
Quantitative Program Sketching using Lifted
Static Analysis

Aleksandar S. Dimovski1(�)

Mother Teresa University, st. Mirche Acev nr. 4, 1000 Skopje, North Macedonia
aleksandar.dimovski@unt.edu.mk

Abstract. We present a novel approach for resolving numerical pro-
gram sketches under Boolean and quantitative objectives. The input is
a program sketch, which represents a partial program with missing nu-
merical parameters (holes). The aim is to automatically synthesize values
for the parameters, such that the resulting complete program satisfies:
a Boolean (qualitative) specification given in the form of assertions; and
a quantitative specification that estimates the number of execution steps
to termination and which the synthesizer is expected to optimize.
To address the above quantitative sketching problem, we encode a pro-
gram sketch as a program family (a.k.a. software product line) and an-
alyze it by the specifically designed lifted analysis algorithms based on
abstract interpretation. In particular, we use a combination of forward
(numerical) and backward (termination) lifted analysis of program fami-
lies to find the variants (family members) that satisfy all assertions, and
moreover are optimal with respect to the given quantitative objective.
Such obtained variants represent “correct & optimal” sketch realizations.
We present a prototype implementation of our approach within the Fam-
ilySketcher tool for resolving C sketches with numerical types. We
have evaluated our approach on a set of benchmarks, and experimental
results confirm the effectiveness of our approach.

Keywords: Quantitative program sketching · Software Product Lines ·
Abstract Interpretation

1 Introduction

A sketch [29,30] is a partial program with missing numerical expressions called
holes to be discovered by the synthesizer. Previous approaches for program
sketching [29,30,17] automatically synthesize integer constant values for the holes
so that the resulting complete program satisfies Boolean (qualitative) properties
in the form of assertions. However, the need for considering combined Boolean
and quantitative properties is prominent in many applications. Still, quantita-
tive properties have been largely missing from previous approaches for program
sketching. In particular, there has been no possibility for measuring the “good-
ness” of solutions. Boolean properties are used to define minimal requirements
for the synthesized complete programs. Still, there are usually many different

http://orcid.org/0000-0002-3601-2631

2 A. S. Dimovski

complete programs that satisfy the Boolean properties, and some of them may
be preferred over the others. Therefore, it is important to define synthesis algo-
rithms, which construct complete programs (solutions) that not only meet the
Boolean properties, but are also optimal with respect to a given quantitative
objective [2,6]. This is so-called quantitative sketching problem.

In this paper, we use lifted static analysis based on abstract interpretation
[25] for program families (a.k.a. software product lines) [8] to solve this quan-
titative sketching problem. The key observation is that all possible sketch real-
izations constitute a program family, where each numerical hole is represented
as a numerical feature. A program family describes a set of similar programs as
variants of some common code base [8]. At compile-time, a variant of a program
family is derived by assigning concrete values to a set of features (configuration
options) relevant for it, and only then is this variant compiled or interpreted.
Program families (often in C) enriched with compile-time configurability by the
C preprocessor CPP [8,21] are today widely used in open-source projects and
industry [21]. By using the proposed transformation from program sketches to
program families, we reduce the quantitative sketching problem to selecting those
variants (family members) from the corresponding program family that satisfy
all assertions and are optimal with respect to the given quantitative objective. As
a quantitative objective we consider here the sufficient preconditions inferred by
a quantitative termination analysis that estimates the efficiency of a program by
counting upper-bounds on the number of execution steps to termination. More
specifically, we use a combination of forward and backward lifted analysis to solve
this problem. The forward numerical lifted analysis infers numerical invariants
for all members of a program family, thus finding the “correct” variants that
satisfy all assertions. Subsequently, the backward termination lifted analysis is
performed on a sub-family of “correct” variants to infer piecewise-defined rank-
ing functions, which provide upper-bounds on the number of execution steps to
termination. The variants with minimal ranking function are reported as optimal
complete programs that solve the original quantitative sketching problem.

To find the required variants (i.e., the solution to the quantitative sketching
problem), we use the specifically designed lifted static analysis algorithms, which
efficiently analyze all variants of the program family simultaneously, without gen-
erating any of them explicitly [3,24,22,28,19,11,20,16]. Lifted analysis processes
the common code base of a program family directly, exploiting the similarities
among individual variants to reduce analysis effort. It reports precise analysis
results for all variants of the family. In particular, we use an efficient, abstract
interpretation-based lifted analysis of program families with numerical features
[16], where sharing is explicitly possible between equivalent analysis elements
corresponding to different variants. This is achieved by using a specialized deci-
sion tree lifted domain [16] that provides a symbolic and compact representation
of the lifted analysis elements. More precisely, the elements of the lifted domain
are decision trees, in which decision nodes are labelled with linear constraints
over features, while leaf nodes belong to an existing single-program analysis do-
main (e.g., some numerical domain [25] or the termination domain [31,32]). The

Quantitative Program Sketching using Lifted Static Analysis 3

decision trees recursively partition the space of all variants (i.e., the space of
possible combinations of feature’s values), whereas the program properties at
the leaves provide analysis information corresponding to each partition (i.e., to
those variants that satisfy the constraints along the path to the given leaf node).
This way, the forward (numerical) lifted analysis partitions the given family
into: “correct”, “incorrect”, and “I don’t know” (inconclusive) sub-families (sets
of variants) with respect to the given assertions. The backward (termination)
lifted analysis additionally partitions the “correct” sub-family with respect to
the estimated number of execution steps to termination. Because of its special
structure and possibilities for sharing of equivalent analysis results, the decision
tree-based lifted analyses are able to converge to a solution very fast even for
program families (sketches) that contain numerical features (holes) with large
domains, thus giving rise to astronomical search spaces. This is particularly true
for sketches in which holes appear in (linear) expressions that can be exactly
represented in the underlying numerical domains used in the decision trees (e.g.,
polyhedra). In those cases, we can design very efficient lifted analysis with ex-
tended (improved) transfer functions for assignments and tests.

We have implemented our approach in a prototype program synthesizer,
called FamilySketcher [17]. The numerical abstract domains (e.g., intervals,
octagons, polyhedra) from the APRON library [23] are used as parameters of
the underlying decision trees. FamilySketcher calls the Z3 SMT solver [26]
to solve the optimization problem that represents the given quantitative objec-
tive. We illustrate this approach for automatic completion of various numeri-
cal C sketches from the Sketch project [29,30], SV-COMP (https://sv-comp.
sosy-lab.org/), and the SyGuS-Competition (https://sygus.org/) [1]. We com-
pare performances of our approach against the most popular sketching tool
Sketch [29,30] and Brute-Force enumeration approach that checks for cor-
rectness and optimality all sketch realizations one by one.

In summary, this work makes the following contributions: (1) We combine
forward and backward lifted analyses to resolve numerical program sketches with
respect to both Boolean and quantitative specifications; (2) We implement our
approach in the FamilySketcher tool, which uses numerical domains from
the APRON library as parameters and the Z3 tool for solving the underlying
(linear) optimization problem; (3) We evaluate our approach and compare its
performances with the Sketch tool and Brute-Force enumeration approach.

2 Motivating Examples

Let us consider the Loop1a sketch taken from SyGuS-Competition [1]:

void main() {
1O int x := ??1, y := 0;
2O while hO (x > ??2) {
3O x := x-1;
4O y := y+1; }
5O assert (y > 2); //assert (y < 8); }

https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://sygus.org/

4 A. S. Dimovski

A≤B

y=0 ∧ A=x B=x ∧ A=B+y

Fig. 1: Lifted numerical in-

variant at location 5O of

Loop1a (solid edges = true,

dashed edges = false).

A-B≥ 3

3A-3B+4

Fig. 2: Lifted ranking

function at location 1O of

Loop1a.

A≤B

1 ≤

A-B≤ 7

4

3A-3B+4

Fig. 3: Lifted ranking

function at location 1O of

Loop1b.

which contains two numerical holes, denoted by ??1 and ??2. The synthesizer
should replace the holes with constants from Z, such that the synthesized pro-
gram satisfies the assertion at location 5O under all possible inputs. Moreover,
we want to select the most efficient correct program, i.e. the one that terminates
in the minimum number of execution steps.

We transform the Loop1a sketch to a program family, which contains two
numerical features A and B with domains [Min, Max] ⊆ Z. 1 Since both holes in
the Loop1a sketch occur in (linear) expressions that can be exactly represented
in numerical domains (e.g. intervals), the Loop1a program family is obtained
by replacing the two holes ??1 and ??2 with the features A and B. The total
number of variants that can be generated from this family is (Max− Min+1)2,
so that each variant corresponds to one possible sketch realization. We perform
a forward numerical lifted analysis based on decision trees [16] of the Loop1a

program family. The decision tree (lifted numerical invariant) inferred at the
location 5O is shown in Fig. 1. Notice that the inner nodes of the decision tree in
Fig. 1 are labeled with polyhedral linear constraints defined over feature variables
A and B, while the leaves are labeled with polyhedral linear constraints defined
over program and feature variables x, y, A and B. The edges of decision trees are
labeled with the truth value of the decision on the parent node: we use solid edges
for true (i.e., the constraint in the parent node is satisfied) and dashed edges for
false (i.e., the negation of the constraint in the parent node is satisfied). Note
that linear constraints in decision nodes implicitly take domains of features into
account. For example, the decision node (A≤B) is satisfied when (A≤B)∧ (Min≤
A≤Max) ∧ (Min≤B≤Max). From the invariant inferred at location 5O shown in
Fig. 1, we can see that the given assertion (y > 2) may be valid in the leaf node
that can be reached along the path satisfying the constraint ¬(A≤B), i.e. (A-B≥
1). In fact, (y > 2) holds when the stronger constraint (A-B ≥ 3) is satisfied.
Thus, any variant that satisfies the above constraint (A-B ≥ 3) represents a
“correct” solution to the Loop1a sketch. To find a “correct & optimal” solution,

1 Note that Min and Max represent some minimal and maximal representable integers.
E.g., we may take Min = 0 and Max = 31 for 5-bit sizes of holes.

Quantitative Program Sketching using Lifted Static Analysis 5

we perform a backward termination lifted analysis based on decision trees [13] of
the Loop1a sub-family satisfying (A-B≥ 3). The decision tree representing the
lifted ranking function of the above sub-family at initial location 1O is shown in
Fig. 2. 2 Notice that the leaf nodes represent affine functions defined over feature
and program variables. We can see that the ranking function is: 3A-3B+4. We
call the Z3 solver [26] to solve the following linear optimization problem: find
values for A and B that minimizes the value of ranking function 3A-3B+4 over
the constraint (A-B ≥ 3) ∧ (3A-3B+4 > 0). Minimizing this function gives us
values for A and B that are desirable according to the quantitative criterion while
satisfying the given assertion. The solution produced by Z3 is: A=3 and B=0 with
the minimal objective 13. Therefore, the synthesizer reports this variant, i.e.
program where ??1=3 and ??2=0, as a “correct & optimal” solution.

We consider an alternative sketch of Loop1a, denoted by Loop1b, in which
the assertion in location 5O is (y < 8). The numerical invariant inferred in
location 5O is the same as for Loop1a as shown in Fig. 1. However, there are
now two solutions to the assertion (y < 8): (A ≤ B) when the left leaf node is
reached, and (1≤A-B≤7) when the right leaf node is reached. We perform two
backward termination lifted analysis to find optimal solutions for both correct
sub-families: (A≤B) and (1≤A-B≤7). The lifted ranking function inferred at the
initial location is given in Fig. 3. The solutions to the given optimization problem
produced by Z3 solver are: A=0, B=0 with the minimal objective 4 for the case
(A≤B); and A=1, B=0 with the minimal objective 7 for the case (1≤A-B≤7).

Let us consider the Loop2a sketch in Fig. 10. The lifted numerical invariant
inferred at location 6O is shown in Fig. 4. We can see that the assertion (y > 2)
is valid for variants satisfying: (A-B ≥ 1) ∧ (3 ≤ A ≤ Max). The lifted ranking
function inferred for this sub-family is shown in Fig. 5. It represents a piecewise-
defined ranking function since it depends on the value of the input variable x.
To represent graphically piecewise-defined ranking functions in decision trees, we
use rounded rectangles to represent second-level decision nodes that are labelled
with linear constraints defined over both feature and program variables. Thus,
they partition the configuration and memory space, i.e. the possible values of
feature and program variables (see Fig. 5). The obtained “correct & optimal”
solution is: A=3 and B=0 with the minimal objective 3 when (x>10) and -3x+36

when (x≤10). Similarly, we can resolve the Loop2b sketch, where the assertion
(y < 8) is considered. The “correct” variants satisfy: (A-B≥ 1) ∧ (Min≤ A≤ 7),
and the “correct & optimal” solution is: A=1 and B=0 with the minimal objective
3 when (x > 10) and -3x+36 when (x ≤ 10). Note that, the inferred ranking
functions for “correct” sub-families of Loop2a and Loop2b in Figs. 5 and 6 do
not depend on feature variables, so any “correct” solution is “optimal” as well.

From the decision trees inferred by performing lifted analyses of our motivat-
ing examples, we can see that the decision tree-based representation uses only
one or two leaf nodes, although there are many variants in total. This possibility
for sharing of analysis equivalent information corresponding to different variants
confirms that decision trees are symbolic and compact representation of lifted

2 Termination analysis is backward, so the final result is reported in the initial location.

6 A. S. Dimovski

A≤B

⊥ x=11 ∧ A=y

Fig. 4: Lifted numerical in-

variant before assertion in

Loop2a.

A-B≥

1, A≥ 3

x≤10

-3x+36 3

Fig. 5: Lifted ranking func-

tion at initial location of

Loop2a.

B+1≤

A≤7

x≤10

-3x+36 3

Fig. 6: Lifted ranking func-

tion at initial location of

Loop2b.

analysis elements. This is the key for obtaining efficient lifted analyses of pro-
gram families with large configuration spaces, and thus for efficiently solving the
quantitative sketching problem.

3 Transforming Sketches to Program Families

We now introduce the IMP language that we use to illustrate our work. We
describe two extensions of IMP: IMP?? for writing program sketches, and IMP
for writing program families. Finally, we define the transformation of sketches
to program families and show its correctness.

IMP. We use a simple imperative language, called IMP [27,25], for writing
general-purpose single-programs. Program variables Var are statically allocated,
and the only data type is the set Z of mathematical integers. Syntax is:

s ::= skip | x:=ae | s; s | if (be) then s else s | while (be) do s | assert (be),
ae ::= n | [n, n′] | x | ae⊕ae, be ::= ae▷◁ae | ¬be | be ∧ be | be ∨ be

where n ranges over integers Z, [n, n′] over integer intervals, x over program
variables Var, ⊕ ∈ {+,−, ∗, /}, and ▷◁∈ {<,≤,=, ̸=}. Intervals [n, n′] denote a
random choice of an integer in the interval. The set of all statements s is denoted
by Stm; the set of all arithmetic expressions ae is denoted by AExp; the set of
all boolean expressions be is denoted by BExp.

A program state σ : Σ = Var → Z is a mapping from program variables
to values. The meaning of boolean expressions [[be]] : Σ → P({true, false}),
arithmetic expressions [[ae]] : Σ → P(Z), and statements [[s]] : Σ → P(Σ), are
defined by induction on their structure [27,25]. For example, the meaning of an
arithmetic expression ae is a function from a state to a set of values:

[[n]]σ = {n}, [[[n, n′]]]σ = {n, . . . , n′}, [[x]]σ = {σ(x)},
[[ae0 ⊕ ae1]]σ = {n0 ⊕ n1 | n0 ∈ [[ae0]]σ, n1 ∈ [[ae1]]σ}

We write [[s]] for the set of final states that can be derived by executing s from
some initial input state [27,25].

Quantitative Program Sketching using Lifted Static Analysis 7

IMP??. The language for sketches IMP?? is obtained by extending IMP with a
basic hole construct, denoted by ??. The numerical hole ?? is a placeholder that
the synthesizer must replace with a suitable integer constant.

ae ::= . . . | ??

Each hole occurrence in a program sketch is assumed to be uniquely labelled as

??i and has a bounded integer domain [n, n′]. We will sometimes write ??
[n,n′]
i

to make explicit the domain of a given hole.
Let H be a set of holes in a program sketch. We define a control function

ϕ : Φ = H → Z to describe the value of each hole in the sketch. Thus, ϕ fully
describes a candidate solution to the sketch. We write sϕ to describe a candidate
solution to the sketch s fully defined by control function ϕ.

IMP. Let F = {A1, . . . , An} be a finite and totaly ordered set of numerical
features available in a program family. For each feature A ∈ F , dom(A) ⊆ Z
denotes the set of possible values that can be assigned to A. A valid combination
of feature’s values represents a configuration k, which specifies one variant of a
program family. It is given as a valuation function k : F → Z, which is a mapping
that assigns a value from dom(A) to each feature A ∈ F . We assume that only a
subset K of all possible configurations are valid. An alternative representation of
configurations is based upon propositional formulae. Each configuration k ∈ K
can also be represented by a propositional formula: (A1 = k(A1)) ∧ . . . ∧ (An =
k(An)). The set of configurations K can be also represented as a formula: ∨k∈Kk.
We define feature expressions, denoted FeatExp(F), as the set of propositional
logic formulas over constraints of F generated by:

θ ::= true | eF ▷◁ eF | ¬θ | θ1 ∧ θ2 | θ1 ∨ θ2, eF ::= n ∈ Z | A ∈ F | eF⊕eF

When a configuration k ∈ K satisfies a feature expression θ ∈ FeatExp(F), we
write k |= θ, where |= is the standard satisfaction relation. We write [[θ]] to
denote the set of configurations from K that satisfy θ, that is, k ∈ [[θ]] iff k |= θ.

The language for program families IMP is obtained by extending IMP with
a new compile-time conditional statement for encoding multiple variants and a
new arithmetic expression that represents a feature variable. The new statement
“#if (θ) s #endif” contains a feature expression θ ∈ FeatExp(F) as a presence
condition, such that only if θ is satisfied by a configuration k ∈ K the statement
s will be included in the variant corresponding to k. The syntax is:

s ::= . . . | #if (θ) s #endif, ae ::= . . . | A ∈ F

Any other preprocessor conditional constructs can be desugared and represented
only by #if construct. For example, #if (θ) s0 #elif (θ′) s1 #endif is trans-
lated into the following: #if (θ) s0 #endif ; #if (¬θ ∧ θ′) s1 #endif. Note that
feature variables A ∈ F can occur in arbitrary expressions in IMP, not only in
presence conditions of #if-s as in traditional program families [21,24].

The semantics of IMP has two stages: first, given a configuration k ∈ K
compute an IMP single-program without #if-s and A ∈ F ; second, the obtained

8 A. S. Dimovski

program is evaluated using the standard IMP semantics [24]. The first stage
is specified by the projection function πk, which recursively pre-processes all
sub-statements and sub-expressions of statements. Hence, πk(skip) = skip,
πk(x:=ae) = x:=πk(ae), πk(s;s

′) = πk(s);πk(s
′), πk(ae⊕ae′) = πk(ae)⊕πk(ae

′),
and πk(ae ▷◁ ae′) = πk(ae) ▷◁ πk(ae

′). For “#if (θ) s #endif”, statement s is
included in the variant if k |= θ, otherwise, if k ̸|= θ statement s is removed: 3

πk(#if (θ) s #endif) =

{
πk(s) if k |= θ

skip if k ̸|= θ
. For a feature A ∈ F , the projection

function πk replaces A with the value k(A) ∈ Z, that is πk(A) = k(A).

Transformation. We want to transform an input sketch ŝ with a set of m holes

??
[n1,n

′
1]

1 , . . . , ??
[nm,n′

m]
m into an output program family s with a set of features

A1, . . . , Am with domains [n1, n
′
1], . . . , [nm, n′

m], respectively. The set of config-
urations K in s includes all possible combinations of feature’s values.

If a hole occurs in a (linear) expression that can be exactly represented in
the underlying numerical abstract domain D, then we can handle the hole in a
more efficient symbolic way by an extended lifted analysis. Given the polyhedra
domain P, we say that a hole ?? can be exactly represented in P, if it occurs in an
expression of the form: α1x1 + . . . αi??+ . . . αnxn + β, where α1, . . . , αn, β ∈ Z
and x1, . . . xn are program variables or other hole occurrences. Similarly, we
define that a hole can be exactly represented in the interval I and the octagon
O domains, if it occurs in expressions of the form: ±?? + β and ±x ± ?? + β,
(where β ∈ Z, x is a program variable or other hole occurrence), respectively.

We now define rewrite rules for eliminating holes ?? from a program sketch
ŝ. Let s[??[n,n

′]] be a basic (non-compound) statement in which the hole ??[n,n
′]

occurs as a sub-expression. When the hole ??[n,n
′] occurs in an expression that

can be represented exactly in the numerical domain D, we eliminate ?? using
the symbolic rewrite rule:

s[??[n,n
′]] ⇝ s[A] (SR)

Otherwise, if the hole ??[n,n
′] occurs in an expression that cannot be represented

exactly in the numerical domain D, then we use the explicit rewrite rule:

s[??[n,n
′]] ⇝ #if (A=n) s[n] #elif . . . #elif (A=n′-1) s[n′-1] #else s[n′] . . . #endif (ER)

The set of features F is also updated with the fresh feature A. We write Rewrite(ŝ)
to be the resulting program family obtained by repeatedly applying rules (SR)
and (ER) on a program sketch ŝ to saturation.

Example 1. Reconsider the Loop1a and Loop2a sketches from Section 2. All
holes ?? can be represented exactly in the interval domain, so we use the symbolic
(SR) rule to obtain the program family. Consider the sketch: int x; while (x ≥
0) x := ??*x+10. The hole ?? cannot be represented exactly in any numerical
domain D. Thus, we use the explicit (ER) rule to obtain the program family. ⊓⊔
3 Since any k ∈ K is a valuation function, we have that either k |= θ holds or k ̸|= θ
(which is equivalent to k |= ¬θ) holds, for any θ ∈ FeatExp(F).

Quantitative Program Sketching using Lifted Static Analysis 9

The following result establishes the correctness of our transformation. It can
be proved by structural induction on statements and expressions.

Theorem 1. Let ŝ be a sketch with holes ??1, . . . , ??n, ϕ be a control function,
and ŝϕ be a candidate solution of ŝ. Let s = Rewrite(ŝ) be a program family, in
which features A1, . . . , An correspond to holes ??1, . . . , ??n. We define a config-
uration k ∈ K, s.t. k(Ai) = ϕ(??i) for 1≤ i ≤ n. Then, we have: [[ŝϕ]] = [[πk(s)]].

4 Decision Tree-based Lifted Analyses

In the context of program families, lifting means taking a static analysis that
works on IMP single-programs, and transforming it into an analysis that works
on IMP program families, without preprocessing them. In this work, we will use
lifted versions of the (forward) numerical analysis [25] and the (backward) ter-
mination analysis [31] from the abstract interpretation framework [9]. They will
be used to infer numerical invariants and piecewise-defined ranking functions in
all program locations. We work with lifted analyses based on the lifted domain of
decision trees [16], in which the leaf nodes belong to an existing single-program
domain (e.g., a numerical or termination domain) and decision nodes are linear
constraints over feature variables. This way, we encapsulate the set of config-
urations K into decision nodes where each top-down path represents a subset
of configurations from K, and we store in each leaf node the analysis property
generated from the variants corresponding to the given configurations.

4.1 Abstract domain for decision nodes

The domain of decision nodes CDV
is the finite set of linear constraints defined

over a set of variables V = {X1, . . . , Xk}. CD is constructed using the numerical
domain D (see Section 4.2) by mapping a conjunction of constraints from D
to a finite set of constraints in P(CD). We assume the set of variables V =
{X1, . . . , Xk} to be a finite and totally ordered set, such that the ordering is
X1 > . . . > Xk. We impose a total order <CD on CD to be the lexicographic
order on the coefficients α1, . . . , αk and constant αk+1 of the linear constraints:

(α1 ·X1+. . .+αk ·Xk+αk+1≥0) <CD (α′
1 ·X1+. . .+α′

k ·Xk+α′
k+1≥0)

⇐⇒ ∃j > 0.∀i < j.(αi = α′
i) ∧ (αj < α′

j)

The negation of linear constraints is formed as: ¬(α1X1+ . . . αkXk+β≥ 0) =
−α1X1 − . . . − αkXk − β − 1 ≥ 0. For example, the negation of X − 3 ≥ 0
is −X + 2 ≥ 0. To ensure canonical representation of decision trees, a linear
constraint c and its negation ¬c cannot both appear as decision nodes. Thus, we
only keep the largest constraint with respect to <CD between c and ¬c.

4.2 Abstract domain for leaf nodes

We assume the existence of a single-program abstract domain A defined over a
set of variables V = {X1, . . . , Xk}. The domain A is equipped with sound oper-
ators for concretization γA, ordering ⊑A, join ⊔A, meet ⊓A, bottom ⊥A, top ⊤A,

10 A. S. Dimovski

widening ∇A, and narrowing △A, as well as sound transfer functions for tests
(boolean expressions) FILTERA, forward assignments F-ASSIGNA, and back-
ward assignments B-ASSIGND. More specifically, FILTERA(a : A, be : BExp)
returns an abstract element from A obtained by restricting a to satisfy the test
be; F-ASSIGNA(a : A, x:=e : Stm) returns an updated version of a by abstractly
evaluating x:=e in it; whereas B-ASSIGNA(b : A, x:=ae : Stm) returns an ab-
stract element from A that can lead to the abstract element b to hold after
evaluating x:=ae. Note that a in F-ASSIGNA is an invariant in the initial loca-
tion of x:=ae that needs to be propagated forward, while b in B-ASSIGNA is an
invariant in the final location of x:=ae that needs to be propagated backwards.
We will sometimes write AV to explicitly denote the set of variables V over
which A is defined. In this work, we will use domains AVar, AF , and AVar∪F .

For the forward numerical analysis, we will instantiate A with some of the
known numerical domains ⟨D,⊑D⟩, such as Intervals ⟨I,⊑I⟩ [9,25], Octagons
⟨O,⊑O⟩ [25], and Polyhedra ⟨P,⊑P ⟩ [25]. The elements of I are intervals of
the form: ±X ≥ β, where X ∈ V, β ∈ Z; the elements of O are conjunctions of
octagonal constraints of the form ±X1 ± X2 ≥ β, where X1, X2 ∈ V, β ∈ Z;
while the elements of P are conjunctions of polyhedral constraints of the form
α1X1 + . . .+ αkXk + β ≥ 0, where X1, . . . Xk ∈ V, α1, . . . , αk, β ∈ Z.

For the backward termination analysis, we will instantiate A with the termi-
nation decision tree domain TT (CDVar∪F ,FA), also written TT for short, intro-
duced by Urban and Miné [31,32], where CDVar∪F is the domain for decision nodes
and FA is the domain of affine functions for leaf nodes. The elements of FA are:
{⊥F,⊤F} ∪ {f : Z|Var∪F| → N | f(x1, . . . , xn) = m1x1 + . . .+mnxn + q}, where
f ∈ FA is a natural-valued function of program and feature variables representing
an upper bound on the number of steps to termination; the element ⊥F repre-
sents potential non-termination; and ⊤F represents the lack of information to
conclude. The leaf nodes belonging to FA\{⊥F,⊤F} and {⊥F,⊤F} represent de-
fined and undefined leaf nodes, respectively. A termination decision tree t′ ∈ TT

is: either a leaf node ≪f≫with f ∈ FA, or [[c
′ : tl′, tr′]], where c′ ∈ CDVar∪F (de-

noted by t′.c) is the smallest constraint with respect to <D appearing in the tree
t′, tl′ (denoted by t′.l) is the left subtree of t′ representing its true branch, and
tr′ (denoted by t′.r) is the right subtree of t′ representing its false branch. The
path along a decision tree establishes a set of program states and a set of configu-
rations (those that satisfy the encountered constraints), and leaf nodes represent
partially-defined ranking functions over the given program states and configu-
rations. The transfer function B-ASSIGNTT (t′, x:=ae) substitutes the arithmetic
expression ae to the variable x in linear constraints occurring within decision
nodes of t′ and in functions occurring in leaf nodes of t′, whereas the transfer
function FILTERTT (t′, be) generates a set of linear constraints J from test be and
restricts t′ such that all paths satisfy the constraints from J . Finally, both trans-
fer functions increment the constant q of defined functions f ∈ FA\{⊥F,⊤F} in
all leaf nodes of t′.

We refer to [25,31] for a precise definition of all operations and transfer func-
tions of intervals, octagons, polyhedra, and termination decision tree domain.

Quantitative Program Sketching using Lifted Static Analysis 11

Algorithm 1: ASSIGNT(t, x:=e, C) when vars(ae) ⊆ Var

1 if isLeaf(t) then return ≪ASSIGNA(t, x:=e)≫;
2 else return [[t.c : ASSIGNT(t.l, x:=e, C∪{t.c}), ASSIGNT(t.r, x:=e, C∪{¬t.c})]] ;

4.3 Decision tree lifted domains

We now define the decision tree lifted domain T(CDF ,AVar∪F), written T for
short, for representing lifted analysis properties [16]. A decision tree t ∈ T(CD,A)
is either a leaf node ≪a≫with a ∈ A, or [[c : tl, tr]], where decision node c ∈ CD
(denoted by t.c) is the smallest constraint with respect to <CD appearing in the
tree t, tl (denoted by t.l) is the left subtree of t representing its true branch,
and tr (denoted by t.r) is the right subtree of t representing its false branch.
The path along a decision tree establishes the set of configurations (those that
satisfy the encountered constraints), and the leaf nodes represent their analysis
properties.

Operations. The concretization function γT of a decision tree t ∈ T(CD,A) re-
turns γA(a) for k ∈ K that satisfies the set C ∈ P(CD) of constraints accumulated
along the top-down path to the leaf node a ∈ A.

The binary operations rely on the algorithm for tree unification [16,31], which
finds a common labelling of decision nodes of two trees t1 and t2. Note that the
tree unification does not lose any information. All binary operations, including
ordering ⊑T, join ⊔T, meet ⊓T, widening ∇T, and narrowing △T, are performed
leaf-wise on the unified decision trees. For example, the ordering t1 ⊑T t2 of two
unified decision trees t1 and t2 is defined recursively as:

≪a1≫⊑T≪a2≫= a1⊑A a2, [[c : tl1, tr1]]⊑T [[c : tl2, tr2]] = (tl1⊑T tl2) ∧ (tr1⊑T tr2)

The top is: ⊤T =≪⊤A≫, while the bottom is: ⊥T =≪⊥A≫.

Transfer functions. We define lifted transfer functions for tests, (forward and
backward) assignments (ASSIGNT), and #if-s [16]. We consider several types of
tests be and assignments x:=ae: when be and ae contain only program variables;
and when be and ae contain both feature and program variables.

Transfer function ASSIGNT
4 for handling an assignment x:=ae in the input

tree t, when the set of variables in ae is vars(ae) ⊆ Var, is implemented by ap-
plying ASSIGNA leaf-wise, as shown in Algorithm 1. Similarly, transfer function
FILTERT for handling tests be ∈ BExp, when vars(be) ⊆ Var, is implemented
by applying FILTERA leaf-wise.

Transfer function ASSIGNT for x:=ae, when vars(ae) ⊆ Var ∪ F , is given in
Algorithm 2. It accumulates into the set C ∈ P(CD) (initialized to K) constraints
encountered along the paths of the decision tree t (Line 2), up to the leaf nodes
in which assignment is performed by ASSIGNAVar∪F . That is, we first merge

4 Note that ASSIGN is an abbreviation for both F-ASSIGN and B-ASSIGN.

12 A. S. Dimovski

Algorithm 2: ASSIGNT(t, x:=ae, C) when vars(ae) ⊆ Var ∪ F
1 if isLeaf(t) then return ASSIGNAVar∪F (t ⊎Var∪F C, x:=ae);
2 else return [[t.c : ASSIGNT(t.l, x:=e, C∪{t.c}), ASSIGNT(t.r, x:=e, C∪{¬t.c})]] ;

Algorithm 3: FILTERT(t, be, C) when vars(be) ⊆ Var ∪ F
1 if isLeaf(t) then
2 a′ = FILTERAVar∪F (t ⊎Var∪F C, be);
3 J = a′ ↾F ;
4 if isRedundant(J,C) then return ≪a′≫;
5 else return RESTRICT(≪a′≫, C, J\C);

6 else return [[t.c : FILTERT(t.l, x:=e, C∪{t.c}), FILTERT(t.r, x:=e, C∪{¬t.c})]] ;

constraints from the leaf node t defined over Var ∪ F and constraints from
decision nodes C ∈ P(CDF) defined over F , by using ⊎Var∪F operator, and then
we apply ASSIGNAVar∪F on the obtained result (Line 1).

Transfer function FILTERT for test be, when vars(be) ⊆ Var∪F , is described
by Algorithm 3. Similarly to ASSIGNT in Algorithm 2, it accumulates the con-
straints along the paths in a set C ∈ P(CD) up to the leaf nodes, and applies
FILTERAVar∪F on an abstract element obtained by merging constraints in the
leaf node and in C (Line 2). The obtained result a′ is a new leaf node, and
additionally a′ is projected on feature variables using ↾F operator to generate
a new set of constraints J that is added to the given path to a′ by using the
function RESTRICT [16] (Lines 3–5). The function isRedundant(J,C) checks if
the constraints from J are redundant with respect to the set C.

Finally, transfer function for #if directives is defined as:

[[#if (θ) s #end]]Tt = [[s]]TFILTERT(t,θ,K) ⊔T FILTERT(t,¬θ,K)

where [[s]]T(t) is transfer function for s and FILTERT(t, θ,K) is defined by Al-
gorithm 3 since θ contains only features. Transfer function for assertions is:
[[assert(be)]]T = FILTERT(t, be,K).

After applying transfer functions, the obtained decision trees may contain
some redundancy that can be exploited to further compress them. We use several
optimizations [16]. E.g., if constraints on a path to some leaf are unsatisfiable,
we eliminate that leaf node; if a decision node contains two same subtrees, then
we keep only one subtree and we also eliminate the decision node, etc.

4.4 Decision tree-based lifted analysis

Operations and transfer functions of T(CD,D) and T(CD,TT) are used to perform
the numerical and termination lifted analysis of program families, respectively.
The numerical lifted analysis derived from T(CD,D), written as TF for short, is a
pure forward analysis that infers numerical invariants in all program locations.

Quantitative Program Sketching using Lifted Static Analysis 13

We define the analysis function [[s]]TF t that takes as input a decision tree t
corresponding to the initial location of statement s, and outputs a decision tree
over-approximating the numerical invariant in the final location of s. The input
decision tree tKin,F at the initial location of a program family has only one leaf
node ⊤DVar∪F and decision nodes that define the set K. Lifted invariants are
propagated forward from the initial location towards the final location taking
assignments, #if-s, and tests into account with widening and narrowing around
while-s. We apply delayed widening [9], which means that we start extrapolating
by widening after a fixed number of iterations of a loop are analyzed explicitly.

Similarly, we define the termination lifted analysis derived from T(CD,TT),
written as TB for short. It is a pure backward analysis that infers ranking func-
tions in all program locations. We define the analysis function [[s]]TB t that takes
as input a decision tree t in the final location of statement s, and outputs a
decision tree over-approximating the ranking function in the initial location of
s. The input decision tree tKin,B at the final location of a program family has
only one leaf node 0 (zero function) and decision nodes that define the set K.
Lifted ranking functions are propagated backward from the final towards the
initial location.

We establish correctness of the lifted analysis based on T(CD,A) by showing
that it produces identical results with the Brute-Force enumeration approach
based on the domain A. Let [[s]]T denotes the transfer function of statement s
of IMP in T(CD,A), while [[s]]A denotes the transfer function of statement s of
IMP in A. Given t ∈ T(CD,A), we denote by Prk(t) ∈ A the leaf node of tree t
that corresponds to the variant k ∈ K.

Theorem 2. Prk([[s]]T(t))=[[πk(s)]]A(Prk(t)) for all k∈K.

Example 2. In Figs. 7 and 8 we depict decision trees at locations 2O and hO in-
ferred by performing (forward) numerical analysis based on the domain T(CP , P)
of the Loop1a program family (see Section 2). In order to enforce convergence
of the analysis, we apply the widening operator at the loop head, i.e. at the
location hO before the while test. We can see how the invariant at location 5O
shown in Fig. 1 is inferred from the invariant at location hO.

Subsequently, we perform a (backward) lifted termination analysis based on
the domain T(CP ,TT) of the Loop1a sub-family satisfying (A-B ≥ 3). Lifted
decision trees inferred at locations hO and 1O are shown in Figs. 9 and 2, re-
spectively. We can see how by back-propagating the tree at location hO, denoted
t hO (see Fig. 9), via assignments y := 0 and x := A at location 1O, we ob-
tain the tree at location 1O, denoted t 1O (see Fig. 2). The transfer function
B-ASSIGNT(t hO, x := A) will generate the tree t 1O where x is replaced with A.
The new decision node (A≥B+1) and the leaf node with ranking function 2 are
eliminated from t 1O since they are redundant with respect to (A-B≥3).

14 A. S. Dimovski

y=0 ∧ A=x

Fig. 7: Invariant at loc.
2O of Loop1a.

A≤B

y=0 ∧ A=x A≥x+1 ∧ x≥B ∧ A=x+y

Fig. 8: Invariant at loc. hO of

Loop1a.

A-B≥ 3

x≥ B+1

3x-3B+2 2

Fig. 9: Ranking fun. at loc.
hO of Loop1a.

5 Synthesis Algorithm

We can now solve the quantitative sketching problem using lifted analysis algo-
rithms. More specifically, we delegate the effort of conducting an effective search
of all possible sketch realizations to an efficient lifted static analyzer, which
combines the forward numerical and the backward termination analyses.

The synthesis algorithm SYNTHESIZE(ŝ : Stm) for solving a sketch ŝ is
given in Algorithm 4. First, we transform the program sketch ŝ into a program
family s = Rewrite(ŝ) (Line 1). Then, we call function [[s]]TF tKin,F to perform the
forward numerical lifted analysis of s. The inferred decision tree tF at the final
location of s is analyzed by function FindCorrect (Line 3) to find the sets of
variants for which non-⊥D and non-⊤D leaf nodes are reachable. The set of vari-
ants for which ⊥D leaf node is reachable are “incorrect” with respect to the given
assertions; whereas the set of variants for which ⊤D leaf node is reachable are “I
don’t know” (inconclusive). For each non-⊥D and non-⊤D leaf node, we generate
the set of variants K′ ⊆ K that satisfy the encountered linear constraints along
the top-down path to that leaf node as well as the given assertions. For each such
“correct” set of variants K’, we perform the backward termination lifted analysis
[[s]]TB tK

′

in,B . The inferred decision tree tB is analyzed by function FindOptimal
(Line 7). It calls the Z3 solver [26] to solve the following optimization problem:
find a model that minimizes the value of ranking functions t′ ∈ TT , such that
the linear constraints along the top-down paths to those leaf nodes are satisfied.
More formally, given a decision tree t ∈ T(CD,TT), we define the function ϕ[C]t
that finds a set of pairs (k, t′) consisting of valid configurations k ∈ K and the
corresponding ranking function t′ ∈ TT as follows:

ϕ[C](≪t′≫)={(k, t′) | k ∈ K, k |= C}, ϕ[C]([[c : tl, tr]])=ϕ[C ∪ {c}](tl) ∪ ϕ[C ∪ {¬c}](tr)

The optimization problem is the following. Given a decision tree tB ∈ T(CD,TT)
inferred at the initial location of s, find a configuration k ∈ K such that the cor-
responding ranking function is minimal. That is, mink∈K{t′ | (k, t′) ∈ ϕ[K]tB}.

The configuration k with the minimal ranking function found by Z3 is re-
ported as a “correct and optimal” solution to the quantitative sketching problem.
Theorem 3. SYNTHESIZE(ŝ) is correct and terminates.

Quantitative Program Sketching using Lifted Static Analysis 15

Algorithm 4: SYNTHESIZE(ŝ : Stm)

1 s = Rewrite(ŝ);

2 tF = [[s]]TF tKin,F ;
3 C = FindCorrect(tF);
4 while C ̸= ∅ do
5 K′ = C.remove();

6 tB = [[s]]TB tK
′

in,B ;
7 sol.insert(FindOptimal(tB))

8 return sol

6 Evaluation

We evaluate our approach for program sketching by comparing it with the
Brute-Force enumeration approach and the popular Sketch tool.

Implementation We have implemented our synthesis algorithm for quantitative
program sketching [14] within the FamilySketcher tool [17]. It uses the lifted
decision tree domain T(CD,A), where A is instantiated either to numerical ab-
stract domain D or to the termination decision tree domain TT . The abstract op-
erations and transfer functions for the numerical domain D: intervals, octagons,
polyhedra, are provided by the APRON library [23], while for the termination
decision tree domain are provided by the Function tool [32]. The tool is written
in OCaml and consists of around 7K LOC. The current tool provides a limited
support for arrays, pointers, struct and union types. The only basic data type
is mathematical integers, which is sufficient for our evaluation.

Within the FamilySketcher, we have also implemented the Brute-Force

enumeration approach that analyzes all variants (sketch realizations), one by
one, using the single-program domains D and TT .

Experiment setup and Benchmarks All experiments are executed on a 64-bit
Intel®CoreTM i7-1165G7 CPU@2.80GHz, VM LUbuntu 20.10, with 8 GB mem-
ory, and we use a timeout value of 300 seconds. All times are reported as average
over five independent executions. We report times needed for the actual analysis
task to be performed. The implementation is available from [14]: https://zenodo.
org/record/5898643#.YhJLRejMLIU. We compare our approach with program
sketching tool Sketch version 1.7.6 that uses SAT-based counterexample-guided
inductive synthesis [30,29], and with the Brute-Force enumeration approach.
The evaluation is performed on several C numerical sketches collected from the
Sketch project [30,29], SV-COMP (https://sv-comp.sosy-lab.org/), and the
SyGuS-Competition [1]. We use the following benchmarks: Loop1a and Loop1b
(Sec. 2), Loop2a and Loop2b (Fig. 10), LoopCond (Fig. 11), NestedLoop

(Fig. 12), vmcai2004 (Fig. 13).

Performance Results Table 1 shows the results of synthesizing our benchmarks.
Note that Sketch reports only one “correct” solution for each sketch, which

https://zenodo.org/record/5898643#.YhJLRejMLIU
https://zenodo.org/record/5898643#.YhJLRejMLIU
https://sv-comp.sosy-lab.org/

16 A. S. Dimovski

void main() {
int x;

int y := ??1;

while (x ≤ 10) {
if (y ≥??2) x := x+1;

else x := x-1; }
assert (y > 2);

//assert (y < 8);

}

Fig. 10: Loop2a.

void main(unsigned int x){
int y := 0;

while (x ≥ 0) {
x := x-1;

if (y<??) y := y+1;

else y := y-1; }
assert (y ≥ 1);

}

Fig. 11: LoopCond.

void main(unsigned int x){
int s := 0, y := ??1;

int x0 := x, y0 := y;

while (x ≥ 0) {
x := x-1;

while (y ≥??2) {
y := y-1; s := s+1; }

} assert (s ≥ x0+y0);

}

Fig. 12: NestedLoop.

void main(){
int x := ??1, y:=0;

while (x > 0) {
x := -??2*x+10;

y := y+1;

}
assert (y≤2);

}

Fig. 13: vmcai2004.

does not have to be “optimal” with respect to the given quantitative objective.
FamilySketcher and Brute-Force use the polyhedra domain as parameter.

The Loop1a and Loop1b sketches are handled symbolically by (SR) rule.
Thus, our approach does not depend on sizes of hole domains. FamilySketcher
terminates in (around) 0.016 sec for Loop1a and in 0.026 sec for Loop1b. In
contrast, Brute-Force and Sketch do depend on the sizes of holes. Sketch
terminates in 37.74 sec (resp., 2.44 sec) for 16-bits sizes of holes for Loop1a

(resp., Loop1b). It times out for bigger sizes of Loop1a. Sketch often reports
“correct & optimal” solutions for both sketches. Similarly, our tool can handle
symbolically Loop2a and Loop2b in 0.060 sec and 0.047 sec. However, Sketch
cannot resolve them, since it uses 8 unrollments of the loop by default. If the loop
is unrolled 11 times, Sketch terminates but often reports the empty solution.

The LoopCond sketch contains one hole that can be handled symbolically
by (SR) rule. FamilySketcher has similar running times for all domain sizes
reporting the solution ?? ≥ 2 and ranking function 4x+8. In contrast, Sketch
resolves this example only if the loop is unrolled as many times as is the size
of the hole and inputs (e.g., 32 times for 5-bits). Hence, Sketch’s performance
declines with the growth of size of the hole, and times out for 16-bits.

The NestedLoop sketch contains two holes that can be handled symbolically
by (SR) rule. FamilySketcher terminates in (around) 0.126 sec for all sizes
of holes. The “correct” solution is (??1 − ??2 ≥ 0) ∧ (Min≤ ??2 ≤ 1), while the
“correct & optimal” solution is (??1 = ??2 = 0) with ranking function 13. On
the other hand, Brute-Force takes 65.03 sec for 5-bit size of holes and times
out for larger sizes, while Sketch cannot resolve this benchmark.

The vmcai2004 sketch contains two holes. The first one ??1 is handled sym-
bolically by (SR) rule while the second one ??2 explicitly by (ER) rule. The
performance of FamilySketcher depends on the size of ??2. The decision tree
inferred in the location before the assertion contains one leaf node for each pos-
sible value of feature B (features A and B represent ??1 and ??2). The sub-family
of “correct” solutions is: (1 ≤ A ≤ Max) ∧ (B ≥ 10), while the “correct & opti-
mal” solution is (A=1)∧ (B=10) with ranking function 6. Sketch scales better in
this case reporting one “correct” (but not “optimal”) solution. However, Fam-
ilySketcher still outperforms the Brute-Force approach.

Quantitative Program Sketching using Lifted Static Analysis 17

Table 1: Performance results of FamilySketcher vs. Sketch vs. Brute-Force.
FamilySketcher and Brute-Force use Polyhedra domain. All times in sec.

Bench.

5 bits 6 bits 16 bits

Family Sketch Brute Family Sketch Brute Family Sketch Brute

Sketcher Force Sketcher Force Sketcher Force

Loop1a 0.016 0.192 4.66 0.017 0.197 21.33 0.017 37.74 timeout

Loop1b 0.026 0.203 4.77 0.026 0.216 21.38 0.027 2.44 timeout

Loop2a 0.060 0.200 8.66 0.060 0.202 42.81 0.061 0.348 timeout

Loop2b 0.047 0.203 8.45 0.047 0.205 36.04 0.049 0.521 timeout

LoopCond 0.042 0.207 1.19 0.042 0.209 2.56 0.043 timeout timeout

NestedLoop 0.126 timeout 65.03 0.126 timeout timeout 0.128 timeout timeout

vmcai2004 4.69 0.192 5.12 15.52 0.229 19.12 timeout 0.292 timeout

Discussion In summary, we can see that FamilySketcher often outperforms
Sketch, especially in case of sketches that can be handled symbolically by (SR)
rule. But, for sketches with holes that need to be handled by (ER) rule, the per-
formances of our tool decline, which is the consequence of the need to explicitly
consider all values of those holes. However, even in this case FamilySketcher
scales better than Brute-Force. This is due to the fact that Brute-Force com-
piles and executes the fixed-point iterative algorithm once for each variant, while
our approach does it once per whole family plus there are still possibilities for
sharing. Moreover, FamilySketcher reports the “correct & optimal” solution,
while Sketch reports the first found “correct” solution.

Threats to validity The current tool has only limited support for arrays, pointers,
struct and union types. However, the above features are largely orthogonal to
the solution proposed here. In particular, these features complicate the seman-
tics of single-programs and implementation of domains for leaf nodes, but have
no impact on the semantics of variability-specific constructs. We perform lifted
analysis of relatively small benchmarks. However, the focus of our approach is
to combat the realization space blow-up of sketches, not their LOC size. So, we
expect to obtain similar or better results for larger benchmarks. Although we
analyze relatively small set of benchmarks, we expect the results to carry over
the other benchmarks.

7 Related Work

The proposed program sketcher uses numerical abstract domains as parame-
ters, so it can be applied for synthesizing programs with numerical data types.
The existing widely-known sketching tool Sketch [29,30], which uses SAT-based
counterexample-guided inductive synthesis, is more general and especially suited
for synthesizing bit-manipulating programs. However, Sketch reasons about
loops by unrolling them, so is very sensitive to the degree of unrolling. Our
approach being based on abstract interpretation does not have this constraint,

18 A. S. Dimovski

since we use the widening extrapolation operator to handle unbounded loops
and an infinite number of execution paths in a sound way. This is stronger than
fixing a priori a bound on the number of iterations of loops as in the Sketch

tool. Moreover, Sketch may need several iterations to converge reporting only
one solution. On the other hand, our approach needs only one iteration to per-
form lifted analysis reporting several, and very often all, “correct” solutions.
This is the key for applying our approach to solve the quantitative sketching
problem. Another work for solving a quantitative sketching problem is proposed
by Chaudhuri et. al [6]. The quantitative optimum they consider is that the ex-
pected output value on probabilistic inputs is minimal [5]. They use smoothed
proof search and probabilistic analysis to implement this approach in the Fer-
mat tool built on top of Sketch. In contrast, in this work the quantitative
optimum we consider is that the worst-case behavior of the program is minimal.

Recently, there have been proposed several works that solve the sketching
synthesis problem using product line analysis and verification algorithms. Ceska
et. al. [4] use a counterexample guided abstraction refinement technique for an-
alyzing product lines to resolve probabilistic PRISM sketches. The work [17] uses
a (forward) numerical lifted analysis based on abstract interpretation to resolve
numerical sketches. We extend here this approach by considering the more gen-
eral quantitative sketching problem, where we additionally employ a (backward)
termination lifted analysis to find a solution that is not only “correct” but also
“optimal” to the given quantitative objective.

Several lifted analysis based on abstract interpretation have been proposed
recently [24,11,12,16,18,15,13] for analyzing program families with #if-s. Midt-
gaard et. al. [24] have proposed the lifted tuple-based analysis, while the work
[11,12] improves the tuple representation by using lifted binary decision diagram
(BDD) domains. They are applied to program families with only Boolean fea-
tures. Subsequently, the lifted decision tree domain has been proposed to handle
program families with both Boolean and numerical features [16,18], as well as
dynamic program families where features can change during run-time [15]. The
above lifted analyses are forward and infer numerical invariants, while a back-
ward termination analysis for inferring ranking functions is proposed in [13].

Decision-tree abstract domains have been used in abstract interpretation
community recently [10,7,32]. Segmented decision tree abstract domains have
enabled path dependent static analysis [10,7]. Their elements contain decision
nodes that are determined either by values of program variables [10] or by the
if conditions [7], whereas the leaf nodes are numerical properties. Urban and
Miné [31,32] use decision tree abstract domains to prove program termination.

8 Conclusion

In this work, we proposed a new approach for synthesis of program sketches,
such that the resulting program satisfies the combined boolean and quantitative
specifications. We have shown that both reasoning tasks can be accomplished
using a combination of forward and backward lifted analysis. We experimentally
demonstrate the effectiveness of our approach on a variety of C benchmarks.

Quantitative Program Sketching using Lifted Static Analysis 19

References

1. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design, FMCAD 2013. pp. 1–8. IEEE (2013),
http://ieeexplore.ieee.org/document/6679385/

2. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Computer Aided Verification, 21st In-
ternational Conference, CAV 2009. Proceedings. LNCS, vol. 5643, pp. 140–156.
Springer (2009). https://doi.org/10.1007/978-3-642-02658-4 14, https://doi.org/
10.1007/978-3-642-02658-4 14

3. Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: Spllift:
statically analyzing software product lines in minutes instead of years. In: ACM
SIGPLAN Conference on PLDI ’13. pp. 355–364 (2013)

4. Ceska, M., Dehnert, C., Jansen, N., Junges, S., Katoen, J.: Model repair revamped:
On the automated synthesis of markov chains. In: Essays Dedicated to Scott A.
Smolka on the Occasion of His 65th Birthday. LNCS, vol. 11500, pp. 107–125.
Springer (2019). https://doi.org/10.1007/978-3-030-31514-6 7, https://doi.org/10.
1007/978-3-030-31514-6 7

5. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and syn-
thesizing systems in probabilistic environments. In: Computer Aided Verification,
22nd International Conference, CAV 2010. Proceedings. LNCS, vol. 6174, pp.
380–395. Springer (2010). https://doi.org/10.1007/978-3-642-14295-6 34, https:
//doi.org/10.1007/978-3-642-14295-6 34

6. Chaudhuri, S., Clochard, M., Solar-Lezama, A.: Bridging boolean and quantitative
synthesis using smoothed proof search. In: The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14. pp.
207–220. ACM (2014). https://doi.org/10.1145/2535838.2535859, https://doi.org/
10.1145/2535838.2535859

7. Chen, J., Cousot, P.: A binary decision tree abstract domain functor. In:
Static Analysis - 22nd International Symposium, SAS 2015, Proceedings. LNCS,
vol. 9291, pp. 36–53. Springer (2015). https://doi.org/10.1007/978-3-662-48288-
9 3, https://doi.org/10.1007/978-3-662-48288-9 3

8. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2001)

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: Conf. Record of the Fourth ACM Symposium on POPL. pp. 238–
252. ACM (1977). https://doi.org/10.1145/512950.512973, http://doi.acm.org/10.
1145/512950.512973

10. Cousot, P., Cousot, R., Mauborgne, L.: A scalable segmented decision tree ab-
stract domain. In: Time for Verification, Essays in Memory of Amir Pnueli. LNCS,
vol. 6200, pp. 72–95. Springer (2010). https://doi.org/10.1007/978-3-642-13754-
9 5, https://doi.org/10.1007/978-3-642-13754-9 5

11. Dimovski, A.S.: Lifted static analysis using a binary decision diagram abstract
domain. In: Proceedings of the 18th ACM SIGPLAN International Conference on
GPCE 2019. pp. 102–114. ACM (2019). https://doi.org/10.1145/3357765.3359518,
https://doi.org/10.1145/3357765.3359518

12. Dimovski, A.S.: A binary decision diagram lifted domain for an-
alyzing program families. J. Comput. Lang. 63, 101032 (2021).

http://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/978-3-642-14295-6_34
https://doi.org/10.1007/978-3-642-14295-6_34
https://doi.org/10.1007/978-3-642-14295-6_34
https://doi.org/10.1145/2535838.2535859
https://doi.org/10.1145/2535838.2535859
https://doi.org/10.1145/2535838.2535859
https://doi.org/10.1007/978-3-662-48288-9_3
https://doi.org/10.1007/978-3-662-48288-9_3
https://doi.org/10.1007/978-3-662-48288-9_3
https://doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1007/978-3-642-13754-9_5
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1145/3357765.3359518

20 A. S. Dimovski

https://doi.org/10.1016/j.cola.2021.101032, https://doi.org/10.1016/j.cola.
2021.101032

13. Dimovski, A.S.: Lifted termination analysis by abstract interpretation and its
applications. In: GPCE ’21: Concepts and Experiences, Chicago, IL, USA, Oc-
tober, 2021. pp. 96–109. ACM (2021). https://doi.org/10.1145/3486609.3487202,
https://doi.org/10.1145/3486609.3487202

14. Dimovski, A.S.: Tool artifact for ”quantitative program sketching using lifted
static analysis”. Zenodo (2022). https://doi.org/10.5281/zenodo.5898643, https:
//zenodo.org/record/5898643#.YhJLRejMLIU

15. Dimovski, A.S., Apel, S.: Lifted static analysis of dynamic program families by ab-
stract interpretation. In: 35th European Conference on Object-Oriented Program-
ming, ECOOP 2021. LIPIcs, vol. 194, pp. 14:1–14:28. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ECOOP.2021.14,
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14

16. Dimovski, A.S., Apel, S., Legay, A.: A decision tree lifted domain for analyzing
program families with numerical features. In: Fundamental Approaches to Software
Engineering - 24th International Conference, FASE 2021, Proceedings. LNCS, vol.
12649, pp. 67–86. Springer (2021), https://arxiv.org/abs/2012.05863

17. Dimovski, A.S., Apel, S., Legay, A.: Program sketching using lifted analy-
sis for numerical program families. In: NASA Formal Methods - 13th Inter-
national Symposium, NFM 2021, Proceedings. LNCS, vol. 12673, pp. 95–112.
Springer (2021). https://doi.org/10.1007/978-3-030-76384-8 7, https://doi.org/10.
1007/978-3-030-76384-8 7

18. Dimovski, A.S., Apel, S., Legay, A.: Several lifted abstract domains for static anal-
ysis of numerical program families. Sci. Comput. Program. 213, 102725 (2022).
https://doi.org/10.1016/j.scico.2021.102725, https://doi.org/10.1016/j.scico.2021.
102725

19. Dimovski, A.S., Brabrand, C., Wasowski, A.: Variability abstractions for lifted
analysis. Sci. Comput. Program. 159, 1–27 (2018)

20. Dimovski, A.S., Brabrand, C., Wasowski, A.: Finding suitable variabil-
ity abstractions for lifted analysis. Formal Aspects Comput. 31(2), 231–
259 (2019). https://doi.org/10.1007/s00165-019-00479-y, https://doi.org/10.1007/
s00165-019-00479-y

21. Hunsen, C., Zhang, B., Siegmund, J., Kästner, C., Leßenich, O., Becker, M.,
Apel, S.: Preprocessor-based variability in open-source and industrial soft-
ware systems: An empirical study. Empirical Software Engineering 21(2), 449–
482 (2016). https://doi.org/10.1007/s10664-015-9360-1, https://doi.org/10.1007/
s10664-015-9360-1

22. Iosif-Lazar, A.F., Melo, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Effective
analysis of C programs by rewriting variability. Art Sci. Eng. Program. 1(1), 1
(2017). https://doi.org/10.22152/programming-journal.org/2017/1/1, https://doi.
org/10.22152/programming-journal.org/2017/1/1

23. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains
for static analysis. In: Computer Aided Verification, 21st Inter. Confer-
ence, CAV 2009. Proceedings. LNCS, vol. 5643, pp. 661–667. Springer
(2009). https://doi.org/10.1007/978-3-642-02658-4 52, https://doi.org/10.1007/
978-3-642-02658-4 52

24. Midtgaard, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Systematic deriva-
tion of correct variability-aware program analyses. Sci. Comput. Program. 105,
145–170 (2015). https://doi.org/10.1016/j.scico.2015.04.005, http://dx.doi.org/10.
1016/j.scico.2015.04.005

https://doi.org/10.1016/j.cola.2021.101032
https://doi.org/10.1016/j.cola.2021.101032
https://doi.org/10.1016/j.cola.2021.101032
https://doi.org/10.1145/3486609.3487202
https://doi.org/10.1145/3486609.3487202
https://doi.org/10.5281/zenodo.5898643
https://zenodo.org/record/5898643#.YhJLRejMLIU
https://zenodo.org/record/5898643#.YhJLRejMLIU
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://arxiv.org/abs/2012.05863
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1016/j.scico.2021.102725
https://doi.org/10.1016/j.scico.2021.102725
https://doi.org/10.1016/j.scico.2021.102725
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s10664-015-9360-1
https://doi.org/10.1007/s10664-015-9360-1
https://doi.org/10.1007/s10664-015-9360-1
https://doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1016/j.scico.2015.04.005
http://dx.doi.org/10.1016/j.scico.2015.04.005
http://dx.doi.org/10.1016/j.scico.2015.04.005

Quantitative Program Sketching using Lifted Static Analysis 21

25. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpreta-
tion. Foundations and Trends in Programming Languages 4(3-4), 120–372 (2017).
https://doi.org/10.1561/2500000034, https://doi.org/10.1561/2500000034

26. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analy-
sis of Systems, 14th International Conference, TACAS 2008. Proceedings. LNCS,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24, https://doi.org/10.1007/978-3-540-78800-3 24

27. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag, Secaucus, USA (1999)

28. von Rhein, A., Liebig, J., Janker, A., Kästner, C., Apel, S.: Variability-aware
static analysis at scale: An empirical study. ACM Trans. Softw. Eng. Methodol.
27(4), 18:1–18:33 (2018). https://doi.org/10.1145/3280986, https://doi.org/10.
1145/3280986

29. Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013).
https://doi.org/10.1007/s10009-012-0249-7, https://doi.org/10.1007/
s10009-012-0249-7

30. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-
ing for bit-streaming programs. In: Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation. pp. 281–294.
ACM (2005). https://doi.org/10.1145/1065010.1065045, https://doi.org/10.1145/
1065010.1065045

31. Urban, C.: Static Analysis by Abstract Interpretation of Functional Temporal
Properties of Programs. (Analyse Statique par Interprétation Abstraite de Pro-
priétés Temporelles Fonctionnelles des Programmes). Ph.D. thesis, École Normale
Supérieure, Paris, France (2015), https://tel.archives-ouvertes.fr/tel-01176641

32. Urban, C., Miné, A.: A decision tree abstract domain for proving conditional termi-
nation. In: Static Analysis - 21st International Symposium, SAS 2014. Proceedings.
LNCS, vol. 8723, pp. 302–318. Springer (2014). https://doi.org/10.1007/978-3-319-
10936-7 19, https://doi.org/10.1007/978-3-319-10936-7 19

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1065010.1065045
https://tel.archives-ouvertes.fr/tel-01176641
https://doi.org/10.1007/978-3-319-10936-7_19
https://doi.org/10.1007/978-3-319-10936-7_19
https://doi.org/10.1007/978-3-319-10936-7_19
http://creativecommons.org/licenses/by/4.0/

	Quantitative Program Sketching using Lifted Static Analysis

