
Family-based model checking of fMultiLTL properties

Aleksandar S. Dimovski
aleksandar.dimovski@unt.edu.mk

Mother Teresa University
Skopje, North Macedonia

Sami Lazreg
sami.lazreg@uni.lu

SnT, University of Luxembourg
Luxembourg

Maxime Cordy
maxime.cordy@uni.lu

SnT, University of Luxembourg
Luxembourg

Axel Legay
axel.legay@uclouvain.be

Université catholique de Louvain
Belgium

ABSTRACT

We introduce a new logic for expressing multi-properties of sys-
tem families (Software Product Lines - SPLs). While the standard
LTL logic refers only to a single trace at a time, fMultiLTL logic
proposed here refers to multiple traces originating from different
sets of variants of the SPL. This is achieved by allowing so-called
featured quantification over traces, ∀𝜓 and ∃𝜓 , where the feature
expression𝜓 describes a set of variants (sub-family) the quantified
trace comes from. A specialized family-based model checking al-
gorithm for verifying some fragments of fMultiLTL is given. A
prototype family-based model checker, called Dædalux, has been
implemented. We illustrate the practicality of this approach on
several interesting SPL models.

CCS CONCEPTS

• Software and its engineering → Software notations and

tools; Software creation and management; • Theory of computa-

tion → Semantics and reasoning.

KEYWORDS

Software Product Lines, Model Checking, LTL, Temporal Multi-
Properties,

ACM Reference Format:

Aleksandar S. Dimovski, Sami Lazreg, Maxime Cordy, and Axel Legay.
2023. Family-based model checking of fMultiLTL properties. In 27th ACM
International Systems and Software Product Line Conference - Volume A (SPLC
’23), August 28-September 1, 2023, Tokyo, Japan. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3579027.3608976

1 INTRODUCTION

Software Product Line Engineering (SPLE) [14, 44] represents an
efficient method for building families of similar systems. Implemen-
tations of such system families use features (statically configured
options) to organize the variable functionality. Family members,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’23, August 28-September 1, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0091-0/23/08. . . $15.00
https://doi.org/10.1145/3579027.3608976

called variants, are specified in terms of features selected for that
particular variant. The reuse of code common to multiple variants
is thus maximized. In the past decade, the SPL method has grown in
popularity, especially in the domains of embedded systems, system-
level software, communication protocols, etc [14].

In many application domains, such as automotive and avion-
ics, quality assurance is of predominant importance. This requires
a solid evidence that system families indeed satisfy their speci-
fications. Researchers have addressed this problem by designing
compact representations for modelling the behaviour of all variants
of a system family in a single compact structure, and by designing
aggregate family-based model checking algorithms to efficiently
verify such compact representations. In particular, the family-based
model checking algorithms allow simultaneous verification of all
variants of a system family in a single run by exploiting the com-
monalities between the variants. Those algorithms are capable of
identifying all variants that satisfy a property, as well as all variants
that do not satisfy the property together with the corresponding
counter-examples. Specialized family-based model checking algo-
rithms have been developed for various modelling formalisms: reac-
tive [10, 11, 17, 26, 48], real-time [15, 33], probabilistic [6] systems,
as well as for verification of properties in various temporal logics:
linear-time temporal logic LTL [10, 11, 26], computation tree logic
CTL∗ [17, 22, 32], `-calculus [47].

The LTL is a logic for expressing trace properties. However, some
behaviors cannot be expressed by referring to each trace individ-
ually. For example, secure information flow and non-interference
[3, 49] are maintained in a system if for every two traces, if their
low-security inputs are identical then so are their low security out-
puts, regardless of their high-security variables. They cannot be
characterized via single traces. In fact, they cannot be expressed
neither in CTL∗ nor in `-calculus. In [7, 35, 37], properties describ-
ing the behaviour of a combination of traces are introduced. They
are known as hyper-properties (HyperLTL) [7, 35] when different
traces refer to the same system, and multi-properties (MultiLTL)
[37] when different traces refer to different components of a system.
That is,MultiLTL enable us to relate traces from one component
(sub-system) to traces of another component of a compound system.
We now extend the notion of MultiLTL in the context of system
families and SPLs, thus obtaining the so-called featured MultiLTL,
denoted by fMultiLTL.

In this paper, we introduce a new logic fMultiLTL for specify-
ing multi-properties of system families and we study algorithms
for their automatic verification. fMultiLTL generalizes LTL by

https://orcid.org/0000-0002-3601-2631
https://orcid.org/0009-0002-5201-3463
https://orcid.org/0000-0001-8312-1358
https://orcid.org/0000-0003-2287-8925
https://doi.org/10.1145/3579027.3608976
https://doi.org/10.1145/3579027.3608976

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Dimovski et al.

explicitly relating traces from different variants of a system family.
While LTL implicitly quantifies over only a single execution trace
of a system, fMultiLTL allows explicit quantification over mul-
tiple execution traces of a system family simultaneously, as well
as propositions that specify relationships among those traces. In
particular, fMultiLTL allows featured quantification, ∀𝜓 and ∃𝜓 ,
referring to the sub-family (a set of variants) described by the fea-
ture expression𝜓 . This way, traces from the sub-family described
by𝜓 can be referred to in the atomic propositions. Since a system
family consists of a set of similar systems, fMultiLTL properties
will enable us to relate traces from one subset of systems to another
subset. For example, the diversity property [45] asks all systems
from a family to represent a different implementation of the same
high-level system. That is, all systems implement the same function-
ality but differ in their implementation details. Diversity has been
used as a security property to resist attacks that exploit memory
layout or instruction sequence specifics. Given a high-level system
described with the base feature, and two low-level implementa-
tions described with features f1 and f2 respectively, the diversity
property can be expressed as:

𝜑1 = ∀base𝜋0 ∃f1𝜋1 ∃
f2
𝜋2 .□

(
in𝜋0=in𝜋1=in𝜋2 =⇒ out𝜋0=out𝜋1=out𝜋2

)
𝜑2 = ∀f1𝜋1 ∃

base
𝜋0 .□

(
in𝜋1 =in𝜋0 =⇒ out𝜋1 =out𝜋0

)
𝜑3 = ∀f2𝜋2 ∃

base
𝜋0 .□

(
in𝜋2 =in𝜋0 =⇒ out𝜋2 =out𝜋0

)
where in𝜋0 = in𝜋1 = in𝜋2 and out𝜋0 = out𝜋1 = out𝜋2 express that
the three traces 𝜋0, 𝜋1, 𝜋2 agree on the input and output variables in
and out, respectively. Note that the traces 𝜋0, 𝜋1, and 𝜋2 come from
the systems that contain features base, f1 and f2, respectively.
Our fMultiLTL logic enables to directly and naturally express
properties like the one above.

We present family-based model checking algorithms applicable
to restricted type of fMultiLTL properties, called alternation-free
fMultiLTL, in which the series of quantifiers at the beginning of
a formula involve zero alternation. Finally, we have implemented
a prototype tool within Daedalux, a new-generation SPL model
checking platform, and we practically evaluated the algorithms
for verifying the alternation-free fragment of fMultiLTL. This
is a useful fragment which allows specifying many interesting
properties of system families.

To summarize, our contributions are as follows:

(1) We define a new logic fMultiLTL for expressing properties
that specify relations over multiple traces from various sets
of variants of a system family;

(2) We propose a specialized family-based model checking algo-
rithm for automatic verification of alternation-free fragment
of fMultiLTL;

(3) We describe a prototype implementation of our family-
based model checking algorithm and use it to verify some
interesting alternation-free fMultiLTL properties of system
families.

2 BACKGROUND: SYSTEM FAMILIES

In this section, we summarize the existing background for our work.
We present modelling formalisms used to compactly represent sys-
tem families, and define their semantics.

Let F = {𝐴1, . . . , 𝐴𝑛} be a finite set of Boolean variables repre-
senting the features available in a system family. A specific subset
of features, 𝑘 ⊆ F , known as configuration, specifies a variant of a
system family. We assume that only a subset K ⊆ 2F of configura-
tions are valid. An alternative representation of configurations is
based upon propositional formulae. Each configuration 𝑘 ∈ K can
be represented by a formula: a (𝐴1) ∧ . . .∧a (𝐴𝑛), where a (𝐴𝑖) = 𝐴𝑖

if 𝐴𝑖 ∈ 𝑘 , and a (𝐴𝑖) = ¬𝐴𝑖 if 𝐴𝑖 ∉ 𝑘 for 1 ≤ 𝑖 ≤ 𝑛. We will use both
representations interchangeably.

We use transition systems (TS) to describe behaviors of single
systems. A transition system is a tuple T = (𝑆,Act, 𝐼 , trans,AP, 𝐿),
where 𝑆 is a set of states; 𝐼 ⊆ 𝑆 is a set of initial states; trans ⊆
𝑆×Act×𝑆 is a transition relation which is total, so that for each state
there is an outgoing transition; AP is a set of atomic propositions;
and 𝐿 : 𝑆 → 2AP is a labelling function specifying which atomic

propositions hold in a state. We write 𝑠1
_−→ 𝑠2 when (𝑠1, _, 𝑠2) ∈

trans. A path of a TS T is an infinite sequence 𝜌 = 𝑠0𝑠1𝑠2 . . . with

𝑠0 ∈ 𝐼 such that 𝑠𝑖
_𝑖+1−→ 𝑠𝑖+1 for all 𝑖 ≥ 0 (_𝑖+1 ∈ Act). A trace

corresponding to the path 𝜌 = 𝑠0𝑠1𝑠2 . . . is the sequence of sets of
propositions trace(𝜌) = 𝐿(𝑠0)𝐿(𝑠1)𝐿(𝑠2) The semantics of the
TS T , denoted as [[T]]𝑇𝑆 , is the set of its traces.

A featured transition system (FTS) represents a compact model,
which describes the behavior of a whole family of systems in a
single monolithic description. Their transitions are guarded by a
presence condition that identifies the variants they belong to. The
presence conditions𝜓 are drawn from the set of feature expressions,
FeatExp(F), which are propositional logic formulae over F :

𝜓 ::= true | 𝐴 ∈ F | ¬𝜓 | 𝜓1 ∧𝜓2

We write [[𝜓]] for the set of configurations that satisfy𝜓 , i.e. 𝑘 ∈
[[𝜓]] iff 𝑘 |= 𝜓 .

A featured transition system (FTS) is defined to be a tuple F=
(𝑆,Act,𝐼 ,trans,AP, 𝐿, F ,K, 𝛾), where (𝑆,Act, 𝐼 , trans,AP, 𝐿) form a
TS; F is a set of available features;K is a set of valid configurations;
and 𝛾 : trans→ FeatExp(F) is a total function decorating transi-
tions with presence conditions (feature expressions). The projection
of an FTS F to a configuration 𝑘 ∈ K , denoted as 𝑃𝑟𝑘 (F), is the
TS (𝑆,Act, 𝐼 , trans′,AP, 𝐿), where trans′ = {𝑡 ∈ trans | 𝑘 |= 𝛾 (𝑡)}.
We lift the definition of projection to sets of configurations K′ ⊆K ,
denoted as 𝑃𝑟K′ (F), by keeping the transitions admitted by at
least one of the configurations in K′. That is, 𝑃𝑟K′ (F), is the FTS
(𝑆,Act, 𝐼 , trans′, 𝐴𝑃, 𝐿, F ,K′, 𝛾 ′), where trans′ = {𝑡 ∈ trans | ∃𝑘 ∈
K′ .𝑘 |= 𝛾 (𝑡)} and 𝛾 ′ = 𝛾 |trans′ is the restriction of 𝛾 to trans′. The
semantics of an FTS F, denoted as [[F]]𝐹𝑇𝑆 , is the union of traces of
transition systems representing the projections 𝑃𝑟𝑘 (F) on all valid
variants 𝑘 ∈ K . That is, [[F]]𝐹𝑇𝑆 = ∪𝑘∈K [[𝑃𝑟𝑘 (F)]]𝑇𝑆 . Moreover,
the semantics of the projection FTS 𝑃𝑟K′ (F) is [[𝑃𝑟K′ (F)]]𝐹𝑇𝑆 =

∪𝑘∈K′ [[𝜋𝑘 (F)]]𝑇𝑆 .

Example 2.1. The FTS VendMachine in Fig. 1 has features F =

{base, 𝑣, 𝑡, 𝑠, 𝑐, 𝑓 }. The feature base is used only for implementing
the high-level system and is not present in other configurations.
The set of all other valid configurations is obtained by combining
the above features (except base). The feature 𝑣 is for purchasing
a drink from the Vending machine; 𝑠 is for serving Soda; 𝑡 is for
serving Tea; 𝑐 is for Canceling a purchase after a coin is entered;
and 𝑓 is for offering Free drinks. Each transition is labeled by a

Family-based model checking of fMultiLTL properties SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

1

start

2 3

4 5

6

7 8 9
pay/𝑣∧¬𝑓 change/𝑣 open/𝑣∧¬𝑓 take/𝑣

close/𝑣∨base

select/base
serve/base

sod
a/𝑠

serveSoda/𝑠

tea/𝑡

ser
veT

ea/𝑡

free/𝑓

take/𝑓

cancel/𝑐

ret
ur
n/𝑐

Figure 1: The FTS VendMachine.

1

start

2 3

5

7 8 9
pay change open take

close

sod
a

serveSoda
1

start

3 9

select serve

close

Figure 2: TSs 𝑃𝑟 {𝑣,𝑠 } (VendMachine) (left) and 𝑃𝑟 {base} (VendMachine) (right).

1

start

2 3

4 5

6

7 8 9
pay/¬𝑓 change/true open/¬𝑓 take/true

close/true

sod
a/t
ru
e

serveSoda/true

tea/𝑡
ser
veT

ea/𝑡

free/𝑓

take/𝑓

cancel/𝑐

ret
ur
n/𝑐

Figure 3: The FTS 𝑃𝑟 [[𝑣∧𝑠]] (VendMachine).

feature expression specifying in which variants the transition is

included. For instance, the transition 3○ 𝑠𝑜𝑑𝑎/𝑠
−→ 5○ is included in

variants where feature 𝑠 is enabled. The feature 𝑣 is mandatory, and
at least one of 𝑠 or 𝑡 is enabled in any valid configuration. The set
of valid configurations is thus:

KVM = {{base}, {𝑣, 𝑠}, {𝑣, 𝑡}, {𝑣, 𝑠, 𝑡}, {𝑣, 𝑠, 𝑐}, {𝑣, 𝑡, 𝑐}, {𝑣, 𝑠, 𝑡, 𝑐}, {𝑣,
𝑠, 𝑓 }, {𝑣, 𝑡, 𝑓 }, {𝑣, 𝑠, 𝑡, 𝑓 }, {𝑣, 𝑠, 𝑐, 𝑓 }, {𝑣, 𝑡, 𝑐, 𝑓 }, {𝑣, 𝑠, 𝑡, 𝑐, 𝑓 }}.

Figure 2 shows two variants of VendMachine: a version that only
serves soda, and a high-level implementation. The former variant
is described by the configuration: {𝑣, 𝑠}, equivalently as a formula:
¬base∧ 𝑣 ∧ 𝑠 ∧¬𝑡 ∧¬𝑐 ∧¬𝑓 . The model presented in the figure is
obtained by the projection 𝑃𝑟 {𝑣,𝑠 } (VendMachine). It accepts pay-
ment, returns change, serves a soda, opens the access compartment,
so that the user can take the soda, and close it again so that a next
user can be served. The latter variant is described by the configura-
tion: {base}, equivalently as a formula: base∧¬𝑣∧¬𝑠∧¬𝑡∧¬𝑐∧¬𝑓 .
Its model is obtained by 𝑃𝑟 {base} (VendMachine).

On the other hand, note that [[𝑣 ∧ 𝑠]] = {𝑘 ∈ KVM | 𝑘 |=
𝑣∧𝑠} = {{𝑣, 𝑠}, {𝑣, 𝑠, 𝑡}, {𝑣, 𝑠, 𝑐}, {𝑣, 𝑠, 𝑡, 𝑐}, {𝑣, 𝑠, 𝑓 }, {𝑣, 𝑠, 𝑡, 𝑓 }, {𝑣, 𝑠, 𝑐,
𝑓 }, {𝑣, 𝑠, 𝑡, 𝑐, 𝑓 }} represents a sub-family of VendMachine. The FTS
𝑃𝑟 [[𝑣∧𝑠]] (VendMachine) is shown in Fig. 3. Note that transition

1○ 𝑠𝑒𝑙𝑒𝑐𝑡/base
−→ 3○ is not present in this FTS, since it is not present

in any variant from [[𝑣 ∧ 𝑠]]. To simplify notation, all literals 𝑣 and
𝑠 in feature expressions in 𝑃𝑟 [[𝑣∧𝑠]] (VendMachine) are replaced
with true (see Fig. 3), since they evaluate to true in any variant from
[[𝑣 ∧ 𝑠]]. □

3 FMULTILTL PROPERTIES

We now present featured MultiLTL, denoted fMultiLTL, a logic
for describingmulti-properties of system families described by FTSs.
fMultiLTL extends LTL with explicit quantification over traces. It
is defined inductively as follows:

𝜑 ::= ∃𝜓𝜋.𝜑 | ∀𝜓𝜋.𝜑 | 𝜙
𝜙 ::= 𝑎𝜋 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | ⃝𝜙 | 𝜙1U𝜙2

where 𝜋 is a trace variable,𝜓 ∈ FeatExp(F), and 𝑎 ∈ AP. Intuitively,
∃𝜓𝜋.𝜑 means that there exists a trace in the sub-family 𝑃𝑟 [[𝜓]] (F)
that satisfies 𝜑 , and ∀𝜓𝜋.𝜑 means that 𝜑 holds for every trace in
𝑃𝑟 [[𝜓]] (F). Atomic propositions 𝑎 ∈ AP are annotated with trace
variables 𝜋 , denoted 𝑎𝜋 , to disambiguate to which trace the propo-
sition refers to. A formula 𝜑 is closed if all trace variables 𝜋 are
in the scope of a quantifier. Boolean connectives disjunction (∨),
implication (=⇒), and equivalence (≡) are defined as syntactic
sugar. The other temporal operators are also defined by means of

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Dimovski et al.

syntactic sugar, for instance: ^𝜙 = trueU𝜙 (𝜙 holds eventually)
and □𝜙 = ¬^¬𝜙 (𝜙 always holds).

Formally, the semantics of fMultiLTL is defined as follows.
Let 𝑇𝑟 ⊆ (2AP)𝜔 be a set of all traces and let 𝑡 ∈ 𝑇𝑟 be a trace.
We use 𝑡 [𝑖] to denote the 𝑖-th element of 𝑡 . We write 𝑡 [0, 𝑖] to
denote the prefix of 𝑡 up to and including 𝑖-th element, and 𝑡 [𝑖,∞]
to denote the infinite suffix of 𝑡 beginning with 𝑖-th element. The
satisfaction F |= 𝜑 is given in terms of trace assignment Π : 𝑉 → 𝑇𝑟 ,
which represents a mapping from trace variables 𝑉 to traces 𝑇𝑟 .
Let Π[𝜋 ↦→ 𝑡] be the function obtained from Π, by mapping a trace
variable 𝜋 ∈ 𝑉 to a trace 𝑡 ∈ 𝑇𝑟 . Let Π𝑖 be the function defined by
Π𝑖 (𝜋) = (Π(𝜋)) [𝑖,∞]. Satisfaction of a formula 𝜑 for an FTS F and
a trace assignment Π is defined as:

Π |=F ∃𝜓𝜋.𝜑 iff ∃𝑡 ∈ [[𝑃𝑟 [[𝜓]] (F)]]FTS .Π[𝜋 ↦→ 𝑡] |=F 𝜑
Π |=F ∀𝜓𝜋.𝜑 iff ∀𝑡 ∈ [[𝑃𝑟 [[𝜓]] (F)]]FTS .Π[𝜋 ↦→ 𝑡] |=F 𝜑
Π |=F 𝑎𝜋 iff 𝑎 ∈ Π(𝜋) [0]
Π |=F ¬𝜙 iff Π ̸ |=F 𝜙
Π |=F 𝜙1 ∧ 𝜙2 iff Π |=F 𝜙1 and Π |=F 𝜙2
Π |=F ⃝𝜙 iff Π1 |=F 𝜙
Π |=F (𝜙1U𝜙2) iff ∃𝑖 ≥ 0.

(
Π𝑖 |=F 𝜙2 ∧ ∀𝑗 .0≤ 𝑗 < 𝑖 .Π 𝑗 |=F 𝜙1

)
A FTS F satisfies a closed formula 𝜑 , written F |= 𝜑 , if Π∅ |=F 𝜑

where Π∅ is the empty trace assignment with empty domain. That
is, when 𝜑 is closed, i.e. all trace variables are in the scope of a
quantifier, then the satisfaction of 𝜑 is independent of the trace
assignment.

Example 3.1. Let us consider the VendMachine of Fig. 1. As-
sume that the atomic proposition start holds in state 1○, whereas
served holds in state 9○. Consider the following properties:

𝜑1 = ∀base𝜋0 ∃𝑣∧𝑠𝜋1 ∃𝑣∧𝑡𝜋2 .□
(
start𝜋0 ∧ start𝜋1 ∧ start𝜋2 =⇒
^served𝜋0 ∧ ^served𝜋1 ∧ ^served𝜋2

)
𝜑2 = ∀base𝜋0 ∀𝑣∧𝑠𝜋1 ∀𝑣∧𝑡𝜋2 .□

(
start𝜋0 ∧ start𝜋1 ∧ start𝜋2 =⇒
^served𝜋0 ∧ ^served𝜋1 ∧ ^served𝜋2

)
The formula 𝜑1 states that for every trace 𝜋0 from the base variant,
there are traces 𝜋1 and 𝜋2 from [[𝑣 ∧ 𝑠]] and [[𝑣 ∧ 𝑡]] sub-families,
such that after the corresponding machines have been started, they
will eventually serve the drink to the customer in all three traces.
The formula 𝜑2 requires the above property to hold for all triples
of traces from base, [[𝑣 ∧ 𝑠]] and [[𝑣 ∧ 𝑡]] sub-families.

The formula 𝜑1 holds in the VendMachine, but the formula
𝜑2 is violated. This is due to the fact that there are traces 𝑡1 =

1○ → 2○ → 3○ → 1○ and 𝑡2 = 1○ → 3○ → 5○ → 7○ → 1○,
which belong to both [[𝑃𝑟 [[𝑣∧𝑠]] (VendMachine)]]𝐹𝑇𝑆 as well as
[[𝑃𝑟 [[𝑣∧𝑡]] (VendMachine)]]𝐹𝑇𝑆 , such that they do not visit the
state 9○ where served holds. In particular, we have that 𝑡1 ∈
[[𝑃𝑟 {𝑣,𝑠,𝑐 } (VendMachine)]]𝑇𝑆 , 𝑡2 ∈ [[𝑃𝑟 {𝑣,𝑡,𝑓 } (VendMachine)]]𝑇𝑆 .
Let 𝑡0 = 1○ → 3○ → 9○ → 1○ ∈ [[𝑃𝑟 [[base]] (VendMachine)]]𝐹𝑇𝑆 .
Then the triple (𝑡0, 𝑡1, 𝑡2) represents a counterexample for the for-
mula 𝜑2. □

4 FAMILY-BASED MODEL CHECKING

ALGORITHM

In this section, we present a family-based model checking algorithm
for the alternation-free fragment of fMultiLTL, called fMultiLTL1,
in which the series of quantifiers at the beginning of a formula

involve zero alternation. For example, the formula 𝜑2 from Exam-
ple 3.1 belongs to fMultiLTL1, but the formula 𝜑1 does not belong
to fMultiLTL1 since there is one quantifier alternation in it. We as-
sume the fMultiLTL1 formula to be of the form ∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .𝜙 .
Formulas that are of the form ∃𝜓1𝜋1 . . . ∃𝜓𝑛𝜋𝑛 .𝜙 can be rewrit-
ten as ∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .¬𝜙 . Our algorithm extends the standard
automata-theoretic approach to model checking [2, 50]. Hence, it
uses various automata constructions [50], language non-emptiness,
self-composition [3, 49], and a projection operator.

Büchi automata. Büchi automata (BA) [2, 50] are finite-state
automata that accept words of infinite length. A BA is a tuple
𝐴 = (𝑄, Σ, 𝛿,𝑄0, 𝐹) where 𝑄 is a set of states, Σ is an alphabet,
𝛿 ⊆ 𝑄×Σ×𝑄 is a transition relation,𝑄0 ⊆ 𝑄 is a set of initial states,
and 𝐹 ⊆ 𝑄 is a set of accepting states. A path 𝑞0𝑞1 . . . ∈ 𝑄𝜔 of a BA
is over a word𝑤 = 𝛼1𝛼2 . . . ∈ Σ𝜔 , if for all 𝑖 ≥ 0, (𝑞𝑖 , 𝛼𝑖+1, 𝑞𝑖+1) ∈ 𝛿 .
A word 𝑤 is recognized by a BA 𝐴 if there exists a path over the
word 𝑤 with some accepting states from 𝐹 occurring infinitely
often. The language L(𝐴) of a BA 𝐴 is the set of words that the
automaton 𝐴 recognizes.

Composition. The 𝑛-fold composition of FTSs F1, . . . , F𝑛 is the
synchronous product F1 ⊗ . . . ⊗ F𝑛 . Given 𝑛 FTSs defined as F𝑖 =
(𝑆𝑖 ,Act𝑖 ,𝐼𝑖 ,trans𝑖 ,AP, 𝐿𝑖 , F ,K𝑖 , 𝛾𝑖) for 1 ≤ 𝑖 ≤ 𝑛, we define the com-
position F1 ⊗ . . .⊗F𝑛 as the FTS (𝑆1× . . .×𝑆𝑛,Act1× . . .×Act𝑛,𝐼1×
. . . × 𝐼𝑛,trans,AP𝑛, 𝐿, F ,K1 × . . . × K𝑛, 𝛾1 × . . . × 𝛾𝑛) such that for
all states (𝑠1, . . . , 𝑠𝑛), (𝑡1, . . . , 𝑡𝑛) and actions (_1, . . . , _𝑛), we have
(𝑠1, . . . , 𝑠𝑛)

(_1,...,_𝑛)−→ (𝑡1, . . . , 𝑡𝑛) ∈ trans iff 𝑠𝑖
_𝑖−→ 𝑡𝑖 ∈ trans𝑖 for

all 1 ≤ 𝑖 ≤ 𝑛. Moreover, 𝐿 : 𝑆1 × . . . × 𝑆𝑛 → 2AP
𝑛
such that

𝑃𝑟𝑜 𝑗𝑖 (𝐿(𝑠1, . . . , 𝑠𝑛)) ⊆ 𝐿𝑖 (𝑠𝑖) for all 1 ≤ 𝑖 ≤ 𝑛, where 𝑃𝑟𝑜 𝑗𝑖 is the
set obtained by projecting a set of 𝑛-tuples to their 𝑖-th compo-

nents. Finally, 𝛾1 × . . . × 𝛾𝑛
(
(𝑠1, . . . , 𝑠𝑛)

(_1,...,_𝑛)−→ (𝑡1, . . . , 𝑡𝑛)
)
=

(𝜓1, . . . ,𝜓𝑛) if 𝛾𝑖 (𝑠𝑖
_𝑖−→ 𝑡𝑖) = 𝜓𝑖 for 1 ≤ 𝑖 ≤ 𝑛. The projection of

F1⊗ . . .⊗F𝑛 to a configuration (𝑘1, . . . , 𝑘𝑛) ∈ K1× . . .×K𝑛 , denoted
as 𝑃𝑟 (𝑘1,...,𝑘𝑛) (F1 ⊗ . . . ⊗ F𝑛) is the TS obtained by restricting the
transitions of F1 ⊗ . . . ⊗ F𝑛 to only those whose feature expressions
(𝜓1, . . . ,𝜓𝑛) are satisfied by (𝑘1, . . . , 𝑘𝑛). The semantics [[F1 ⊗ . . .⊗
F𝑛]]𝐹𝑇𝑆 is∪(𝑘1,...,𝑘𝑛) ∈K1×...×K𝑛

[[𝑃𝑟 (𝑘1,...,𝑘𝑛) (F1⊗ . . .⊗F𝑛)]]𝑇𝑆 . Let
zip denote the function that maps an 𝑛-tuple of sequences to a sin-
gle sequence of𝑛-tuples. For example, zip([1, 3, 5, . . .], [2, 4, 6, . . .]) =
[(1, 2), (3, 4), (5, 6), . . .]. Let unzip denote its inverse function. Hence,
F1 ⊗ . . . ⊗ F𝑛 contains a trace zip(𝑡1, . . . , 𝑡𝑛) if F1, . . . , F𝑛 contain
traces 𝑡1, . . . , 𝑡𝑛 , respectively. That is,

[[F1⊗. . .⊗F𝑛]]𝐹𝑇𝑆 = {zip(𝑡1, . . . , 𝑡𝑛) | 𝑡𝑖 ∈ [[F𝑖]]𝐹𝑇𝑆 for 1 ≤ 𝑖 ≤ 𝑛}

Given an FTSF, wewriteF𝜓1⊗...⊗𝜓𝑛 for the composition 𝑃𝑟 [[𝜓1]] (F)⊗
. . . ⊗ 𝑃𝑟 [[𝜓𝑛]] (F).

Formula-to-automaton construction. Suppose a fMultiLTL1 for-
mula ∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .𝜙 is given. We construct a generalized BA
𝐴𝜙 = (𝑄𝜙 , Σ𝜙 , 𝛿𝜙 , 𝑄

0
𝜙
, 𝐹𝜙) for 𝜙 . A generalized BA is the same as

a BA except that it has a multiple of accepting states [2]. First,
we preprocess 𝜙 to put it in a negation normal form (NNF) [2].
To construct the states of 𝐴𝜙 , we define closure(𝜙) to be the
set of all sub-formulae of 𝜙 and their negations. Then we define
elementary sets of formulae 𝐵 ⊆ closure(𝜙) that are maximal

Family-based model checking of fMultiLTL properties SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

consistent sets with respect to 𝜙 [2]. When we construct elemen-
tary sets of formulae of closure(𝜙), we generate 𝑛-tuples of all
atomic propositions that are in that elementary set corresponding
to traces 𝜋1, . . . , 𝜋𝑛 . The set of states 𝑄𝜙 is the set of elementary
sets of formulae of closure(𝜙) [2]. Intuitively, a state describes
a set of trace tuples where each tuple satisfies all formulae in the
elementary set representing that state. The initial set of states is
𝑄0
𝜙
= {𝐵 ∈ 𝑄𝜙 | 𝜙 ∈ 𝐵}. The alphabet is Σ𝜙 = (2AP)𝑛 , so each letter

of the alphabet is an 𝑛-tuple of sets of atomic propositions. The tran-
sition relation 𝛿𝜙 : 𝑄𝜙 ×Σ𝜙 ×𝑄𝜙 is given by: if𝐴 = 𝐵∩ (AP∪{∅})𝑛 ,
then 𝛿𝜙 (𝐵,𝐴) is a straightforward extension to 𝑛-tuples of the
standard definition of 𝛿𝜙 for LTL [2]. If 𝐴 ≠ 𝐵 ∩ (AP ∪ {∅})𝑛 ,
then 𝛿𝜙 (𝐵,𝐴) = ∅. The set of accepting states 𝐹𝜙 contains one
set {𝐵 ∈ 𝑄𝜙 | ¬(𝜙1U𝜙2) ∈ 𝐵 or 𝜙2 ∈ 𝐵} for each until formula
(𝜙1U𝜙2) in closure(𝜙).

The BA 𝐴𝜙 accepts exactly the words 𝑤 ∈ L(𝐴𝜙), which are
sequences of 𝑛-tuples, for which Π |=∅ 𝜙 , where Π = [𝜋1 ↦→
𝑝𝑟𝑜 𝑗1 (unzip(𝑤))] . . . [𝜋𝑛 ↦→ 𝑝𝑟𝑜 𝑗𝑛 (unzip(𝑤))] (where 𝑝𝑟𝑜 𝑗𝑖 de-
notes the projection of an 𝑛-tuple to its 𝑖-th component) and ∅ is
the empty FTS. The construction closely follows the standard LTL
automata construction [50], with addition that now we work with
𝑛-tuple words. In particular, Σ𝜙 is (2AP)𝑛 , so each letter is a 𝑛-tuple
of sets of atomic propositions.

Example 4.1. Consider the formula ∀𝑓1𝜋1∀𝑓2𝜋2 . ⃝ (𝑎𝜋1 ∧ 𝑎𝜋2),
where 𝜙 = ⃝(𝑎𝜋1 ∧ 𝑎𝜋2). We have

closure(𝜙) = {𝑎𝜋1 , 𝑎𝜋2 ,¬𝑎𝜋1 ,¬𝑎𝜋2 , 𝑎𝜋1 ∧𝑎𝜋2 ,¬(𝑎𝜋1 ∧𝑎𝜋2), 𝜙,¬𝜙}

The state space 𝑄𝜙 consists of the following elementary sets:

𝐵1 = {(𝑎𝜋1 , 𝑎𝜋2), 𝑎𝜋1 ∧ 𝑎𝜋2 , 𝜙} 𝐵2 = {(𝑎𝜋1 , 𝑎𝜋2), 𝑎𝜋1 ∧ 𝑎𝜋2 ,¬𝜙}
𝐵3 = {(𝑎𝜋1 , ∅),¬(𝑎𝜋1 ∧ 𝑎𝜋2), 𝜙} 𝐵4 = {(𝑎𝜋1 , ∅),¬(𝑎𝜋1 ∧ 𝑎𝜋2),¬𝜙}
𝐵5 = {(∅, 𝑎𝜋2),¬(𝑎𝜋1 ∧ 𝑎𝜋2), 𝜙} 𝐵6 = {(∅, 𝑎𝜋1),¬(𝑎𝜋1 ∧ 𝑎𝜋2),¬𝜙}
𝐵7 = {(∅, ∅),¬(𝑎𝜋1 ∧ 𝑎𝜋2), 𝜙} 𝐵8 = {(∅, ∅),¬(𝑎𝜋1 ∧ 𝑎𝜋2),¬𝜙}

The initial states are the states that contain 𝜙 ,𝑄0
𝜙
= {𝐵1, 𝐵3, 𝐵5, 𝐵7}.

𝛿𝜙 (𝐵1, {(𝑎𝜋1 , 𝑎𝜋2)}) = 𝛿𝜙 (𝐵3, {(𝑎𝜋1 , ∅)}) = 𝛿𝜙 (𝐵5, {(∅, 𝑎𝜋2)}) =

𝛿𝜙 (𝐵7, {(∅, ∅)}) = {𝐵1, 𝐵2}, and we have 𝛿𝜙 (𝐵2, {(𝑎𝜋1 , 𝑎𝜋2)}) =

𝛿𝜙 (𝐵4, {(𝑎𝜋1 , ∅)}) = 𝛿𝜙 (𝐵6, {(∅, 𝑎𝜋2)}) = 𝛿𝜙 (𝐵8, {(∅, ∅)}) =
{𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7, 𝐵8}. Note that 𝜙 = ⃝(𝑎𝜋1 ∧𝑎𝜋2) ∈ 𝐵1, 𝐵3, 𝐵5, 𝐵7,
so in their next states (𝑎𝜋1 ∧ 𝑎𝜋2) should hold, and 𝐵1 and 𝐵2 are
the only states that contain (𝑎𝜋1 ∧𝑎𝜋2). Similarly, ¬𝜙 = ¬⃝ (𝑎𝜋1 ∧
𝑎𝜋2) ∈ 𝐵2, 𝐵4, 𝐵6, 𝐵8, so in their next states¬(𝑎𝜋1∧𝑎𝜋2) should hold,
and 𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7 and 𝐵8 are the states that contain ¬(𝑎𝜋1 ∧𝑎𝜋2).
There are no outgoing transitions on other letters. The set 𝐹𝜙 is
empty as 𝜙 does not contain an until operator, so every infinite run
is accepting. □

Synchronous product. For an FTSF= (𝑆,Act,𝐼 ,trans,AP, 𝐿, F ,K, 𝛾)
and a BA 𝐴 = (𝑄, 2AP, 𝛿,𝑄0, 𝐹), the synchronous product is an FTS
F⊗𝐴 = (𝑆 ×𝑄,Act, trans′, 𝐼 ′,AP′, 𝐿′, F ,K, 𝛾 ′), where AP′ = 𝑄 and

𝐿′ (𝑠, 𝑞) = 𝑞, (𝑠, 𝑞)
𝛼

−→′ (𝑡, 𝑝) iff 𝑠
𝛼−→ 𝑡 and 𝑞

𝐿 (𝑡)
−→ 𝑝 , 𝛾 ′ ((𝑠, 𝑞)

𝛼

−→′

(𝑡, 𝑝)) = 𝛾 (𝑠 𝛼−→ 𝑡), 𝐼 ′ = {(𝑠0, 𝑞) | 𝑠0 ∈ 𝐼 , ∃𝑞0 ∈ 𝑄0 .(𝑞0, 𝐿(𝑠0), 𝑞) ∈
𝛿}.

Model checking results. Our results for family-based model check-
ing of fMultiLTL1 adapt the corresponding results for verification
of HyperLTL1 given in [7].

The algorithm checks F |= ∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .𝜙 .
1 We construct the FTS F𝜓1⊗...⊗𝜓𝑛 .
2 We construct the Büchi automata 𝐴𝜙 and 𝐴¬𝜙 .
3 We construct the FTS F𝜓1⊗...⊗𝜓𝑛 ⊗ 𝐴¬𝜙 .
4 We check the persistence property F𝜓1⊗...⊗𝜓𝑛 ⊗ 𝐴¬𝜙 |=
^□¬𝐹 , where 𝐹 is the set of accepting states of 𝐴¬𝜙 . If
the persistence property does not hold, then the found
counterexample corresponds to a counterexample show-
ing that the given fMultiLTL formula is violated by F.
Otherwise, if the persistence property holds, we con-
clude that the given fMultiLTL formula holds.

Figure 4: The family-based model checking algorithm.

Theorem 4.2 (fMultiLTL1). F |=∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛.𝜙 if and only if
(iff) [[F𝜓1⊗...⊗𝜓𝑛 ⊗ 𝐴¬𝜙]]𝐹𝑇𝑆 =∅

Proof.

∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .𝜙 does not hold on F
iff
there exists a 𝑛-tuple Π𝑛 ∈ [[F𝜓1⊗...⊗𝜓𝑛]]𝐹𝑇𝑆 s.t. Π𝑛 |=∅ ¬𝜙
iff
[[F𝜓1⊗...⊗𝜓𝑛 ⊗ 𝐴¬𝜙]]𝐹𝑇𝑆 is not empty.

□

Algorithm. Our algorithm for verifying fMultiLTL1 adapts the
classical automata-theoretic LTL model checking algorithm [2, 50].
To determinewhether an FTSF satisfies a formula∀𝜓1𝜋1 . . .∀𝜓𝑛𝜋𝑛 .𝜙 ,
we call the family-based model checking algorithm illustrated in
Fig. 4.

The algorithm in Fig. 4 uses the result from Theorems 4.2 to
check fMultiLTL1 formulae. It checks the persistence property
F⊗𝐵𝐴 |= ^□¬𝐹 , where 𝐹 is the set of final (accepting) states in the
Büchi automaton𝐵𝐴. This reduces to checking if there is a reachable
accepting state on a cycle in the FTS F ⊗ 𝐵𝐴. This is implemented
with a double DFS (depth-first search): the outer DFS finds a reach-
able accepting state, the inner DFS checks whether it is reachable
from itself. Both DFS compute the reachability relation of an FTS,
and their detailed implementation, denoted CheckPersistence,
is given in [12, 13]. The procedure CheckPersistence is based
on computing the reachability relation of an FTS F, denoted by
𝑅 : 𝑆 → P(K), such that for all states 𝑠 ∈ 𝑆 , 𝑘 ∈ 𝑅(𝑠) iff state 𝑠 is
reachable in the variant 𝑃𝑟𝑘 (F) for configuration 𝑘 . This procedure
generalises the standard DFS algorithm for transition systems, by
marking states with sets of configurations, rather than Boolean
visited flags. In contrast to the standard DFS for transition systems,
where no state is visited twice, this feature-aware DFS can visit
states multiple times. When 𝑅(𝑠) = K′ and the DFS arrives at state
𝑠 for the second time with a set of configurations K′′, such that
K′′ ⊈ K′, then 𝑠 although already visited, has to be re-explored.
This is because some transitions that were disallowed for K′ in 𝑠

might be allowed for K′′. We refer to [12, 13] for more details of
the procedure CheckPersistence.

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Dimovski et al.

5 IMPLEMENTATION

We have implemented a prototype tool, called Dædalux, in C++20
for verifying fMultiLTL1 formulae. It uses two modelling lan-
guages for SPL specification: 𝑓 Promela [10] is a high-level mod-
elling language for describing system families, and TVL [9] is a
textual language for describing sets of features F and valid config-
urations K .

𝑓 Promela is obtained from Promela [38] by adding feature
variables F and guarded-by-features statements “gd”. Promela is a
non-deterministic modelling language of the SPIN model checker
[38] designed for describing systems composed of concurrent pro-
cesses that communicate asynchronously. The basic statements of
processes are given by:

𝑠𝑡𝑚 ::= skip | x = 𝑒𝑥𝑝𝑟 |𝑐?𝑥 |𝑐!𝑒𝑥𝑝𝑟 | 𝑠𝑡𝑚1;𝑠𝑡𝑚2 |
if ::𝑔1⇒𝑠𝑡𝑚1 · · · ::𝑔𝑛⇒𝑠𝑡𝑚𝑛 ::else⇒𝑠𝑡𝑚 fi |
do :: 𝑔1 ⇒ 𝑠𝑡𝑚1 · · · :: 𝑔𝑛 ⇒ 𝑠𝑡𝑚𝑛 od

where 𝑥 is a variable, 𝑐 is a channel, and 𝑔𝑖 are conditions over
variables and contents of channels. The “if” is a non-deterministic
choice between the statements 𝑠𝑡𝑚𝑖 for which the guard 𝑔𝑖 evalu-
ates to 𝑡𝑟𝑢𝑒 for the current evaluation of the variables. If none of
the guards 𝑔1, . . . , 𝑔𝑛 are 𝑡𝑟𝑢𝑒 in the current state, then the “else”
statement 𝑠𝑡𝑚 is chosen. Similarly, the “do” represents an iterative
execution of the non-deterministic choice among the statements
𝑠𝑡𝑚𝑖 for which the guard 𝑔𝑖 holds in the current state.

TVL [9] is a textual modelling language for describing the set of
all valid configurations, K , for an 𝑓 Promela model along with all
available features, F . A feature model is organized as a tree, whose
nodes denote features and edges represent parent-child relationship
between nodes. The root keyword denotes the root of the tree, and
the group keyword, followed by a decomposition type “allOf”,
“someOf”, or “oneOf”, declares the children of a node. The meaning
is that if the parent feature is part of a variant, then “all”, “some”, or
“exactly one” respectively, of its non-optional children have to be
part of that variant. The optional features are preceded by the opt
keyword. We can also specify different Boolean constraints defined
over the features.

The feature variables, F , used in an 𝑓 Promela model are de-
clared as fields of the special type features. The new guarded-by-
features statement introduced in 𝑓 Promela is of the form:

gd :: 𝜓1 ⇒ 𝑠𝑡𝑚1 . . . :: 𝜓𝑛 ⇒ 𝑠𝑡𝑚𝑛 :: else ⇒ 𝑠𝑡𝑚 dg

where𝜓1, . . . ,𝜓𝑛 are feature expressions defined over F . The “gd”
is a non-deterministic statement similar to “if”, except that only
feature variables can be used in conditions (guards). It nondeter-
ministically executes the statement 𝑠𝑡𝑚𝑖 for which the guard 𝜓𝑖
evaluate to true for the current evaluation of feature variables. If
none of guards 𝜓1, . . . ,𝜓𝑛 is true, then the else statement 𝑠𝑡𝑚 is
chosen. Hence, “gd” in 𝑓 Promela plays the same role as “#ifdef”
in C/CPP SPLs [30, 41].

Fig. 5 shows simple 𝑓 Promela and TVL models. After declaring
feature variables B1 and B2 as well as the global variables n and i in
the 𝑓 Promela model in Fig. 5 (left), the process foo is defined. The
statement ‘do :: break :: n++ od’ is used to non-deterministically ini-
tialize variables n and i of type byte to any integer value from their
domain [0, 255] at label Start. The first gd statement specifies that
i=i+2 is available for variants that contain the feature B1, and skip

for variants with ¬B1. The second gd statement is similar, except
that the guard is the feature B2. It states that i=i+1 is available for
variants containing B1 and skip for variants with ¬B1. Finally, we
print out the current value of i at label Final. The TVL model in
Fig. 5 (right) specifies four valid configurations: {Main}, {Main, B1},
{Main, B2}, {Main, B1, B2} for this system family. Finally, we specify
fMultiLTL properties:

𝜑1 = ∀B1𝜋1∀
B2
𝜋2 .

(
Start ∧ n𝜋1 =n𝜋2

)
=⇒ ^

(
Final ∧ i𝜋1 ≥ i𝜋2

)
𝜑2 = ∃B1𝜋1∃

B2
𝜋2 .

(
Start ∧ n𝜋1 =n𝜋2

)
=⇒ ^

(
Final ∧ i𝜋1 ≥ i𝜋2

)
The property 𝜑1 states that for all traces 𝜋1 from the sub-family

[[B1]] and 𝜋2 from [[B2]], if the value of n in the label Start is the
same in traces 𝜋1 and 𝜋2, then eventually i𝜋1 ≥ i𝜋2 will hold in
label Final. The property 𝜑1 does not hold. The counter-example
for 𝜑1 contains a trace 𝜋1 ∈ 𝑃𝑟B1∧¬B2 (F) ⊆ 𝑃𝑟 [[B1]] (F) (where
F is the FTS for 𝑓 Promela model in Fig. 5), in which i=𝑛+2 in
label Final (where n is the initial value of variable n), and a trace
𝜋2 ∈ 𝑃𝑟B1∧B2 (F) ⊆ 𝑃𝑟 [[B2]] (F), in which i=𝑛+3 in label Final.

The property 𝜑2 states that there exist traces 𝜋1 from [[B1]] and
𝜋2 from [[B2]], if the value of n in Start is the same in 𝜋1 and 𝜋2,
then eventually i𝜋1 ≥ i𝜋2 in Final. The property 𝜑2 holds, and the
witness is a trace 𝜋1 ∈ 𝑃𝑟B1∧B2 (F) ⊆ 𝑃𝑟 [[B1]] (F) in which i=𝑛+3 in
Final and a trace 𝜋2 ∈ 𝑃𝑟¬B1∧B2 (F) ⊆ 𝑃𝑟 [[B2]] (F) in which i=𝑛+1

in Final. We verify 𝜙2 by encoding it as 𝜙 ′2 = ∀B1𝜋1∀
B2
𝜋2 .¬

(
(Start ∧

n𝜋1 = n𝜋2) =⇒ ^(Final ∧ i𝜋1 ≥ i𝜋2)
)
, which is equivalent to

∀B1𝜋1∀
B2
𝜋2 .

(
Start ∧ n𝜋1 =n𝜋2

)
∧ □

(
¬Final ∨ i𝜋1 < i𝜋2

)
. A negative

answer to𝜙 ′2 represents a positive answer to𝜙2, and vice versa. That
is, the counter-example violating 𝜙 ′2 represents a witness showing
that 𝜙2 is correct.

We now give a brief overview of the 𝑓 Promela semantics [10].
Similarly as a Promela model defines a program graph (PG) [2], an
𝑓 Promela model defines a so-called featured program graph (FPG)
[10] that formalizes the control flow of the model. The vertices
of the graph are control locations and transitions are annotated
with condition/effect/feature expression triples. The “gd” statement
specifies the feature expression part of transitions. The semantics
of an FPG is an FTS obtained from “unfolding” the graph (see [2,
Sect. 2] for details). The FPG of our 𝑓 Promela model in Fig. 5 is
shown in Fig. 6. The unfolded FTS can be easily constructed, such
that each state in it contains the information about the control
location (line number) and the current value of variables n and i.

The family-based model checking algorithm is executed on-the-
fly, by constructing the product FTS F ⊗ 𝐵𝐴 “on-demand”, where
F is the FTS of the system family and 𝐵𝐴 is the Büchi automaton
of the negated formula we consider. The generation of reachable
states of F proceeds in parallel with the construction of the relevant
fragment of 𝐵𝐴. When generating the successors of a state in 𝐵𝐴,
we only need to consider the successors matching the current state
of F. Hence, we can find an accepting state of 𝐵𝐴 on a cycle, without
the need to generate the entire 𝐵𝐴.

6 EVALUATION

We now evaluate our approach for family-based model checking of
fMultiLTL1 properties using a new proof-of-concept tool, which
we integrated within a new SPL model checking platform called

Family-based model checking of fMultiLTL properties SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

0 typedef features {
1 bool B1; bool B2; }
2 features 𝑓 ;
3 byte n, i;
4 active proctype foo() {
5 do :: break :: n++ od;
6 Start: i := n;
7 gd :: 𝑓 .B1 ⇒ i=i+2 :: else ⇒ skip dg;
8 gd :: 𝑓 .B2 ⇒ i=i+1 :: else ⇒ skip dg;
9 Final: printf(”𝑖 : %𝑑”, i);
10 }

11 𝐴{𝑝1}[B1]𝐴{𝑝2}[B2]
(
(foo@Start && n{𝑝1}==n{𝑝2}) →

11 ^(foo@Final && i{𝑝1} ≥i{𝑝2})
)

0 root Main {
1 group allOf {
2 opt B1,
3 opt B2
4 } }

Figure 5: Simple 𝑓 Promela (left) and TVL (right) models

𝑙5

init={n=i=0}

𝑙7 𝑙8 𝑙9 𝑙10

𝑡𝑡/n++/𝑡𝑡
𝑡𝑡/break; i=n/𝑡𝑡 𝑡𝑡/i=i+2/B1

𝑡𝑡/skip/¬B1

𝑡𝑡/i=i+1/B2

𝑡𝑡/skip/¬B2

𝑡𝑡/printf/𝑡𝑡

Figure 6: An FPG. The state “𝑙𝑥” refers to the line number 𝑥 in the model 𝑓 𝑜𝑜 in Fig. 5, and 𝑡𝑡 is short for true.

Daedalux.1 The evaluation aims to show that we can verify some
interesting properties over model families that are not expressible
in the existing logic. Moreover, we want to test and determine the
performance limits of the current implementation, and so set the
scene for improvements and extensions of our approach in future.

6.1 Experimental setup

Experiments are executed on aDELL latitude 7310, 64-bit Intel®Core𝑇𝑀
vPro 10th gen CPU@2.3GHz, Ubuntu 20.10, with 16 GB memory,
and we use a timeout value of 60 seconds. All times are reported as
average over five independent executions.

For each experiment, we report: Time which is the time to model
check in seconds (this includes the times to parse the 𝑓 Promela
model, to build the initial FTS, and to run the model checking
algorithm); and Space which is the memory occupied in MB to
perform the given model checking task.

The evaluation is performed on two benchmarks: Synthetic and
MinePumpmodel families [10, 11], by verifying various fMultiLTL1
properties.

6.2 Synthetic example

Combinatorically, the number of variants inK grows exponentially
with the number of features |F |, which means that there is an
exponential blow-up in the model checking strategy for LTL that
verifies all variants one by one. Although, Daedalux implements
specialized family-based model checking algorithms of LTL that
check all variants simultaneously in a single run, its performance
still depends on the size and complexity of the configuration space
K . Unfortunately, model checking of fMultiLTL is even harder

1https://github.com/samilazregsuidi/Daedalux

than LTL because, another source of complexity is stemming from
the 𝑛-fold composition operator and the need to work with 𝑛-sized
tuples. The size of the synchronous product (𝑛-fold composition)
increases exponentially with the number of copies. Thus, reasoning
on the product model becomes computationally very prohibitive
even for smaller values of 𝑛.

As an experiment, we have tested the limits of our family-based
model checking algorithm for fMultiLTL1. We have gradually
added variability to the model family in Fig. 5, and we have also
generated bigger fMultiLTL1 formulae with bigger number of
quantifiers. We write |𝑄 | to denote the number of quantifiers in
a fMultiLTL1 formula. This was done by adding unconstrained
optional features and by sequentially composing gd statements
guarded by all existing features. Note that we have K = 2 | F | , since
all features are optional. For example, the 𝑓 Promela process 𝑓 𝑜𝑜
with three features B1, B2, and B3 is:

do :: break :: n++ od;
Start: i := n;
gd :: 𝑓 .B1 ⇒ i=i+3 :: else ⇒ skip dg;
gd :: 𝑓 .B2 ⇒ i=i+2 :: else ⇒ skip dg;
gd :: 𝑓 .B3 ⇒ i=i+1 :: else ⇒ skip dg;
Final: printf(”𝑖 : %𝑑”, i);

and the corresponding properties with three quantifiers are:

𝜑1 = ∀B1𝜋1∀
B2
𝜋2∀

B3
𝜋3 .

(
Start ∧ n𝜋1 =n𝜋2 =n𝜋3

)
=⇒

^
(
Final ∧ i𝜋1 ≥ i𝜋2 ∧ i𝜋2 ≥ i𝜋3

)
𝜑2 = ∃B1𝜋1∃

B2
𝜋2∃

B3
𝜋3 .

(
Start ∧ n𝜋1 =n𝜋2 =n𝜋3

)
=⇒

^
(
Final ∧ i𝜋1 ≥ i𝜋2 ∧ i𝜋2 ≥ i𝜋3

)
Table 1 compares the effect in terms of both Time and Space

of analyzing the synthetic example for different sizes of |F | and

https://github.com/samilazregsuidi/Daedalux

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Dimovski et al.

|𝑄 | = 2 |𝑄 | = 4 |𝑄 | = 6 |𝑄 | = |F |
|F | Time Space Time Space Time Space Time Space

6 0.097 15.0 0.112 17.7 0.163 28.9 0.163 28.9
7 0.098 15.1 0.114 18.5 0.188 33.2 0.435 69.6
8 0.097 15.2 0.127 19.6 0.219 37.9 0.869 139.8
9 0.100 15.3 0.125 20.2 0.250 42.8 1.708 308.6
10 0.103 15.5 0.129 21.2 0.261 48.2 3.637 716.4
11 0.104 15.7 0.142 21.5 0.292 53.8 8.755 1699.2
14 0.124 16.1 0.153 23.5 0.302 59.8 15.89 2664.2
40 0.185 17.6 0.190 34.1 0.344 123.8 — ★infeasible★—

Table 1: Verification of the property 𝜑1 of the Synthetic example. Time in seconds and Space in MB.

|𝑄 |. We report only the performance results for the property 𝜑1,
since we obtain similar results for 𝜑2. We observe that the occupied
memory Space grows exponentially with the number of features
|F | and quantifiers |𝑄 | (when |𝑄 | = |F |), thus representing the
bottleneck of the verification task. In fact, the size of the explored
model spaces increases very rapidly with the size of the tuples,
making the reasoning on the models very prohibitive. Note that
the size of tuples is identical to the number of quantifiers |𝑄 | in the
given property. Figure 7 (left) depicts this phenomenon. It shows the
occupied memory (in MB) of using Daedalux to verify property 𝜑1
for increasing number of features and quantifiers, when |𝑄 | = |F |.
Figure 7 (right) shows the accumulated time (in sec) for increasing
number of features and quantifiers, when |𝑄 | = |F |. We can see
that the time also grows exponentially with |F | and |𝑄 |. Already
for |𝑄 | = |F | = 14, the occupied memory to check the property
becomes 2,664 MB and the analysis time becomes 15.89 sec. The
tool crashes for bigger values of |𝑄 | = |F | due to the enormous
memory consumption (>10GB).

On the other hand, if the number of quantifiers |𝑄 | is fixed
(|𝑄 | = 2, 4, or 6), we observe only linear growth of Time and Space
for increasing number of features |F |. This is due to the fact that we
work with the same sized tuples in those cases and the Daedalux
tool can efficiently handle the variability in this Synthetic model
family. For example, we can successfully verify the property even
for |F | = 40 (see Table 1).

6.3 MinePump example

The MinePump system was introduced in the CONIC project [42].
Based on the original system, an 𝑓 Promela model was created in
[11] as part of the SNIP project. The 𝑓 Promela MinePump family
contains about 200 LOC and 7 (non-mandatory) independent op-
tional features: Start, Stop, MethaneAlarm, MethaneQuery, Low,
Normal, and High, thus yielding 27 = 128 variants. Its FTS has 21,177
states and all variants combined have 889,252 states. It consists of 5
communicating processes: a controller, a pump, a watersensor, a
methanesensor, and a user. When activated, the controller should
switch on the pump when the water level is high, but only if there
is no methane in the mine.

By setting the variable pstate the controller can be found in one
of the following states: running, ready, stopped, methanstop,
lowstop. We consider the following fMultiLTL1 property that

checks the correlation between the variable pstate that the con-
troller uses to manage the pump actuator and the property that the
pump is switched on or off (via the Boolean variable pumpOn):

𝜑 = ∀MethaneAlarm𝜋1 ∀MethaneQuery𝜋2 .
(
pstate𝜋1 =pstate𝜋2

)
=⇒

^
(
pumpOn𝜋1 =pumpOn𝜋2

)
That is, for all traces 𝜋1 from [[MethaneAlarm]] sub-family and
all traces 𝜋2 from [[MethaneQuery]] sub-family, if at some point
the controller states are equal, then eventually the pump activities
that follow should be the same. We have found that the property
𝜑 does not hold, and the reported violation is witnessed by two
infinite traces from the variant: Start ∧ Stop ∧ MethaneAlarm ∧
MethaneQuery ∧ Low ∧ High. This variant is present in both sub-
families [[MethaneAlarm]] and [[MethaneQuery]]. To verify 𝜑 , the
Daedalux tool takes 65.7 seconds and 2.95 GB memory. Similarly,
we can verify the satisfaction of the dual fMultiLTL1 property:

𝜑 = ∃MethaneAlarm𝜋1 ∃MethaneQuery𝜋2 .
(
pstate𝜋1 =pstate𝜋2

)
=⇒

^
(
pumpOn𝜋1 =pumpOn𝜋2

)
6.4 Discussion

Our proof-of-concept model checker for the alternation-free frag-
ment of fMultiLTL is limited to smaller system families and
smaller properties as evidenced by experiments. It represents a
demonstration that model checking of fMultiLTL properties is
possible. However, the verification task becomes computationally
very demanding for more realistic systems like theMinePump. In
the future work, we aim to propose some optimization heuristics
that will reduce the computational complexity of model checking
fMultiLTL1 in practice, and thus enable us to handle bigger real-
world case studies and bigger properties as well as other more
complex fragments of fMultiLTL. We also envision to leverage
modern verification techniques like IC3 [46], interpolation [43],
SMT [18] to improve the current algorithms on model checking of
fMultiLTL.

7 RELATEDWORK

In the last two decades, researchers have introduced various family-
based (lifted) analysis and verification techniques for SPLs. Some
successful examples range from family-based syntax and type check-
ing [36, 40, 41], to family-based static analysis [4, 23, 27–29, 31, 51].
Family-based model checking has also been an active research field,

Family-based model checking of fMultiLTL properties SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

Figure 7: The performance of family-based model checking with Daedalux as a function of the number of features |F | and
quantifiers |𝑄 | (when |𝑄 | = |F |). The x-axis represents the number of features and quantifiers, and the y-axis represents the

occupied memory in MB (left) and verification time in seconds (right).

where different approaches have been developed for verifying sys-
tem and program families. Among various modelling formalisms for
representing SPLs, we focus here on FTSs. We divide our discussion
of related work into three categories: family-based model check-
ing on FTSs, family-based software model checking, and temporal
logics for hyper- and multi-properties.

Family-based model checking on FTSs. Featured transition sys-
tems (FTSs) are today widely accepted formalism for representing
system families (SPLs). Specialized family-based model checking
algorithms have been designed for verifying FTSs against LTL prop-
erties [11]. They have been implemented in the SNIP family-based
model checker [10] and its successor ProVeLines [15]. Cordy et. al
[17] have also introduced symbolic family-based model checking al-
gorithms for verifying FTSs against CTL properties, which has been
implemented as an extension of the NuSMVmodel checker. Family-
based model checking has been also defined for verifying `-calculus
properties using the general-purpose mCRL2 model checker [47],
whereas family-based model checking for verifying probabilistic
system families has been defined in [6] and implemented in the Pro-
Feat tool. Tomake all these algorithms based on FTSs more scalable,
various abstractions have been applied. The so-called variability
abstractions and the automatic abstraction-refinement procedures
for efficient family-based model checking of LTL are proposed in
[26, 34]. Subsequently, the above procedures have been extended
for verifying CTL and `-calculus properties [20, 32]. Abstraction-
refinement procedures for family-based model checking have also
been proposed for LTL and CTL properties of reactive system fam-
ilies [16, 32] and reachability properties of probabilistic system
families [5]. They have been applied to synthesis for resolving pro-
gram and model sketches [24, 25]. In this paper, we pursue this
line of work by proposing specifically designed family-based model
checking algorithms for verifying fMultiLTL properties of FTSs.

Family-based softwaremodel checking. Family-basedmodel check-
ing algorithms have also been used for verifying program families.
The variability encoding approach [1, 39, 52] generates a family
simulator, which represents a single program simulating the be-
haviour of all variants in the given program family. Then a standard
off-the-shelf software model checker is used to verify the gener-
ated family simulator, so that an incorrect variant can be identified
from a found counterexample. However, this algorithm stops once

a single counterexample is found, so apart from the variant corre-
sponding to the found counterexample the other variants cannot be
classified as correct or incorrect. This approach was used for model
checking C program families implemented using compositional
approaches [1, 52] and using #ifdef annotations from the CPP
preprocess [39].

A game semnatics approach for family-based software model
checking has been introduced in [19, 21]. Special family-based
model checking algorithms are designed over symbolic game se-
mantics models that are compact representations of #ifdef-based
programs containing undefined components (free identifiers). This
way, the approach can verify safety properties of program families.

Temporal logics for hyper- and multi-properties. Hyper-properties
[8] represent a formalism for specifying properties of sets of traces,
by quantification over traces in the system. They are especially suit-
able for specifying security properties, such as secure information
flow and non-interference. The logic HyperLTL and HyperCTL*
have been introduced in [7]. This work also proposes one of the
first algorithms for model checking hyper-properties by combin-
ing self-composition and the classical LTL model checking. Self-
composition combines several disjoint copies of the same system,
allowing to express relationships among multiple traces. Subse-
quently, more scalable approach has been defined using alternating
Büchi automaton [35]. The notion of hyper-properties is gener-
alized to multi-properties in [37], which describes the behaviour
of not just a single system, but of a set of systems called multi-
model. While hyper-properties relate traces from the same system,
multi-properties relate traces from the different components in
the multi-model. Goudsmid et. al [37] introduce direct algorithms
for model checking multi-properties from theMultiLTL logic. In
this work, we further generalize the notion of multi-properties to
fMultiLTL logic, which explicitly relates traces from the various
sub-families of a system family (SPL).

8 CONCLUSION

In this work, we proposed a new fMultiLTL logic for specifying
multi-properties of system families. We have described an algo-
rithm for model checking of fMultiLTL1 fragment of the new
logic. An implementation in the Daedalux tool is applicable to
quantifier-free fMultiLTL properties. The evaluation confirms that
some interesting properties can be efficiently verified in this way.

SPLC ’23, August 28-September 1, 2023, Tokyo, Japan Dimovski et al.

However, it also establishes that reasoning on the self-composed
products is computationally very demanding.

In the future, we want to develop family-based algorithms for
model checking other more complex fragments of fMultiLTL, such
as the fMultiLTL2 fragment that contains formulas in which the
series of quantifiers at the beginning of a formula may involve
at most one alternation. That is, fMultiLTL2 formulas are of the
form ∀𝜓1𝜋1 . . .∀𝜓𝑙 𝜋𝑙∃𝜓𝑙+1𝜋𝑙+1 . . . ∃𝜓𝑙+𝑗 𝜋𝑙+𝑗 .𝜙 . We also plan to em-
ploy abstraction-based techniques [26, 34] to avoid the construction
of the full product. We can use abstractions to compute approx-
imations of all sub-families represented in the full product, such
that if model checking the abstract full product is successful, we
conclude that model checking the original full product holds. Since
the abstract sub-families are much smaller models than the original
ones, we can use this technique for accelerating model checking of
multi-properties.

ACKNOWLEDGEMENT

Maxime Cordy and Sami Lazreg are supported by FNR Luxembourg
(grants C19/IS/13566661/BEEHIVE/Cordy and INTER/FNRS/20/15-
077233/Scaling Up Variability/Cordy). Axel Legay is supported by
FNRS Belgium (grant PDR/PDN - T013721).

REFERENCES

[1] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk
Beyer. 2011. Detection of feature interactions using feature-aware verification.
In 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011). 372–375. https://doi.org/10.1109/ASE.2011.6100075

[2] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT
Press.

[3] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2004. Secure Information
Flow by Self-Composition. In 17th IEEE Computer Security Foundations Workshop,
(CSFW-17 2004). IEEE Computer Society, 100–114. https://doi.org/10.1109/CSFW.
2004.17

[4] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and
Mira Mezini. 2013. SPLLIFT: statically analyzing software product lines in min-
utes instead of years. In ACM SIGPLAN Conference on PLDI ’13. 355–364.

[5] Milan Ceska, Christian Dehnert, Nils Jansen, Sebastian Junges, and Joost-Pieter
Katoen. 2019. Model Repair Revamped: On the Automated Synthesis of Markov
Chains. In Essays Dedicated to Scott A. Smolka on the Occasion of His 65th Birthday
(LNCS, Vol. 11500). Springer, 107–125. https://doi.org/10.1007/978-3-030-31514-
6_7

[6] Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier. 2018.
ProFeat: feature-oriented engineering for family-based probabilistic model check-
ing. Formal Aspects Comput. 30, 1 (2018), 45–75. https://doi.org/10.1007/s00165-
017-0432-4

[7] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,
Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties.
In Principles of Security and Trust - Third International Conference, POST 2014,
Proceedings (LNCS, Vol. 8414). Springer, 265–284. https://doi.org/10.1007/978-3-
642-54792-8_15

[8] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput.
Secur. 18, 6 (2010), 1157–1210. https://doi.org/10.3233/JCS-2009-0393

[9] Andreas Classen, Quentin Boucher, and Patrick Heymans. 2011. A text-based
approach to feature modelling: Syntax and semantics of TVL. Sci. Comput.
Program. 76, 12 (2011), 1130–1143. https://doi.org/10.1016/j.scico.2010.10.005

[10] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves
Schobbens. 2012. Model checking software product lines with SNIP. STTT 14, 5
(2012), 589–612. https://doi.org/10.1007/s10009-012-0234-1

[11] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-François Raskin. 2013. Featured Transition Systems: Foundations
for Verifying Variability-Intensive Systems and Their Application to LTL Model
Checking. IEEE Trans. Software Eng. 39, 8 (2013), 1069–1089. https://doi.org/10.
1109/TSE.2012.86

[12] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-François Raskin. 2013. Featured Transition Systems: Foundations
for Verifying Variability-Intensive Systems and Their Application to LTL Model

Checking. IEEE Trans. Software Eng. 39, 8 (2013), 1069–1089. https://doi.org/10.
1109/TSE.2012.86

[13] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and
Jean-François Raskin. 2010. Model checking lots of systems: efficient verification
of temporal properties in software product lines. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010.
ACM, 335–344. https://doi.org/10.1145/1806799.1806850

[14] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley.

[15] Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and
Axel Legay. 2013. ProVeLines: a product line of verifiers for software product
lines. In 17th International Software Product Line Conference co-located workshops,
SPLC 2013 workshops. ACM, 141–146. https://doi.org/10.1145/2499777.2499781

[16] Maxime Cordy, Patrick Heymans, Axel Legay, Pierre-Yves Schobbens, Bruno
Dawagne, and Martin Leucker. 2014. Counterexample guided abstraction re-
finement of product-line behavioural models. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-
22). 190–201. https://doi.org/10.1145/2635868.2635919

[17] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2013.
Beyond boolean product-line model checking: dealing with feature attributes
and multi-features. In 35th International Conference on Software Engineering, ICSE
’13. IEEE Computer Society, 472–481. https://doi.org/10.1109/ICSE.2013.6606593

[18] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008. Proceedings (LNCS, Vol. 4963), C. R.
Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340. https://doi.org/10.
1007/978-3-540-78800-3_24

[19] Aleksandar S. Dimovski. 2016. Symbolic Game Semantics for Model Checking
Program Families. In Model Checking Software - 23nd International Symposium,
SPIN 2016, Proceedings (LNCS, Vol. 9641). Springer, 19–37.

[20] Aleksandar S. Dimovski. 2018. Abstract Family-based Model Checking using
Modal Featured Transition Systems: Preservation of CTL★. In Fundamental Ap-
proaches to Software Engineering - 21st International Conference, FASE 2018, Pro-
ceedings (LNCS, Vol. 10802). Springer, 301–318.

[21] Aleksandar S. Dimovski. 2018. Verifying annotated program families using
symbolic game semantics. Theor. Comput. Sci. 706 (2018), 35–53. https://doi.org/
10.1016/j.tcs.2017.09.029

[22] Aleksandar S. Dimovski. 2020. {CTL*} family-based model checking using vari-
ability abstractions and modal transition systems. STTT 22, 1 (2020), 35–55.
https://doi.org/10.1007/s10009-019-00528-0

[23] Aleksandar S. Dimovski. 2021. Lifted termination analysis by abstract interpre-
tation and its applications. In GPCE ’21: Concepts and Experiences, 2021. ACM,
96–109. https://doi.org/10.1145/3486609.3487202

[24] Aleksandar S. Dimovski. 2022. Model sketching by abstraction refinement for
lifted model checking. In SAC ’22: The 37th ACM/SIGAPP Symposium on Applied
Computing, Virtual Event, 2022. ACM, 1845–1848. https://doi.org/10.1145/3477314.
3507170

[25] Aleksandar S. Dimovski. 2023. Quantitative program sketching using decision
tree-based lifted analysis. J. Comput. Lang. 75 (2023), 101206. https://doi.org/10.
1016/j.cola.2023.101206

[26] Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and Andrzej
Wasowski. 2016. Efficient family-based model checking via variability abstrac-
tions. STTT (2016). https://doi.org/10.1007/s10009-016-0425-2

[27] Aleksandar S. Dimovski and Sven Apel. 2021. Lifted Static Analysis of Dynamic
Program Families by Abstract Interpretation. In 35th European Conference on
Object-Oriented Programming, ECOOP 2021 (LIPIcs, Vol. 194). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 14:1–14:28. https://doi.org/10.4230/LIPIcs.
ECOOP.2021.14

[28] Aleksandar S. Dimovski, Sven Apel, and Axel Legay. 2022. Several lifted abstract
domains for static analysis of numerical program families. Sci. Comput. Program.
213 (2022), 102725. https://doi.org/10.1016/j.scico.2021.102725

[29] Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. 2015. Vari-
ability Abstractions: Trading Precision for Speed in Family-Based Analyses.
In 29th European Conference on Object-Oriented Programming, ECOOP 2015
(LIPIcs, Vol. 37). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 247–270.
https://doi.org/10.4230/LIPIcs.ECOOP.2015.247

[30] Aleksandar S. Dimovski, Claus Brabrand, andAndrzejWasowski. 2018. Variability
abstractions for lifted analysis. Sci. Comput. Program. 159 (2018), 1–27.

[31] Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. 2019. Finding
suitable variability abstractions for lifted analysis. Formal Aspects Comput. 31, 2
(2019), 231–259. https://doi.org/10.1007/s00165-019-00479-y

[32] Aleksandar S. Dimovski, Axel Legay, and Andrzej Wasowski. 2020. Generalized
abstraction-refinement for game-based CTL liftedmodel checking. Theor. Comput.
Sci. 837 (2020), 181–206. https://doi.org/10.1016/j.tcs.2020.06.011

[33] Aleksandar S. Dimovski and Andrzej Wasowski. 2017. From Transition Systems
to Variability Models and from Lifted Model Checking Back to UPPAAL. In
Models, Algorithms, Logics and Tools - Essays Dedicated to Kim Guldstrand Larsen

https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1016/j.scico.2010.10.005
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/2499777.2499781
https://doi.org/10.1145/2635868.2635919
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/j.tcs.2017.09.029
https://doi.org/10.1016/j.tcs.2017.09.029
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.1145/3486609.3487202
https://doi.org/10.1145/3477314.3507170
https://doi.org/10.1145/3477314.3507170
https://doi.org/10.1016/j.cola.2023.101206
https://doi.org/10.1016/j.cola.2023.101206
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.1016/j.scico.2021.102725
https://doi.org/10.4230/LIPIcs.ECOOP.2015.247
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1016/j.tcs.2020.06.011

Family-based model checking of fMultiLTL properties SPLC ’23, August 28-September 1, 2023, Tokyo, Japan

on the Occasion of His 60th Birthday (LNCS, Vol. 10460). Springer, 249–268. https:
//doi.org/10.1007/978-3-319-63121-9_13

[34] Aleksandar S. Dimovski andAndrzejWasowski. 2017. Variability-specific Abstrac-
tion Refinement for Family-Based Model Checking. In Fundamental Approaches
to Software Engineering - 20th International Conference, FASE 2017, Proceedings
(LNCS, Vol. 10202). 406–423. https://doi.org/10.1007/978-3-662-54494-5_24

[35] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms for
Model Checking HyperLTL and HyperCTL ˆ*. In Computer Aided Verification
- 27th International Conference, CAV 2015, Proceedings, Part I (LNCS, Vol. 9206).
Springer, 30–48. https://doi.org/10.1007/978-3-319-21690-4_3

[36] Paul Gazzillo and Robert Grimm. 2012. SuperC: parsing all of C by taming the
preprocessor. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan Vitek, Haibo Lin,
and Frank Tip (Eds.). ACM, 323–334. https://doi.org/10.1145/2254064.2254103

[37] Ohad Goudsmid, Orna Grumberg, and Sarai Sheinvald. 2021. Compositional
Model Checking forMulti-properties. InVerification, Model Checking, and Abstract
Interpretation - 22nd International Conference, VMCAI 2021, Proceedings (LNCS,
Vol. 12597). Springer, 55–80. https://doi.org/10.1007/978-3-030-67067-2_4

[38] Gerard J. Holzmann. 2004. The SPIN Model Checker - primer and reference manual.
Addison-Wesley.

[39] Alexandru F. Iosif-Lazar, Jean Melo, Aleksandar S. Dimovski, Claus Brabrand, and
Andrzej Wasowski. 2017. Effective Analysis of C Programs by Rewriting Variabil-
ity. Programming Journal 1, 1 (2017), 1. https://doi.org/10.22152/programming-
journal.org/2017/1/1

[40] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. 2012. Type
checking annotation-based product lines. ACM Trans. Softw. Eng. Methodol. 21, 3
(2012), 14.

[41] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-aware parsing in the presence
of lexical macros and conditional compilation. In Proceedings of the 26th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011, part of SPLASH 2011. 805–824. https://doi.org/
10.1145/2048066.2048128

[42] Jeff Kramer, JeffMagee, Morris Sloman, and A. Lister. 1983. CONIC: An Integrated
Approach to Distributed Computer Control Systems. IEE Proc. 130, 1 (1983), 1–10.

[43] Kenneth L. McMillan. 2003. Craig Interpolation and Reachability Analysis. In
Static Analysis, 10th International Symposium, SAS 2003, Proceedings (Lecture
Notes in Computer Science, Vol. 2694). Springer, 336. https://doi.org/10.1007/3-
540-44898-5_18

[44] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer.

[45] Riccardo Pucella and Fred B. Schneider. 2006. Independence From Obfuscation:
A Semantic Framework for Dive. In 19th IEEE Computer Security Foundations
Workshop, (CSFW-19 2006). IEEE Computer Society, 230–241. https://doi.org/10.
1109/CSFW.2006.15

[46] Fabio Somenzi andAaron R. Bradley. 2011. IC3: wheremonolithic and incremental
meet. In International Conference on Formal Methods in Computer-Aided Design,
FMCAD ’11. FMCAD Inc., 3–8. http://dl.acm.org/citation.cfm?id=2157657

[47] Maurice H. ter Beek, Erik P. de Vink, and Tim A. C. Willemse. 2017. Family-Based
Model Checking with mCRL2. In Fundamental Approaches to Software Engineering
- 20th International Conference, FASE 2017, Proceedings (LNCS, Vol. 10202). 387–405.
https://doi.org/10.1007/978-3-662-54494-5_23

[48] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti.
2016. Modelling and analysing variability in product families: Model checking
of modal transition systems with variability constraints. J. Log. Algebr. Meth.
Program. 85, 2 (2016), 287–315. https://doi.org/10.1016/j.jlamp.2015.09.004

[49] Tachio Terauchi and Alexander Aiken. 2005. Secure Information Flow as a Safety
Problem. In Static Analysis, 12th International Symposium, SAS 2005, Proceedings
(LNCS, Vol. 3672), Chris Hankin and Igor Siveroni (Eds.). Springer, 352–367. https:
//doi.org/10.1007/11547662_24

[50] Moshe Y. Vardi and Pierre Wolper. 1986. An Automata-Theoretic Approach to
Automatic Program Verification. In Proceedings of the Symposium on Logic in
Computer Science (LICS ’86). IEEE Computer Society, 332–344.

[51] Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven
Apel. 2018. Variability-Aware Static Analysis at Scale: An Empirical Study. ACM
Trans. Softw. Eng. Methodol. 27, 4 (2018), 18:1–18:33. https://doi.org/10.1145/
3280986

[52] Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and Sven Apel.
2016. Variability encoding: From compile-time to load-time variability. J. Log.
Algebr. Meth. Program. 85, 1 (2016), 125–145. https://doi.org/10.1016/j.jlamp.2015.
06.007

https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1145/2254064.2254103
https://doi.org/10.1007/978-3-030-67067-2_4
https://doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1145/2048066.2048128
https://doi.org/10.1007/3-540-44898-5_18
https://doi.org/10.1007/3-540-44898-5_18
https://doi.org/10.1109/CSFW.2006.15
https://doi.org/10.1109/CSFW.2006.15
http://dl.acm.org/citation.cfm?id=2157657
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1016/j.jlamp.2015.09.004
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/11547662_24
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1016/j.jlamp.2015.06.007
https://doi.org/10.1016/j.jlamp.2015.06.007

	Abstract
	1 Introduction
	2 Background: System families
	3 fMultiLTL properties
	4 Family-based model checking algorithm
	5 Implementation
	6 Evaluation
	6.1 Experimental setup
	6.2 Synthetic example
	6.3 MinePump example
	6.4 Discussion

	7 Related Work
	8 Conclusion
	References

