝑟𝑟

.

Fig. 7. BDDs before (left) and after (right) application of ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗[[𝚡 ∶= 𝚡 − 𝟷]]♯ (solid edges = true, dashed edges = false).
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. Applications to program repair

In this section, we show how our fault localization algorithm can be
ombined with an existing mutation-based program repair approach.
irst, we give an overview how programs are translated to SMT formu-
as, and then we present the efficient algorithm for automatic program
epair with fault localization.

.1. Translating programs to formulas

We now describe the process of translating programs into SMT
ormulas using the CBMC bounded model checker [2]. Three trans-
ormations of the input program are employed. First, we simplify the
rogram by substituting all if and while guards (conditions) with
ew Boolean variables. Second, we unroll the program with bound 𝑏,
uch that all while-s in the given program are unrolled 𝑏-times. That
s, the while-body is duplicated 𝑏 times, where each copy is guarded
y an if with the same guard as the original while-guard. To block
ll paths going through the while longer than the bound 𝑏, we use
ssume(¬𝑔) in the innermost duplicated while-body, where 𝑔 is equal

o the while-guard. For example, the statement ‘‘𝚠𝚑𝚒𝚕𝚎 (𝑏𝑒) 𝚍𝚘 𝑠’’ after
nwinding with 𝑏 = 2 will be transformed to:

𝚗𝚝 𝑔∶=𝑏𝑒; 𝚒𝚏 (𝑔) 𝚝𝚑𝚎𝚗 {𝑠; 𝑔∶=𝑏𝑒; 𝚒𝚏 (𝑔) 𝚝𝚑𝚎𝚗 {𝑠; 𝑔∶=𝑏𝑒; 𝚊𝚜𝚜𝚞𝚖𝚎(¬𝑔); } }

hird, we transform the program to the SSA (Static Single Assignment)-
orm, such that any assignment to a variable x is changed into an unique
ssignment to a new variable x𝑖 (𝑖 ≥ 0). To decide which definition of
given variable reaches a particular use after an if with the guard 𝑔,
e insert the 𝛷-assignment 𝚡𝑘 ∶= 𝑔?𝚡𝑖 ∶ 𝚡𝑗 after the if. This means

hat 𝛷 selects 𝚡𝑖 if control reaches the 𝛷-assignment via the path on
hich 𝑔 is true; otherwise 𝛷 selects 𝚡𝑗 . Thus, all uses of x after the 𝛷-
ssignment 𝚡𝑘 ∶= 𝑔?𝚡𝑖 ∶ 𝚡𝑗 become uses of 𝚡𝑘 until the next assignment
f x. After the above three transformations, in the obtained simplified
rogram all original program expressions are right-hand sides (RHSs) of
ssignments, loops are replaced with if-s, and each variable is assigned
9

nce. w
The generated transformed program 𝑝 is translated to a set of
MT formulas 𝑆𝑝 as follows. We translate: an assignment 𝚡 ∶=𝑒 to

equation formula 𝚡 =𝑒; a 𝛷-assignment 𝚡𝟸 ∶= 𝚋𝚎?𝚡𝟶 ∶ 𝚡𝟷 to formula
x2=ite(be,x0,x1) (meaning (𝑏𝑒 ∧ 𝚡𝟸 = 𝚡𝟶) ∨ (¬𝑏𝑒 ∧ 𝚡𝟸 = 𝚡𝟷)); an
𝚜𝚜𝚞𝚖𝚎(𝑏𝑒) to formula 𝑏𝑒; and an 𝚊𝚜𝚜𝚎𝚛𝚝(𝑏𝑒) to formula ¬𝑏𝑒. In effect,
e obtain that one formula in 𝑆𝑝 encodes a single statement in the input
rogram 𝑝. The obtained set of formulas 𝑆𝑝 is partitioned into three
ubsets: 𝑆𝚜𝚘𝚏𝚝,𝚛𝚎𝚕

𝑝 that includes formulas corresponding to statements
assignments) containing original program expressions that are classi-
ied by FaultLoc as relevant for the error, 𝑆𝚜𝚘𝚏𝚝,𝚒𝚛𝚛𝚎𝚕

𝑝 that includes
ormulas corresponding to statements (assignments) containing original
rogram expressions that are classified by FaultLoc as irrelevant for
he error, and 𝑆𝚑𝚊𝚛𝚍

𝑝 that includes the other formulas corresponding to
ssertions, assumptions, and 𝛷-assignments. For example, SMT formu-
as for program1, program2-a, and program3 (with bound 𝑏 = 1)
rom Section 2 are as follows:
𝚜𝚘𝚏𝚝,𝚛𝚎𝚕
𝚙𝚛𝚘𝚐𝚛𝚊𝚖𝟷

={𝑧0=𝑛0+1, 𝑦0=𝑧0},

𝑆𝚜𝚘𝚏𝚝,𝚒𝚛𝚛𝚎𝚕
𝚙𝚛𝚘𝚐𝚛𝚊𝚖𝟷

={𝑧1=𝑧0+1}, 𝑆𝚑𝚊𝚛𝚍
𝚙𝚛𝚘𝚐𝚛𝚊𝚖𝟷

={¬(𝑦0 < 𝑛0)}
𝚜𝚘𝚏𝚝,𝚛𝚎𝚕
𝚙𝚛𝚘𝚐𝚛𝚊𝚖𝟸-𝚊 = {𝑥0 = 1, 𝑦0 = 𝑖𝑛𝑝𝑢𝑡0 − 42},

𝑆𝚜𝚘𝚏𝚝,𝚒𝚛𝚛𝚎𝚕
𝚙𝚛𝚘𝚐𝚛𝚊𝚖𝟸-𝚊 = {𝑔0 = (𝑦0 < 0), 𝑥1 = 0},

𝑆𝚑𝚊𝚛𝚍
𝚙𝚛𝚘𝚐𝚛𝚊𝚖𝟸-𝚊 = {¬(𝑥2 ≤ 0), 𝑥2 = 𝚒𝚝𝚎(𝑔0, 𝑥1, 𝑥0)}

𝚜𝚘𝚏𝚝,𝚛𝚎𝚕
𝚙𝚛𝚘𝚐𝚛𝚊𝚖𝟹

= {𝑥0 = 6, 𝑔0 = (𝑥0 < 𝑛0), 𝑥1 = 𝑥0+1},

𝑆𝚜𝚘𝚏𝚝,𝚒𝚛𝚛𝚎𝚕
𝚙𝚛𝚘𝚐𝚛𝚊𝚖𝟹

={𝑦0=𝑛0, 𝑦1=𝑦0+1}

𝑆𝚑𝚊𝚛𝚍
𝚙𝚛𝚘𝚐𝚛𝚊𝚖𝟹

={𝑥2=𝚒𝚝𝚎(𝑔0, 𝑥1, 𝑥0),¬(𝑔1 = (𝑥1 < 𝑛0)),¬(𝑥2 ≤ 10)}

The formula 𝜑𝑏
𝑝 for program 𝑝 is the conjunction of formulas in 𝑆𝑝,

thus encoding all possible 𝑏-bounded paths in program 𝑝. We say that
a program 𝑝 is 𝑏-correct if all assertions in it are valid in all 𝑏-bounded
paths of 𝑝.

Proposition 7 ([2]). A program 𝑝 is 𝑏-correct iff 𝜑𝑏
𝑝 is unsatisfiable.

The formula 𝜑𝑏
𝑝 = 𝜙1 ∧ ⋯ ∧ 𝜙𝑛 for a program 𝑝 is instrumented

𝑏
ith Boolean variables called guard variables, thus obtaining 𝚒𝚗𝚜𝚝(𝜑𝑝) =
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Algorithm 3: FaultLoc+AllRepair(𝑝, 𝑏)
Input: Program 𝑝, unwinding bound 𝑏
Output: Set of solutions 𝑆𝑜𝑙

1 (𝑆hard
𝑝 , 𝑆soft,rel

𝑝 , 𝑆soft,irrel
𝑝 ) ∶= CBMC(𝑝,FaultLoc(𝑝,D), 𝑏)

;
2 (𝑆1,… , 𝑆𝑛) ∶= Mutate(𝑆soft,rel

𝑝 ) ;
3 (𝑆′

1,… , 𝑆′
𝑛, 𝑉1,… , 𝑉𝑛, 𝑉orig) ∶= InstGuardVar(𝑆1,… , 𝑆𝑛) ;

4 𝜑𝑏
𝑝 ∶= (∧𝑠∈𝑆hard𝑝 ∪𝑆soft,irrel𝑝

𝑠) ∧ (∧𝑠∈𝑆′
1∪…∪𝑆′

𝑛
𝑠) ;

5 𝑘 ∶= 1; 𝑆𝑜𝑙 ∶= ∅; 𝜑 ∶= ∧𝑛
𝑖=1Exact(𝑉𝑖, 1) ;

6 while (𝑘 ≤ 𝑛) do
7 𝜑𝑘 ∶= 𝜑 ∧ AtLeast(𝑉orig, 𝑛 − 𝑘) ;
8 𝑠𝑎𝑡𝑟𝑒𝑠, 𝑉 ∶= SAT(𝜑𝑘) ;
9 if (𝑠𝑎𝑡𝑟𝑒𝑠) then
10 𝑠𝑚𝑡𝑟𝑒𝑠 ∶= SMT(𝜑𝑏

𝑝 ∧ ∧𝑣∈𝑉 𝑣) ;
11 if (¬𝑠𝑚𝑡𝑟𝑒𝑠) then
12 𝑆𝑜𝑙 ∶= 𝑆𝑜𝑙 ∪ 𝑉 ;
13 𝜑𝑘 ∶= 𝜑𝑘 ∧ (∨𝑣∈𝑉 ∖(𝑉orig)¬𝑣) ;
14 else
15 𝜑𝑘 ∶= 𝜑𝑘 ∧ (∨𝑣∈𝑉 ¬𝑣) ;

16 else
17 𝑘 ∶= 𝑘 + 1 ;

18 return 𝑆𝑜𝑙;

(𝑥1 ⟹ 𝜙1) ∧⋯ ∧ (𝑥𝑛 ⟹ 𝜙𝑛), where 𝑥1,… , 𝑥𝑛 are new guard variables.
The formula (𝑥𝑖 ⟹ 𝜙𝑖) can be satisfied either when 𝑥𝑖 is set to false
r when 𝑥𝑖 is set to true and 𝜙𝑖 is satisfied. In our algorithm, some
uard variables called assumptions are conjuncted with 𝚒𝚗𝚜𝚝(𝜑𝑏

𝑝) and
assed to an incremental SMT solver, which needs to check only the
atisfiability of 𝜙𝑖 formulas corresponding to assumptions. This way,
e enable incremental SMT solving, where the information learned in
ne iteration is re-used in the next iteration.

We will use formulas 𝙰𝚝𝙻𝚎𝚊𝚜𝚝({𝑙1,… , 𝑙𝑛}, 𝑘) and 𝙴𝚡𝚊𝚌𝚝({𝑙1,… , 𝑙𝑛}, 𝑘)
to require that at least 𝑘 and exactly 𝑘, respectively, of the literals
𝑙1,… , 𝑙𝑛 are true. They are called Boolean cardinality formulas and we
will use the MiniCard SAT-solver [30] to check their satisfiability.

5.2. Algorithm

We integrate the AllRepair procedure of [16] with the Fault-
Loc procedure in Algorithm 2, whose goal is to reduce the mutant’s
search space by not mutating locations (statements) that are found
by FaultLoc as irrelevant for the error. The novel procedure, called
FaultLoc+AllRepair, is shown in Algorithm 3. The input pro-
gram 𝑝 is translated to formulas (𝑆𝚑𝚊𝚛𝚍

𝑝 , 𝑆𝚜𝚘𝚏𝚝,𝚛𝚎𝚕
𝑝 , 𝑆𝚜𝚘𝚏𝚝,𝚒𝚛𝚛𝚎𝚕

𝑝 ) by using
the CBMC model checker, where the information of the FaultLoc
procedure is used for constructing subsets 𝑆𝚜𝚘𝚏𝚝,𝚛𝚎𝚕

𝑝 and 𝑆𝚜𝚘𝚏𝚝,𝚒𝚛𝚛𝚎𝚕
𝑝 .

Next, we use the 𝙼𝚞𝚝𝚊𝚝𝚎 procedure to generate all possible mutations
𝑆1,… , 𝑆𝑛 of formulas in 𝑆𝚜𝚘𝚏𝚝,𝚛𝚎𝚕

𝑝 , where 𝑆𝑖 is a set of formulas obtained
by mutating some 𝜙𝑖 ∈ 𝑆𝚜𝚘𝚏𝚝,𝚛𝚎𝚕

𝑝 . Hence, 𝑆1,… , 𝑆𝑛 correspond to 𝑛
program locations where statements relevant for the error in 𝑝 may
occur. A mutation is a replacement of an program expression of the
RHS of an assignment with another expression. We have a fixed set
of mutations for each type of expressions: arithmetic operators {+,−, ∗
,%,÷}; relational operators {<,≤, >,≥} and {==, ! =}; logical operators
{&&, ∥}; integer constants {𝑛, 𝑛+1, 𝑛−1}; and program variables {𝑥, 𝑦 ∈
𝑃𝑎𝑟𝑎𝑚(𝑝)}, where 𝑃𝑎𝑟𝑎𝑚(𝑝) are the parameters used in program 𝑝. For
arithmetic operators, this means that any operator from {+,−, ∗,%,÷}
can be substituted with any other operator from the same set; for
integer constants 𝑛 ∈ Z, this means that they can be increased by
one or decreased by one; whereas for program variables 𝑥 ∈ 𝑉 𝑎𝑟,
10

this means that they can be replaced by any parameter 𝑃𝑎𝑟𝑎𝑚(𝑝).
The 𝙸𝚗𝚜𝚝𝙶𝚞𝚊𝚛𝚍𝚅𝚊𝚛𝚜 procedure instruments all formulas in 𝑆1,… , 𝑆𝑛 by
new guard variables 𝑉1,… , 𝑉𝑛, thus producing instrumented formulas
𝑆′
1,… , 𝑆′

𝑛 (Line 3). The set 𝑉𝚘𝚛𝚒𝚐 contains guard variables corresponding
to original formulas in 𝑆𝚜𝚘𝚏𝚝,𝚛𝚎𝚕

𝑝 . The formula 𝜑𝑏
𝑝 is initialized to be

the conjunction of formulas from 𝑆𝚑𝚊𝚛𝚍 and 𝑆𝚜𝚘𝚏𝚝,𝚒𝚛𝚛𝚎𝚕
𝑝 , and all in-

strumented formulas from 𝑆′
1 ∪ ⋯ ∪ 𝑆′

𝑛 (Line 4). Then, we search the
space of all mutated formulas using an iterative generate-and-verify
procedure (Lines 6–17). In the generate step, we create Boolean formula
𝜑𝑘 expressing that at most 𝑘 guard variables are not original (i.e., at
least 𝑛 − 𝑘 are original by 𝙰𝚝𝙻𝚎𝚊𝚜𝚝(𝑉𝚘𝚛𝚒𝚐, 𝑛 − 𝑘)) and there is exactly
one guard variable selected for any of 𝑛 relevant statements (Line 7).
An SAT solver checks the satisfiability of 𝜑𝑘, such that any satisfying
assignment 𝑉 of 𝜑𝑘 corresponds to one mutated program (Line 8).
In the verify step, the formula corresponding to the mutated program,
which is 𝜑𝑏

𝑝 with assumptions in 𝑉 , is checked by the Z3 SMT solver
(Line 10). If the formula is found unsatisfiable, we report the mutant
corresponding to 𝑉 as possible solution and block all supersets of 𝑉 for
further exploration (line 13); otherwise we block the current mutant 𝑉
for exploration (line 15) and continue with the search.

6. Evaluation

We have implemented a prototype tool based on our approach for
fault localization via inferring error invariants and for its application
to program repair. We now evaluate our tool.

6.1. Implementation and experimental setup

Our tool is based on the APRON library [18], which includes the
abstract domains of intervals, octagons, and polyhedra, and the BD-
DAPRON library [19]. It also calls the Z3 SMT solver [20] to compute
minimal support sets. The tool is written in OCaml and consists of
around 7K LOC. It supports a subset of the C language. The current tool
provides no support for arrays, pointers, struct and union types. We
have also implemented our program repair algorithm that combines our
tool for fault localization and the AllRepair tool [7,16] for repairing
C programs.

For the aim of evaluating our fault localization approach, we ran:
(1) our approach, denoted FaultLoc; (2) an approach where we
use single-iteration procedure and backward abstract analysis 𝙲𝚘𝚗𝚍

♯
𝑑 is

only employed to compute abstract error invariants, denoted Fault-
Loc_Single; and (3) the logic formula-based fault localization tool
BugAssist [12].3 Given an error program, BugAssist uses the
CBMC bounded model checker [2] to generate an error trace as well as
to construct the corresponding trace formula, which is then analyzed
by a MAX-SAT solver. Moreover, we also evaluate the benefits that
our fault localization approach brings to the program repair. For this
purpose, we compare: (1) the tool for program repair with no fault lo-
calization, called AllRepair; and (2) the approach that combines our
FaultLoc and AllRepair, called FaultLoc+AllRepair. We use
a set of numerical benchmarks taken from the literature [8], different
folders of SV-COMP (https://sv-comp.sosy-lab.org/) and TCAS [31].

Experiments are run on 64-bit Intel®Core™ i7-1165G7
CPU@2.80 GHz, VM LUbuntu 20.10, with 8 GB memory, and we
use a timeout value of 300 s. All times are reported as average
over thirty independent executions, which is considered large enough
size of statistical samples [32]. The observed speed-up/slow-down
of the average execution time is reported as a global measure of
the acceleration/deceleration of the execution time when comparing
performances of two approaches [32]. We report total times, measured
via real values of the time command, needed for the actual tasks to
be performed. For all three approaches, this includes times to parse the
program, to check the assertion violation of the given program, and
to identify potential error locations. The implementation is available
from: https://doi.org/10.5281/zenodo.8167960.

3 The other known logic formula-based tool [8,10] is not available online.

https://sv-comp.sosy-lab.org/
https://doi.org/10.5281/zenodo.8167960
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6.2. Examples

We now present several of our benchmarks in detail.

Warming-up example. Consider the warming-up example, denoted
arming, given in Fig. 8 taken from [11]. Our approach FaultLoc
eeds three iterations to terminate by using the BDD domain with
redicates 𝐵1≡ (𝚒𝚗𝚙𝚞𝚝𝟷 > 𝟶) and 𝐵2≡ (𝚒𝚗𝚙𝚞𝚝𝟸 > 𝟶) and the Polyhedra
eaf domain. Some of the inferred error invariants are shown in Fig. 8.
he first error invariant 𝐵1 ∧ 𝐵2 shows that the error occurs if the

input values of input1 and input2 are greater than 0. The next
shown error invariant 𝐵1 ∧ 𝐵2 ∧ 𝑥 = 1 ∧ 𝑦 = 1 incorporates the effect

f assignments at locs. 1⃝– 3⃝. From this invariant, we realize that to
he end of the program, the variable 𝑧 is irrelevant and the values
f variables 𝑥 and 𝑦 should be tracked. Furthermore, it states that
nly then-branches of both if statements are important for the error.
n summary, FaultLoc infers that 𝑧 is an irrelevant variable, so all
tatements referring to 𝑧 are rendered as irrelevant (locs. 3⃝, 7⃝, C⃝)
s well as the statement 𝑥 ∶= 10 in the else branch of the first if
tatement. If we use a single backward analysis FaultLoc_Single,
e obtain less precise results. In particular, the statement 𝑥 ∶= 10 at loc.

8 is now relevant. Moreover, due to the precision loss that we have
fter analyzing the first if statement, the statement 𝑥 ∶= 1 at loc. 1⃝
s rendered as irrelevant and dropped from the reported program slice.
t is interesting to note that the slices reported by both approaches,
aultLoc and FaultLoc_Single, contain the same number of
tatements (see Table 1, column RLOC). Still, the second approach
aultLoc_Single based on single program analysis loses precision

n two places: one statement is wrongly reported as relevant, and one
tatement is wrongly reported as irrelevant. Therefore, we conclude
hat the precision of FaultLoc_Single is 87% (see Table 1, column
rec).

We have also analyzed a slightly changed warming-up example,
enoted warming-a, where the assertion is (𝑥 > 6)∨(𝑦 > 7). We estab-
ish that assertion violation may happen when 𝐵1 ∧ ¬𝐵2 holds at the
nitial location. Due to the precise BDD abstract domain we obtain very
recise analysis results using FaultLoc that enable us to eliminate the
econd if statement completely (locs. 9⃝– C⃝). Indeed, the execution

of this if statement does not influence the violation of the assertion.
Moreover, statements at locs. 3⃝, 7⃝, and 8⃝ are also redundant. On the
other hand, the single backward analysis FaultLoc_Single reports
as relevant the second if statement and the statement at loc. 8⃝. Again,
t reports as irrelevant the statement at loc. 1⃝. This is due to the
recision loss that occurred during the analysis of if statements. In
ffect, the precision of FaultLoc_Single drops to 56% in this case
see Table 1, column Prec).

We have also applied the tool BugAssist to these examples.
or instance, BugAssist reports statements at locs. 8⃝ and C⃝ as
otential bugs, while statements at locs. 1⃝ and 2⃝ as irrelevant for both
arming and warming-a. The precision of BugAssist is 75% for
arming and 43% for warming-a.

V-COMP examples. Consider the program in Fig. 9. It represents a
uitably adjusted easy2-1 example from SV-COMP, where the if
tatement is nested inside the while. In the first iteration of Fault-
oc, the if condition (𝑥 < 3) is added to the set of predicates P,
ue to the analysis imprecision of the if statement. Hence, in the
ollowing iterations we use the BDD domain based on the predicate
et P = {𝐵 ≡ (𝑥 < 3)}. The inferred error invariants by FaultLoc
re shown in Fig. 9. After calling the slicing procedure Slice, we
ee that statements at locs. 3⃝ and 6⃝ are redundant, and so can
e dropped. E.g., the statement at loc. 6⃝ is enclosed by the error
nvariant ¬𝐵∧𝑦 ≥ 0 . The computed error invariants further highlight

the information about the state that is essential for the error at each
location, thus indicating that variable 𝑧 is completely irrelevant.
11
Fig. 8. Warming-up (𝐵1 ≡ 𝚒𝚗𝚙𝚞𝚝𝟷 > 𝟶, 𝐵2 ≡ 𝚒𝚗𝚙𝚞𝚝𝟸 > 𝟶).

If we analyze this program via single backward analysis Fault-
Loc_Single, we do not consider separately then and else branches
of the if statement as in FaultLoc. Thus, we obtain very imprecise
analysis results: ⊤ for all locations inside while and loc. 1⃝, as well
as (𝑥 ≥ 1) for all other locations. In fact, we would consider as
relevant only statement at loc. 1⃝ and while condition at loc. 4⃝,
whereas all other locations would be irrelevant. This way, we would
drop statements at loc. 2⃝, 5⃝, 7⃝, due to the over-approximation of
abstraction, although they are relevant for the error. We obtain 53%
precision for FaultLoc_Single (see Table 1, column Prec).

Consider the program Mysore-1 from SV-COMP given in Fig. 10.
he inferred error invariants by FaultLoc are shown in Fig. 10. We

can see that the statements in the body of while are redundant and
so can be eliminated from the generated program slice. On the other
hand, if we use a single backward analysis FaultLoc_Single, then
he loop invariant is (𝑐 ≤ 0∧𝑥 + 𝑐 ≤ −1), and thus no statement is
liminated as irrelevant. As a result, FaultLoc_Single gives 66%
recision (see Table 1).
BugAssist again reports less precise results by wrongly identify-

ng as irrelevant statements at locs. 1⃝, 2⃝ for easy2-1 and at loc. 1⃝
or Mysore-1, as well as statement at loc. 6⃝ for easy2-1 as potential

bug. The BugAssist reasons about loops by unrolling them, which
makes it very sensitive to the degree of unrolling. Thus, it needs 10
unrollings of the loop for easy2-1. The precision of BugAssist is
66% for easy2-1 and 83% for Mysore-1.

TCAS example. The final example is an error implementation of the
Traffic Alert and Collision Avoidance System (TCAS) [31], which rep-
resents an aircraft collision detection system used by all US commercial
aircrafts. An extract from the error implementation is shown in Fig. 11.
The error in this TCAS implementation is caused by a wrong com-
parison in the function Non_Crossing_Biased_Climb(). On some
inputs, this error causes the variable need_upward_RA to become 1.
The effect is that the assertion will get violated. Note that the strict
inequality ‘>’ in ¬(𝙳𝚘𝚠𝚗_𝚂𝚎𝚙𝚊𝚛𝚊𝚝𝚒𝚘𝚗 > 𝙿𝚘𝚜𝚒𝚝𝚒𝚟𝚎_𝚁𝙰_𝙰𝚕𝚝_𝚃𝚛𝚎𝚜𝚑) from
function Non_Crossing_Biased_Climb() is problematic, which
causes the error. It should be replaced with ‘≥’ for the implementation
to be correct.

Our tool first inlines all functions into the main() function, which
is then analyzed statically. Thus, the complete program has 308 loca-

tions in total, and the main() function after inlinement contains 118



Journal of Computer Languages 80 (2024) 101288A.S. Dimovski

l
d

𝐵

𝐵
𝐵

𝐵

T
r
i
i
s
v
o
t
s

c

s
m
s
‘
f
l

P
t
s
i
r
f
g
t
e
p
e

i
b

a
t

o
B
o
r
p
o
t

6

b
i
𝑛
s

o
a
F
2
t
s
F
t
A

w
{
m

Fig. 9. easy2-1 example.

Fig. 10. Mysore-1 example.

ocations. FaultLoc needs two iterations to end by using the BDD
omain with four predicates:

1 ≡ (𝚗𝚎𝚎𝚍_𝚞𝚙𝚠𝚊𝚛𝚍_𝚁𝙰 = 𝟷) ∧ (𝚗𝚎𝚎𝚍_𝚍𝚘𝚠𝚗𝚠𝚊𝚛𝚍_𝚁𝙰 = 𝟷)

2 ≡ (𝙾𝚠𝚗_𝚃𝚛𝚊𝚌𝚔𝚎𝚍_𝙰𝚕𝚝 < 𝙾𝚝𝚑𝚎𝚛_𝚃𝚛𝚊𝚌𝚔𝚎𝚍_𝙰𝚕𝚝)
3 ≡ (𝚘𝚠𝚗_𝚊𝚋𝚘𝚟𝚎_𝚝𝚑𝚛𝚎𝚊𝚝 = 𝟶) ∧ (𝙲𝚞𝚛𝚛_𝚅𝚎𝚛𝚝𝚒𝚌𝚊𝚕_𝚂𝚎𝚙 ≥ 𝙼𝙸𝙽𝚂𝙿)∧

(𝚄𝚙_𝚂𝚎𝚙𝚊𝚛𝚊𝚝𝚒𝚘𝚗 ≥ 𝙿𝚘𝚜𝚒𝚝𝚒𝚟𝚎_𝚁𝙰_𝙰𝚕𝚝_𝚃𝚛𝚎𝚜𝚑)
4 ≡ (𝚘𝚠𝚗_𝚋𝚎𝚕𝚘𝚠_𝚝𝚑𝚛𝚎𝚊𝚝 = 𝟶)∨

(𝚘𝚠𝚗_𝚋𝚎𝚕𝚘𝚠_𝚝𝚑𝚛𝚎𝚊𝚝 = 𝟷 ∧ ¬(𝙳𝚘𝚠𝚗_𝚂𝚎𝚙𝚊𝚛𝚊𝚝𝚒𝚘𝚗
> 𝙿𝚘𝚜𝚒𝚝𝚒𝚟𝚎_𝚁𝙰_𝙰𝚕𝚝_𝚃𝚛𝚎𝚜𝚑))

he slice computed by FaultLoc approach contains 44 locations
elevant for the error. Some of these statements are shown underlined
n Fig. 11. Note that not underlined else branches are classified as
rrelevant. The reported relevant statements are sufficient to under-
tand the origins of the error. The generated slice depends only on 15
ariables instead of 37 variables in the original program. The number
f input variables is also reduced from 12 to 6. Thus, we conclude
hat the obtained slice significantly reduces the search space for error
tatements.

The single backward analysis FaultLoc_Single reports a slice
ontaining only 28 locations. However, the slice does not contain any
12

l

tatement from the buggy Non_Crossing_Biased_Climb(), thus
issing the real reasons for the error. On the other hand, the BugAs-
ist tool reports as potential bugs only 2 locations, the condition
𝚒𝚏 (𝚎𝚗𝚊𝚋𝚕𝚎𝚍 = 𝟷)…’ and the assertion, both from alt_sep_test()
unction. Similarly as in the case of FaultLoc_Single, none of these
ocations is from the buggy Non_Crossing_Biased_Climb().

erformances. Table 1 shows the result of running our tool FaultLoc,
he single backward analysis FaultLoc_Single, and the BugAs-
ist tool on the benchmarks considered so far. The column ‘‘LOC’’

s the total number of locations in the program, ‘‘Time’’ shows the
un-time in seconds, ‘‘RLOC’’ is the number of potential (relevant)
ault locations, and ‘‘Prec’’ is the precision (in percentage) of the
iven approach to locate the relevant statements for the error. This is
he ratio of the sum of correctly classified relevant/irrelevant for the
rror locations by an approach to the total number of locations in the
rogram. A classification of a location as relevant/irrelevant for the
rror given by the concrete semantics is considered correct.

We conclude that our technique FaultLoc gives more precise
nformation about potential error statements than simply performing a
ackward analysis and BugAssist. On average by using FaultLoc,

the number of locations to check for potential error (RLOC) is reduced
to 47.6% of the total code (LOC). In fact, FaultLoc pin-pointed the
correct error locations for all examples, thus achieving the precision of
100%. On the other hand, the precision of FaultLoc_Single is 70%
nd the precision of BugAssist is 64%, on average. Although our
echnique FaultLoc is the most precise, it is slower than Fault-
Loc_Single due to the several iterations it needs to produce the
fully refined error invariants. On our benchmarks,4 this translates to
slow-downs (FaultLoc vs. FaultLoc_Single) that range from 4.3
to 38 times. However, this is an acceptable precision/cost tradeoff,
since the more precise results of FaultLoc can be applied in various
areas (e.g., in program repair). FaultLoc and BugAssist have
ften comparable running times, except for the loop benchmarks when
ugAssist is slower due to the need to unwind the loops. More-
ver, FaultLoc reports more fine-grained information by identifying
elevant variables for the error, whereas BugAssist reports only
otential bug locations. Finally, we should note that the run-time of
ur technique FaultLoc in all examples is still significantly smaller
han our human effort required to isolate the fault (see Table 1).

.3. Application to program repair

Table 2 shows the performance of the approaches for repairing our
enchmarks. The column LOC is the total number of locations, RLOC
s the number of relevant fault locations, Space is given in the form
∕𝑚 where 𝑛 is the explored and 𝑚 is the total size of the mutant search
pace, and Time is the running time given in seconds.

For programs easy2-1 (resp., Mysore-1) in Fig. 9 (resp., Fig. 10),
ur fault localization algorithm establishes that statements at locs. 3⃝
nd 6⃝ (resp., at locs. 5⃝ and 6⃝) are irrelevant for the error. Therefore,
aultLoc+AllRepair successfully finds repairs in 17.325 (resp.,
.112) sec by exploring 1250 (resp., 40) mutants, while AllRepair
imeouts after 300 s. Similarly, we repair program2, where only
tatement at loc. 1⃝ is irrelevant for the error. Still, we observe that
aultLoc+AllRepair achieves 3× reduction of the explored/to-

al search space and 2× speed-up of the running time compared to
llRepair.

To handle the obtained slices of other benchmarks (warming,
arming-a, TCASv.1), we apply a simpler list of mutations: {+,−},
∗,%,÷}, {<,≤}, {>,≥}, {==, ! =}, and variables/parameters are not
utated. Still, the total mutant search space is huge: 136, 048, 896

4 We do not consider TCASv.1 here since FaultLoc_Single is useless in
ocating the bug in this case.



Journal of Computer Languages 80 (2024) 101288A.S. Dimovski
Fig. 11. An excerpt from an error TCAS implementation.
Table 1
Performance results of FaultLoc vs. FaultLoc_Single vs. BugAssist. FaultLoc and FaultLoc_Single use Polyhedra domain. All
times in sec.

Bench. LOC FaultLoc FaultLoc_Single BugAssist

Time RLOC Prec Time RLOC Prec Time RLOC Prec

program1 6 0.058 2 100% 0.014 2 100% 0.032 1 66%
program2 9 0.187 5 100% 0.013 4 83% 0.031 2 50%
program2-a 9 0.086 2 100% 0.016 6 33% 0.031 2 66%
program3 10 0.453 3 100% 0.016 3 100% 2.954 5 71%
warming 19 0.387 12 100% 0.016 12 0.87 0.017 12 0.75
warming-a 19 0.301 7 100% 0.017 13 0.56 0.202 8 0.43
easy2-1 15 1.404 10 100% 0.012 3 41% 8.445 9 66%
Mysore-1 9 0.050 4 100% 0.014 6 66% 0.210 3 83%
TCASv.1 118 57.71 44 100% 0.224 28 86% 0.094 1 62%
for warming and 4.7 × 1024 for TCASv.1, so AllRepair timeouts
even when the simpler mutations are applied. The fault localization
algorithm removes 4 irrelevant locations for warming and 9 irrelevant
locations for warming-a, thus FaultLoc+AllRepair terminates
in 34.74 s for warming and 0.692 s for warming-a. However,
FaultLoc produces 44 locations relevant for the error in TCASv.1, so
the obtained mutant search space is still huge (1.3× 1015), thus making
FaultLoc+AllRepair to timeout as well.

We can conclude that our FaultLoc+AllRepair significantly
outperforms AllRepair for all benchmarks, and moreover often turns
previously infeasible tasks into feasible. For feasible tasks, Fault-
Loc+AllRepair achieves speed-ups that range from 2.3 to 16.5
13
times compared to AllRepair. Still, both approaches have the same
precision by reporting the same repaired programs.

7. Related work

We divide our discussion of related work into five categories: auto-
mated fault localization, program slicing, abstract interpretation-based
backward analysis, decision-tree abstract domains, fault localization for
program repair, and possible extensions.

Automated fault localization. Fault localization has been an active area
of research in recent years [7–10,12]. Several approaches are based
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Table 2
Performance results of FaultLoc+AllRepair vs. AllRepair. Times are in seconds.

Bench. LOC FaultLoc+AllRepair AllRepair

RLOC Space Time RLOC Space Time

program1 6 2 24/30 0.372 3 546/900 3.645
program2 9 5 243/1080 1.504 6 699/3240 3.403
program2-a 9 2 31/45 0.496 6 1536/3240 8.187
program3 10 5 65/720 1.488 7 1051/21,600 22.55
warming 19 12 24,350/419,904 34.74 16 59,209/136,048,896 Timeout
warming-a 19 7 492/1944 0.695 16 59,209/136,048,896 Timeout
easy2-1 15 10 1250/58,320 17.35 12 7215/874,800 Timeout
Mysore-1 9 4 40/360 2.109 6 1916/108,000 Timeout
TCASv.1 118 44 52,476/1.3 × 1015 Timeout 115 51,876/4.7 × 1024 Timeout
(
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on finding differences between the failing and successful executions,
by defining heuristic metric on executions to identify locations that
separate them [11]. The logic formula-based fault localization ap-
proaches [8,10,12] have been very successful in practice. They rep-
resent an error trace using an SMT formula and analyze it to find
suspicious locations. The error traces are usually obtained either from
failing test cases or from counterexamples produced by external ver-
ification tools. In contrast, our approach is directly applied on (error)
programs, thus it needs no specific error traces from other tools making
it more self-contained. We refer to our technique for whole programs
and all inputs as a full fault localization. The closest to our approach
or inferring error invariants applied to fault localization is the work
roposed by Ermis et al. [8,10]. They use Craig interpolants and
MT queries to calculate error invariants in an error trace. Another
imilar approach that uses error traces and SAT queries is BugAs-
ist [12]. It uses MAX-SAT based algorithm to identify a maximal
ubset of statements from an error trace that are not needed to prove
he unsatisfiability of the logical formula representing the error trace.
ne limitation of BugAssist is that control-dependent variables and

tatements are not considered relevant. Moreover, BugAssist do not
eport error invariants, which can be especially useful for dense errors
here the error program cannot be sliced significantly. Hence, BugAs-
ist cannot identify relevancy of variables for the fault. Other logic

ormula-based approaches include using weakest preconditions [9], and
yntactic information in the form of graphs for static and dynamic
ependency relations [7] to localize the errors.

Rival [33] uses abstract interpretation static analyzer ASTREE [3]
o investigate the found alarms and to classify them as true errors or
alse errors. It uses an refining sequence of forward–backward analyses
o obtain an approximation of a subset of traces that may lead to
n error. Hence, the above work aims to find a set of traces result-
ng in an error, thus defining so-called trace-wise semantic slicing.
n contrast, our approach aims to find statements that are reasons
or the error, thus defining the statement-wise semantic slicing. The
nder-approximated backward analysis proposed by Mine [34] infers
ufficient preconditions ensuring that the target property holds for all
on-deterministic choices. It would produce the under-approximations
f concrete error invariants if applied to our approach. We could then
ombine the results of under- and over-approximating error invariants,
o that if both are the same for some locations we can be certain that the
orresponding statements are either error-relevant or error-irrelevant.
he work [35] also uses forward–backward analyses to estimate the
robability that a target assertion is satisfied/violated.

rogram slicing. Program slicing [36] is a well-known technique that
xtracts from programs the statements relevant to a given behavior.
t has been successfully applied in various areas of software engineer-
ng including program debugging. The program slice introduced by

eiser [36] is defined as an executable subset of program statements
hat preserves the behavior of the original program at a particular
rogram label 𝑙 for a subset of program variables 𝑉 , called the slic-
ng criterion ⟨𝑙, 𝑉 ⟩. Various program slicing techniques have been
14

efined [36–38] by using the notion of Program Dependency Graphs
PDGs), which make explicit both the data and control dependences
or each operation in a program that are based on syntactic presence
f a variable in the definition of another variable or on a conditional
xpression. By introducing the notions of semantic data and control
ependences [39], more precise semantics-based PDGs are computed
hat do not contain false dependences from the traditional syntactic
DGs. For example, although the expression 𝑒 = 𝑥 − 𝑥 syntactically

depends on 𝑥, semantically there is no dependence. The semantics
dependency can be lifted to an abstract domain where dependences are
computed with respect to some specific abstract properties rather than
concrete values, thus giving rise to so-called abstract semantics-based
slicing [39]. Fault localization aims to solve a more specific problem
compared to program slicing by identifying program statements rele-
vant for the assertion failure. This way, we can employ more precise
program analysis techniques that are specifically tailored for the given
problem, and so obtain more precise results/slices.

Decision-tree abstract domains. Decision-tree domains have been used
in abstract interpretation community recently [25,26,40]. Segmented
decision tree abstract domains have enabled path dependent static anal-
ysis [25,40]. Their elements contain decision nodes that are determined
either by values of program variables [40] or by the if conditions [25],
whereas the leaf nodes are numerical properties. Urban and Miné [26]
use decision tree abstract domains to prove program termination. De-
cision nodes are labeled with linear constraints that split the memory
space and leaf nodes contain affine ranking functions for proving
termination. Recently, specialized decision tree lifted domains [27,41–
44] have been proposed to analyze program families (or any other
configurable software system - Software Product Line) [45–47]. Deci-
sion nodes partition the configuration space of possible feature values
(or statically configurable options), while leaf nodes provide analysis
information of program variants (family members) corresponding to
each partition. The work [27] uses lifted BDD domains to analyze pro-
gram families with Boolean features. Subsequently, the lifted decision
tree domain has been proposed to handle program families with both
Boolean and numerical features [43,44], as well as dynamic program
families with features changing during run-time [42].

Fault localization for program repair. Automated program repair has
been recently considered as a way for efficient maintenance of software
systems [6,15–17]. These works aim to repair the buggy program,
so that the transformed program does not exhibit any faults. Some
of the most successful approaches for automated program repair use
formal techniques to guide the repair process. SemFix [6] uses symbolic
execution to find a repair constraint and then generates a correct
fix based on it, while Maple [17] uses a formal verification system
o locate buggy expressions that are replaced with templates (linear
xpressions of program variables with unknown coefficients) in which
he unknown coefficients are determined using constraint solving. The
ork [15] uses a deductive synthesis framework for repairing recursive

unctional programs with respect to specifications expressed in the form
f pre- and post-conditions. Finally, Rothenberg and Grumberg [16]
ave developed the AllRepair tool for automatic program repair based
on code mutations.



Journal of Computer Languages 80 (2024) 101288A.S. Dimovski

p

8

t
a
e
a
p
p
c
p
t
a
N
l
p

C

o

D

c
i

D

R

Automated program repair has often been combined with fault
localization [7,48]. Once a set of statements relevant for the error
has been found, we need to replace those statements in order to fix
the error. However, the above works use syntactic information in the
form of graphs for static and dynamic dependency relations to localize
the errors. In contrast, we use a pure semantics-based technique via
abstract semantic analyses to identify statements relevant for the error.
This way, we can find irrelevant statements with respect to some subtle
errors.

Program repair is also related to program sketching, where a pro-
gram with missing parts (holes) has to be completed in such a way
that a given specification is satisfied. Recently, abstract interpretation
has been successfully applied to program sketching [49–51]. The above
works leverage a lifted (family-based) static analysis to synthesize
program sketches, which represent partial programs with some miss-
ing integer holes in them. We can combine our approach for fault
localization with the techniques for program sketches to develop novel
procedures for repairing subtle semantic errors.

Possible extensions. The current implementation of FaultLoc sup-
ports an interesting subset of C that includes numerical programs. This
is due to the fact that our tool uses numerical abstract domains from
the APRON library in practice. However, our FaultLoc algorithm can
take any abstract domain D as parameter. Hence, it can be integrated
with various abstract domains that can handle other language con-
structs. For example, if we use abstract domains for bit-vectors [52] and
strings [53] then we can handle bit- and string-manipulating programs,
while if we use abstract domains for heaps [54] then we can handle
object-oriented programs and other static programming languages like
Java. Moreover, since static analysis by abstract interpretation and
several abstract domains have been developed for the dynamic pro-
gramming language Python [55], we can use those abstract domains
to adapt our algorithm for performing fault localization of Python.

The AllRepair tool [16] for program repair is based on the
CBMC bounded model checker [2] that translates C programs to SMT
formulas. JBMC [56] is a version of the CBMC for verifying Java
bytecode by translating Java bytecode to SMT formulas. This way,
a new version of AllRepair can be built on top of the JBMC for
rogram repair of Java.

. Conclusion

In this work, we have proposed error invariants for reasoning about
he relevancy of portions of an error program. They provide a semantic
rgument why certain statements are irrelevant for the cause of an
rror. We have presented an algorithm that infers error invariants via
bstract interpretation and uses them to obtain compact slices of error
rograms relevant for the error. We have seen that the slice contains
otential error statements for the error program and a fix would be to
hange some of them. Our evaluation demonstrates that our algorithm
rovides useful error explanations, and so it can help to understand
he cause of an error more easily. Moreover, we have integrated our
pproach for fault localization with the mutation-based program repair.
amely, the fault localization returns a set of statements that are

ikely to be wrong, whereas the mutation-based program repair finds
otential replacements to these statements that fixes the error.
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