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Abstract

Many software systems today are highly configurable. They can produce
a potentially large variety of related programs (variants) by selecting suit-
able configuration options (features) at compile time. Recently, specialized
variability-aware (lifted, family-based) static analyses based on abstract in-
terpretation have been developed. They allow analyzing all variants of a
program family (or, any other configurable software system), simultaneously,
in a single run without generating any of the variants explicitly. In effect,
they produce precise analysis results for all individual variants. The elements
of the underlying lifted analysis domain represent tuples (i.e. disjunction of
properties), which maintain one property from an existing single-program
analysis domain per variant. Nevertheless, explicit property enumeration in
tuples, one by one for all variants, immediately yields to combinatorial ex-
plosion given that the number of variants can grow exponentially with the
number of features. Therefore, such lifted analyses may be too costly or even
infeasible for program families with a large number of variants.

In this work, we propose a more efficient lifted static analysis of program
families with Boolean features, where sharing is explicitly possible between
analysis elements corresponding to different variants. This is achieved by
giving a symbolic representation of the lifted analysis domain, which can
efficiently handle disjunctive properties in program families. The elements
of the new lifted domain are binary decision diagrams, where decision nodes
are labeled with Boolean features and leaf nodes belong to an existing single-
program analysis domain. The lifted domain is parametric in the choice of
the abstract (property) domain for leaf nodes. To illustrate the potential
of this representation, we have implemented a lifted static analyzer that
uses a combination of forward and backward analyses for inferring numer-
ical invariants and necessary preconditions of C program families. It uses
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APRON and BDDAPRON libraries for implementing the new lifted anal-
ysis domain. The APRON library, used for the leaves, is a widely accepted
API for numerical abstract domains (e.g. polyhedra, octagons, intervals),
while the BDDAPRON is an extension of APRON which adds the power
domain of Boolean formulae and any APRON domain. An empirical eval-
uation on C benchmarks taken from SV-COMP and BusyBox indicates
that our binary decision diagram-based approach is effective and outperforms
the baseline tuple-based approach.

Keywords: Lifted static analysis, Abstract interpretation, Software product
lines, Binary decision diagram lifted domain

1. Introduction

Highly configurable (variable) software systems are becoming increasingly
common today in many application areas. Many software projects adopt the
Software Product Line (SPL) methodology [1] for building a family of simi-
lar systems, known as variants or valid products, from a common code base.
Each variant is specified in terms of specially defined Boolean variables called
features (or, statically configurable options), which are selected (switched on)
for that particular variant. The SPL methodology is frequently seen in the
development of the embedded software (e.g., cars, phones, avionics), sys-
tem level software (e.g. Linux kernel), many web solutions (e.g. Drupal,
Wordpress), etc. Configurable options (features) are used to either support
different application scenarios for embedded components, to provide porta-
bility across different hardware platforms and configurations, or to produce
variations of products for different market segments or customers. We apply
the facilities of the C preprocessor [2] to support such compile-time config-
urability. They use #ifdef preprocessor directives to annotate optional and
alternative code fragments, which are included or excluded from a variant in
compile-time depending on the selected configuration options.

In many of the application domains, a rigorous verification and formal
analysis of program families is of paramount importance. Among the meth-
ods included in current practices, static program analysis by abstract inter-
pretation [3, 4] is a powerful technique for automatic verification of software
systems. Abstract interpretation [3, 4] is a general theory for approximating
the semantics of programs. It provides sound (all confirmative answers are
indeed correct) and efficient (with a good trade-off between precision and
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cost) static analyses of run-time properties of real programs without actually
executing them. Abstract interpretation is based on the idea of approxima-
tions between concrete and abstract domains of program properties. It has
been used as the foundation for various successful industrial-scale static ana-
lyzers, such as ASTREE [5], that infer numerical invariants using numerical
abstract domains [6]. They have been applied for ensuring the correctness of
various software systems. However, current standard static analyzers based
on abstract interpretation do not handle compile-time variability. They can
analyze only single programs, but not the entire configuration space (all
variants). Unfortunately, the static analysis of program families is harder
than the static analysis of single programs, because the number of possible
variants can be very large (often huge). The simplest brute-force approach,
that uses a preprocessor to generate all variants of a family and then applies
an existing off-the-shelf single-program analyzer to each individual variant,
one-by-one, is very inefficient. This approach has to compile (preprocess and
build control flow graph) as well as execute the fixed point iterative algorithm
once for each possible variant. To overcome this problem, variability-aware
(lifted, family-based) static analyses based on abstract interpretation have
been proposed [7, 8]. They work on the family level, analyzing all variants
of the family simultaneously, without generating any of them explicitly. The
lifted approaches compile and execute the fixed point iterative algorithm
only once per family. They take as input the common configurable code
base, which encodes all variants of a program family, and produce precise
disjunctive analysis results corresponding to all variants. They use a lifted
analysis domain that represents the n-fold product of a single-program anal-
ysis domain used for expressing program properties. Here, n denotes the
number of valid configurations (i.e., variants). That is, the lifted analysis
domain maintains one property element per valid variant in tuples. This ex-
plicit property enumeration in tuples can be a bottleneck when dealing with
families that have high variability. The problem is that this enumeration be-
comes computationally intractable with larger program families because the
number of variants grows exponentially with the number of features. This is
known as the configuration space explosion problem.

In this work, we show how to speed up the lifted analysis by improving
the representation of the lifted analysis domain. The key for this is the
proper handling of disjunctions of properties that arise in the lifted analysis
due to the variability-specific constructs of the language (e.g. feature-based
runtime tests and #ifdef directives). In particular, we propose a novel

3



lifted analysis domain that enables an explicit interaction (sharing) between
analysis elements corresponding to different variants. The lifted analysis
domain is given as a binary decision diagram domain functor, where Boolean
features are organized in decision nodes and leaf nodes contain a particular
analysis property. Binary decision diagram (BDD) domains represent an
instance of the reduced cardinal power of domains [9, Sect. 10.2], which
map the values of Boolean features (represented in decision nodes) to an
analysis property (represented in leaf nodes) for the variants specified by the
values of features along the path leading to the leaf. These decision diagram
domains are particularly well suited for representing disjunctive properties
(which is the key aspect of a lifted analysis). The lifted domain is parametric
in the choice of the abstract domain for the leaf nodes, and so it can be used
for inference of different program properties. The efficiency of BDDs comes
from the opportunity to share equal subtrees, in case some properties are
independent from the value of some features.

On the practical side, we have developed a prototype lifted static an-
alyzer which uses the BDDAPRON library [10] to implement the binary
decision diagram domain. BDDAPRON uses any property domain from
the APRON library [11] for the leaf nodes. For example, APRON provides
a common high-level API to the most common numerical property domains,
such as intervals, octagons, and polyhedra. We have implemented two types
of lifted analyses of C program families: a forward reachability lifted analysis
for the automatic inference of invariants, and a backward lifted analysis for
the automatic inference of necessary preconditions. These two analyses can be
combined and run one after the other, such that the results of the second one
(backward) refine and focus the results obtained from the first one (forward).
The tool computes a set of possible numerical invariants (and preconditions)
in all program locations, thanks notably to the design of numerical prop-
erty domains, which allow one to extract the information about the possible
values of individual program variables along with the possible relationships
between them. In particular, we use: the (non-relational) interval domain [3],
the (weakly-relational) octagon domain [12], and the (fully-relational) poly-
hedra domain [13]. The precision of numerical property domains increases
from non-relational (interval) to fully-relational domains (polyhedra), but so
does the computational complexity. We can use the implemented lifted static
analyzer to prove the absence of runtime errors in #ifdef-enriched C pro-
grams, which represent majority of industrial embedded code. In particular,
we are able to check invariance properties, such as assertions, buffer over-
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flows, division by zero, etc [5]. We can also use the combination of forward
and backward lifted analyses to automatically generate stronger invariants
as well as necessary preconditions that lead to the satisfaction of a given
assertion [14, 15].

Let us summarize the contributions of this work:

(C1) We propose a novel lifted domain based on BDDs, which is well suited
for handling disjunctive properties that come from variability.

(C2) We develop a lifted static analyzer in which the lifted domains are
instantiated to numerical property domains from the APRON library.
The analyzer performs either only a forward analysis to find numerical
invariants or a backward analysis in combination with a preliminary
forward analysis to refine the found invariants.

(C3) Finally, we evaluate our approach for lifted static analysis of #ifdef-
enriched C programs. We compare performances of our lifted analyzers
based on tuples and binary decision diagrams, as well as showing their
concrete applications in assertion checking.

This work can be of interest to program analysis and software engineering
researchers. The approach of constructing and implementing the BDD lifted
domain (C1 – C2) is directed at designers of lifted analyses for configurable
software systems. The evaluation lessons (C3) are relevant for software en-
gineers working on #ifdef-based configurable programs and who would like
to speed up existing analyzers.

This work extends and revises a GPCE conference article [16]. Addi-
tional material that did not appear in the conference version include: (1)
a complete description of the concrete and abstract semantics; (2) a back-
ward analysis that can be used in combination with a forward analysis to
derive stronger invariants as well as necessary preconditions that lead to the
occurrence of some property; (3) additional illustrations, explanations, and
examples; (4) more evaluation results including analysis on more subject sys-
tems (BusyBox) and more practical applications. The paper proceeds with
a motivating example that illustrates our new approach for lifted static anal-
ysis by abstract interpretation. The language for writing program families
is introduced in Section 3. A complete description of concrete and abstract
(forward and backward) analyses as well as the most common numerical
property domains are given in Section 4. The basics of tuple-based lifted
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analysis are introduced in Section 5. Section 6 defines our new BDD-based
lifted analysis. Section 7 presents the evaluation on benchmarks taken from
SV-COMP and BusyBox. Finally, we discuss related work and conclude.

2. Motivating Example

To better illustrate the issues we are addressing in this work, we now
present a motivating example using the code base of the program family P :

1© int y := input([0, 9]);
linput int x := 10;
3© while (x!= 0) {
4© x := x-1;
5© #ifdef (A) y := y+1; #endif
6© #ifdef (B) y := y+1; #endif
7© }
8© assert (y ≤ 15);

The set of Boolean features in the program family P is F = {A,B} and the set
of valid configurations is K = {A∧B,A∧¬B,¬A∧B,¬A∧¬B}. The initial
value of the input variable y is non-deterministically chosen from the interval
[0, 9]. The code base of P contains two #ifdef directives, which increase the
variable y by 1, depending on which features from F are enabled at compile
time. For each configuration from K, a different variant (single program) can
be generated by appropriately resolving #ifdef-s. For example, the variant
corresponding to the configuration A ∧ B will have both features A and B
enabled (set to true), so that both assignments y := y+1 in locations 5©
and 6© will be included in this variant. On the other hand, the variant for
configuration ¬A ∧ ¬B will have both features A and B disabled (set to
false), so the above assignments in locations 5© and 6© will not be included
in it. There are |K| = 4 variants that can be derived from P , shown in Fig. 1.

Assume that we want to perform lifted analyses on the family P using
the numerical property domains: intervals, octagons, and polyhedra. The
standard lifted domain from [7, 8] is defined as cartesian product of K copies
of the basic domain, which corresponds to the client analysis we want to
perform. Hence, elements of the lifted domain are tuples containing one
component for each valid configuration from K, where each component rep-
resents a numerical property over program variables (x and y in this case).
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int y := input([0,9]);

int x := 10;

while (x != 0) {

x := x-1;

y := y+1;

y := y+1; }

assert (y ≤ 15);

(a) PA∧B(P )

int y := input([0,9]);

int x := 10;

while (x != 0) {

x := x-1;

y := y+1; }

assert (y ≤ 15);

(b) PA∧¬B(P )

int y := input([0,9]);

int x := 10;

while (x != 0) {

x := x-1;

y := y+1; }

assert (y ≤ 15);

(c) P¬A∧B(P )

int y := input([0,9]);

int x := 10;

while (x != 0) {

x := x-1; }

assert (y ≤ 15);

(d) P¬A∧¬B(P )

Figure 1: Different variants of the program family P .

( A∧B︷ ︸︸ ︷
[y≥0, x=0],

A∧¬B︷ ︸︸ ︷
[y≥0, x=0],

¬A∧B︷ ︸︸ ︷
[y≥0, x=0],

¬A∧¬B︷ ︸︸ ︷
[0≤y≤9, x=0]

)
(a) Intervals( A∧B︷ ︸︸ ︷

[y≥10 ∧ x=0],

A∧¬B︷ ︸︸ ︷
[10≤y≤19 ∧ x=0],

¬A∧B︷ ︸︸ ︷
[10≤y≤19 ∧ x=0],

¬A∧¬B︷ ︸︸ ︷
[0≤y≤9 ∧ x=0]

)
(b) Octagons( A∧B︷ ︸︸ ︷

[20≤y≤29 ∧ x = 0],

A∧¬B︷ ︸︸ ︷
[10≤y≤19 ∧ x = 0],

¬A∧B︷ ︸︸ ︷
[10≤y≤19 ∧ x = 0],

¬A∧¬B︷ ︸︸ ︷
[0≤y≤9 ∧ x = 0]

)
(c) Polyhedra.

Figure 2: Tuple-based invariants at the location 8© of P .

The lifted analyses result in location 8© of P obtained using the lifted inter-
val, octagon, and polyhedra forward analyses are the 4-sized tuples shown in
Fig. 2a, Fig. 2b, and Fig. 2c, respectively. Note that the first component of
a tuple in Fig. 2 corresponds to configuration A ∧B, the second to A ∧ ¬B,
the third to ¬A ∧B, and the fourth to ¬A ∧ ¬B. From the analyses results
in Fig. 2, we can see that the interval forward analysis in Fig. 2a discovers
very coarse (approximative) results about the variable y for configurations
A ∧ B, A ∧ ¬B and ¬A ∧ B, that is y ≥ 0, since it is not able to reason
about the relations between the variables x and y. Using this result in lo-
cation 8©, we can only successfully conclude that the assertion (y ≤ 15) is
always valid (for all inputs) for configuration ¬A ∧ ¬B. Failure to infer the
best numerical invariants using intervals motivates the introduction of more
expressive domains, such as octagons and polyhedra. The octagon forward
analysis in Fig. 2b gives more precise (less approximative) results about y.
That is, 10 ≤ y ≤ 19 for configurations A ∧ ¬B and ¬A ∧ B as well as
0 ≤ y ≤ 9 for ¬A ∧ ¬B are exact results. But, we obtain a coarse result
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A

B

[y≥0,x=0] [0≤y≤9,x=0]

(a) Intervals

A

B B

[y≥10∧x=0] [10≤y≤19∧x=0] [0≤y≤9∧x=0]

(b) Octagons

A

B B

[20≤y≤29∧x=0] [10≤y≤19∧x=0] [0≤y≤9∧x=0]

(c) Polyhedra.

Figure 3: BDD-based invariants at the location 8© of P (solid edges = true, dashed edges
= false).

y ≥ 10 for configuration A∧B, since the relations that can be tracked using
the octagon analysis are limited, i.e. they are of the form ±x±y ≥ c. Finally,
the polyhedra forward analysis in Fig. 2c reports the most precise results for
both x and y in all configurations, since it is a fully relational domain and
is able to track all (affine) relations between variables. Using this result in
location 8©, we can conclude that the given assertion always fails (for all in-
puts) for configuration A ∧B, which was not possible to infer using interval
and octagon analyses. However, for configurations A ∧ ¬B and ¬A ∧ B we
obtain the invariant 10 ≤ y ≤ 19 at location 8©, so the assertion can be
satisfied (when 10 ≤ y ≤ 15) and can be violated (when 15 < y ≤ 19). Sup-
pose we are interested in inferring necessary preconditions on the input state
at location linput when the given assertion is satisfied. We back-propagate
necessary preconditions of satisfaction of the assertion from location 8© to
linput. A backward lifted analysis will infer the precondition 0 ≤ y ≤ 5 at
location linput for the assertion to be satisfied for configurations A∧¬B and
¬A ∧B.

If we perform lifted forward analyses based on the binary decision diagram
domain proposed here, then the analyses results (invariants) in the program
location 8© of P obtained using interval, octagon, and polyhedra domains
for leaves are shown in Fig. 3a, Fig. 3b, and Fig. 3c, respectively. Note that
the inner nodes of a binary decision diagram (BDD) in Fig. 3 are labeled
with Boolean features from F, while the leaves are labeled with the elements
from the property domain we use (i.e. affine constraints over program vari-
ables x and y). The edges of BDDs are labeled with the truth value of the
decision on the parent node: true or false (we use solid edges for true, and
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dashed edges for false). It is obvious that BDDs offer more possibilities for
sharing and interaction between analysis properties corresponding to differ-
ent configurations. Thus, they provide symbolic and compact representation
of lifted analysis elements. For example, Fig. 3a presents interval properties
of program variables x and y, which are partitioned with respect to Boolean
features A and B. When A is true, the property is independent from the
value of B, hence the node at level B can be omitted. Moreover, the cases
(A is true) and (A is false and B is true) are identical, so they share the
same leaf node. As a consequence, this representation uses only two leaf
nodes, while the tuple-based representation in Fig. 2a uses four. This ability
for sharing is the key motivation behind the BDD-based representation. It
makes BDDs more economical than tuples in representing lifted analyses re-
sults. Notice that, in the worst case, BDDs still need |K| different leaf nodes,
but experimental evidence shows that sharing often occurs in practice.

3. A Language for Program Families

Let F = {A1, . . . , An} be a finite and totally ordered set of Boolean vari-
ables representing the features available in a program family. A specific
subset of features, k ⊆ F, known as configuration, specifies a variant of a
program family. We assume that only a subset K ⊆ 2F of all possible config-
urations are valid. An alternative representation of configurations is based
upon propositional formulae. Each configuration k ∈ K can be represented
by a valuation formula: k(A1) ∧ . . . ∧ k(An), where for each feature A ∈ F,
we have k(A) = A if A ∈ k and k(A) = ¬A if A /∈ k. The set of valid
configurations K can be also represented as a formula: ∨k∈Kk. We will use
both representations.

We define feature expressions, denoted FeatExp(F), as the set of well-
formed propositional logic formulae over F generated by the grammar:

θ ::= true |A ∈ F | ¬θ | θ1 ∧ θ2| θ1 ∨ θ2

We will use θ ∈ FeatExp(F) to define presence conditions in program families.
When a configuration k ∈ K satisfies θ ∈ FeatExp(F), we write k |= θ, where
|= is the standard satisfaction relation of logic. We write [[θ]] to denote the
set of configurations from K that satisfy θ, that is, k ∈ [[θ]] iff k |= θ.

Example 1. Let us revisit the program family P from Section 2. The set
of features is F = {A,B}, and there are four possible valid configurations
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K = {A ∧ B,A ∧ ¬B,¬A ∧ B,¬A ∧ ¬B} (or, equivalently using sets K =
{{A,B}, {A}, {B}, ∅}). For the feature expression A∨B, we have [[A∨B]] =
{A ∧ B,A ∧ ¬B,¬A ∧ B}. Therefore, it holds that (A ∧ B) |= (A ∨ B) and
(¬A ∧ ¬B) 6|= (A ∨B). �

We consider a simple deterministic programming language, which will be
used to exemplify our work. The variables are statically allocated and the
only data type is the set Z of mathematical integers. Note that our implemen-
tation, described in Section 7, actually supports a subset of the C language
enriched with #ifdef-s, which is sufficient to handle realistic program fami-
lies. To encode multiple variants, a new compile-time conditional statement
is included. The new statement “#ifdef (θ) s #endif” contains a feature
expression θ ∈ FeatExp(F) as a presence condition, such that only if θ is sat-
isfied by a configuration k ∈ K the statement s will be included in the variant
corresponding to k. The language is also extended with non-deterministic
interval assignment in order to model input uncertainties. The control loca-
tion before each statement and at the end of each block is associated to a
unique label l ∈ L. The syntax of the language is given by:

s ::= skip | x := e | x := input([n, n′]) | s ; s | if e then s else s |
while e do s | assert(e) | #ifdef (θ) s #endif

e ::= n | x | e⊕ e

where n ranges over integers, [n, n′] ranges over integer intervals, x ranges over
variable names Var, and ⊕ ∈ {+,−, ∗, \, <,=,¬,∧}. 1 Non-deterministic
interval assignment x := input([n, n′]) represents an input statement which
assigns to the input variable x a random value from the interval [n, n′]. This
interval assignment can occur only in the input section, and is used to model
input uncertainties that are out of the control of the program. The set of all
generated statements s is denoted by Stm, while the set of all expressions e is
denoted by Exp. We assume linput is the location after the input statements,
thus it denotes the end of the input section.

Note that the C preprocessor uses the following keywords: #if, #ifdef,
and #ifndef to start a conditional construct; #elif and #else to create
additional branches; and #endif to end a construct. Any of such preprocessor

1Following the convention popularized by C, we model Boolean values as integers, with
zero interpreted as false and everything else as true.
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conditional constructs can be desugared and represented only by the #ifdef

construct we use in this work.
A program family is evaluated in two stages. First, a preprocessor takes

a program family s and a configuration k ∈ K as inputs, and produces a
variant (that is, a single program without #ifdef-s) corresponding to k as the
output. Second, the obtained variant is evaluated using the standard single-
program semantics [8]. The first stage is specified by the projection function
Pk, which is an identity for all basic statements and recursively pre-processes
all sub-statements of compound statements. Hence, Pk(skip) = skip and
Pk(s;s

′) = Pk(s);Pk(s
′). The interesting case is “#ifdef (θ) s #endif”, where

the statement s is included in the resulting variant if k |= θ, otherwise, if
k 6|= θ the statement s is removed. 2 That is,

Pk(#ifdef (θ) s #endif) =

{
Pk(s) if k |= θ

skip if k 6|= θ

For example, the variants PA∧B(P ), PA∧¬B(P ), P¬A∧B(P ), and P¬A∧¬B(P )
shown in Fig. 1a, Fig. 1b, Fig. 1c, and Fig. 1d, respectively, are derived from
the program family P defined in Section 2.

4. Background: Analyses based on Abstract Interpretation

This section represents a brief summary of the ideas and concepts of
abstract interpretation, and in particular how it can be used for deriving
forward and backward abstract analyses of single programs. We also briefly
recall the well-known numerical property domains of intervals [3], octagons
[12], and polyhedra [13], that can be used for automatic discovery of numer-
ical properties of program variables. They are the foundation upon which
we implement in practice new lifted domains introduced in Sections 5 and 6.
We leave #ifdef directives aside in this section and work only with single
programs without #ifdef-s in the following.

4.1. Concrete Semantics and Analysis

We first introduce a concrete semantics of our language, which is the
starting point in abstract interpretation. Then, we introduce invariant in-
ference (forward) and necessary precondition (backward) analyses defined on

2Since any k ∈ K is a valuation formula, we have that either k |= θ holds or k 6|= θ
(which is equivalent to k |= ¬θ) holds, for any θ ∈ FeatExp(F).
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the concrete semantics. They can be seen as concrete analyses that do not in-
troduce any imprecision. Such analyses are obviously uncomputable, i.e. they
cannot be computed statically, since our language allows unbounded program
executions and unbounded numerical values for variables (i.e. the language is
Turing complete). In the next subsection, we introduce the notion of a Galois
connection, which represents a pair of functions capturing information loss
between two domains. Then, we demonstrate how to use concrete analyses
and Galois connections to derive approximate, albeit computable analyses,
which can statically determine dynamic properties of programs.

A program state is given by a control location in L and an environment
in E : Var → Z mapping each variable to its value (integer number). We
write Σ = L× E to denote the set of all possible program states. Programs
are modelled as transition systems (Σ,−→), where Σ is a set of states and
−→⊆ Σ × Σ is a transition relation modelling atomic execution steps. The
relation −→ is defined by local rules, such as the following:

do-nothing l0 : skip; l1 :: (l0, ρ) −→ (l1, ρ).

assignment l0 : x := e; l1 :: (l0, ρ) −→ (l1, ρ[x 7→ [[e]](ρ)]), where [[e]](ρ) ∈ Z
is the result of the evaluation of e in the environment ρ, and ρ[x 7→ n]
denotes the environment that updates ρ at variable x to equal value n.

input l0 : x := input([n, n′]); l1 :: (l0, ρ) −→ (l1, ρ[x 7→ n′′]), where n′′ ∈
[n, n′].

conditional l0 : if (e) then {lt0 : s; lt1} else {l
f
0 : s′; lf1}; l1 :: (l0, ρ) −→

(lt0, ρ) if [[e]](ρ) 6= 0, (l0, ρ) −→ (lf0 , ρ) if [[e]](ρ) = 0, (lt1, ρ) −→ (l1, ρ),
and (lf1 , ρ) −→ (l1, ρ). Note that the earlier two rules show how control
moves from the initial label l0 of the conditional to initial labels lt0 and
lf0 of then and else branches, whereas the latter two rules from final
labels lt1 and lf1 of then and else branches to the final label l1 of the
whole conditional.

loop l0 : while (e) do {lt0 : s; lt1}; l1 :: (l0, ρ) −→ (lt0, ρ) if [[e]](ρ) 6= 0,
(l0, ρ) −→ (l1, ρ) if [[e]](ρ) = 0, and (lt1, ρ) −→ (l0, ρ). Note that control
moves from the final label lt1 of while-body s to the initial label l0 of
while.

assertion l0 : assert(e); l1 :: (l0, ρ) −→ (l1, ρ) if [[e]](ρ) 6= 0.
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Let E ⊆ E be the set of input environments obtained after executing
the input statements. The set of input states is I = {(linput, ρ) | ρ ∈ E}.
An invariant inference (forward) analysis consists of finding out the reach-
able environments (values of all variables) in all control locations. The
concrete semantic domain is the complete lattice of the powerset of states
〈P(Σ),⊆,∪,∩, ∅,Σ〉, and the forward analysis in the form of invariant states
encountered branching from the set of input states I, denoted inv(I), is:

inv(I) = lfpIλX.X ∪ post(X)

where post(X) = {σ ∈ Σ | ∃σ′ ∈ X.σ′ −→ σ} and lfpIf is the least fixed
point of the function f greater than or equal to I.

In this work, we also consider a backward analysis for inferring necessary
preconditions. Assume that we want an expression ef to hold at a program
location lfinal. Let F = {(l, ρ) ∈ inv(I) | l = lfinal =⇒ [[ef]](ρ) 6= 0}
be the invariant set that enforces the expression ef at location lfinal to be
satisfied (i.e., ef is not equal to zero), and F coincides with inv(I) everywhere
else. Given an invariant set F to obey, we want to infer the set of necessary
preconditions cond(F) that guarantee that all program executions branching
from (l, ρ) ∈ cond(F) stay in F :

cond(F) = gfpFλX.X ∩ pre(X)

where pre(X) = {σ ∈ Σ | ∃σ′ ∈ X.σ −→ σ′} is the set of predecessors of
X, and gfpFf is the greatest fixed point of the function f smaller than or
equal to F . The above two fixed points (lfp and gfp) exist according to
Tarski [17], as the corresponding functions are monotone and continuous in
the complete lattice of state sets 〈P(Σ),⊆〉.

Given a set of input environments E ⊆ E , we can compute the subset Esat
of input environments that lead to satisfaction of the expression ef as:

Esat = E ∩ {ρ |(linput, ρ)∈cond(F)}

4.2. Abstract Semantics and Analysis

Transition systems can become large or infinite for real programs, so that
neither inv(I) nor cond(F) can be computed at all. Therefore, we seek for
sound approximations. The actual computable abstract analyses can be de-
fined as over-approximations of the concrete analyses and semantics. A static
analyzer will infer over-approximated invariants and necessary preconditions
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in all program locations. For example, the computed necessary precondition
on the input state in linput will represent an over-approximation of Esat.

A Galois connection is a pair of functions, α : C→ A and γ : A→ C (re-
spectively known as the abstraction and concretization functions), connecting
two partially ordered sets, 〈C,6〉 and 〈A,v〉 (often called the concrete and
abstract domain, respectively), such that:

∀c ∈ C, a ∈ A : α(c) v a ⇔ c 6 γ(a) (1)

which is often typeset as: 〈C,6〉 −−→←−−α
γ
〈A,v〉. For a concrete domain C, we

define abstraction and concretization functions to and from a more abstract
domain A, where information has been abstracted away.

We now show how to derive abstract analyses via a Galois connection.
Suppose that we have an abstract domain 〈A,vA〉, such that there exist a

Galois connection 〈P(E),⊆〉 −−−→←−−−
αA

γA 〈A,vA〉. We assume that the abstract do-

main A is equipped with sound operators for ordering vA, least upper bound
(join) tA, greatest lower bound (meet) uA, bottom ⊥A, top >A, widening OA,
and narrowing MA, as well as sound transfer functions for forward assignments
ASSIGNA : Stm × A → A, tests FILTERA : Exp × A → A, and backward
assignments B-ASSIGNA : Stm × A × A → A. We let lfp# (resp., gfp#)
denote an abstract post-fixpoint (resp., pre-fixpoint) operator, derived using
widening OA and narrowing MA, that over-approximates the concrete lfp

(resp., gfp) [18]. Finally, the concrete domain on which concrete semantics

is defined 〈P(Σ),⊆〉 is abstracted using a Galois connection 〈P(Σ),⊆〉 −−→←−−α
γ

〈L→ A, v̇〉 where α(R) = λl ∈ L. tA {a ∈ A | (l, ρ) ∈ R,αA(ρ) = a}.
Hence, each control location l ∈ L is associated with an element a ∈ A in the
abstract semantics. Note that abstract elements a ∈ A must be computer
representable, and all operators and transfer functions of A must be given
as effective algorithms.

Remark 1. In this work, backward assignments B-ASSIGNA : Stm × A ×
A → A, and in general backward transfer functions

←−
δ l,l′ : A × A → A,

are used to refine the results of a previous forward analysis meaning that an
over-approximation of the set of environments reachable before any statement

is available. Therefore, B-ASSIGNA (resp.,
←−
δ l,l′) takes two elements of A

as inputs: the first one is an invariant in the initial label of the assignment
(resp., statement) found by the forward analysis that needs to be refined, and
the second one is an invariant in the final label of the assignment (resp.,
statement) that needs to be propagated backwards.
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We define a family of forward abstract transfer functions
−→
δ l,l′ : A → A

that compute the effect of any concrete transition at the abstract level. They
use only abstract versions of operators and transfer functions we assume given

with the domain A. The definition of
−→
δ l,l′ is:

do-nothing l0 : skip; l1 ::
−→
δ l0,l1(a) = a.

assignment l0 : x := e; l1 ::
−→
δ l0,l1(a) = ASSIGNA(x:=e, a).

conditional l0 : if (e) then {lt0 : s; lt1} else {l
f
0 : s′; lf1}; l1 ::

−→
δ l0,lt0(a) =

FILTERA(e, a),
−→
δ l0,lf0

(a)=FILTERA(¬e, a),
−→
δ lt1,l1(d)=d,

−→
δ lf1 ,l1

(d)=d.

loop l0 : while (e) do {lt0 : s; lt1}; l1 ::
−→
δ l0,lt0(a) = FILTERA(e, a),

−→
δ l0,l1(a) =

FILTERA(¬e, a), and
−→
δ lt1,l0(a) = a.

assertion l0 : assert(e); l1 ::
−→
δ l0,l1(a)=FILTERA(e, a).

The requirement for soundness of {
−→
δ l,l′ | l, l′ ∈ L} is written as: ∀a ∈

A,∀ρ ∈ γA(a), (l, ρ) −→ (l′, ρ′) =⇒ ρ′ ∈ γA(
−→
δ l,l′(a)).

Suppose that the abstract element αA(E) = ainput ∈ A is at the input con-
trol location linput. We can collect the abstractions of possible environments
at each control location using the following forward abstract interpreter:

−→
F # = λI.λ(l ∈ L). tA {

−→
δ l′,l(I(l′)) | l′ ∈ L}

such that the result of the forward analyzer is
−→
I # = lfp

#
I0

−→
F #, where

I0(linput) = ainput.

Assume
−→
I #(lfinal) = afinal, and asatfinal = FILTERA(ef, afinal), where ef

is the expression we want to hold at location lfinal. We want to design
a backward abstract interpreter that propagates backwards the invariants
ensuring that the expression ef is satisfied, asatfinal. The backward interpreter

refines the invariants found by the forward abstract interpreter
−→
F #. Thus,

it takes two elements of A as inputs: an invariant found by
−→
F # to refine and

an invariant to propagate backwards. It is based on a family of backward

abstract transfer functions
←−
δ l,l′ : A × A → A, which map a precondition at

label l found by
−→
F # to refine and a postcondition at label l′ into a refined

precondition at label l. The definition of
←−
δ l,l′ is:
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do-nothing l0 : skip; l1 ::
←−
δ l0,l1(a, a

′) = a u a′.

assignment l0 : x := e; l1 ::
←−
δ l0,l1(a, a

′) = B-ASSIGNA(x:=e, a, a′).

conditional l0 : if (e) then {lt0 : s; lt1} else {l
f
0 : s′; lf1}; l1 ::

←−
δ l0,lt0(a, a

′) =

au (a′ tFILTERA(¬e,>A)),
←−
δ l0,lf0

(a, a′) = au (a′ tFILTERA(e,>A)),
←−
δ lt1,l1(a, a

′) = a u a′,
←−
δ lf1 ,l1

(a, a′) = a u a′.

loop l0 : while (e) do {lt0 : s; lt1}; l1 ::
←−
δ l0,lt0(a, a

′)=au(a′tFILTERA(¬e,>A)),
←−
δ l0,l1(a, a

′) = a u (a′ t FILTERA(e,>A)), and
←−
δ lt1,l0(a, a

′) = a u a′.

assertion l0 : assert(e); l1 ::
←−
δ l0,l1(a, a

′)=a u (a′ t FILTERA(¬e,>A)).

The requirement for soundness of {
←−
δ l,l′ | l, l′ ∈ L} is written as: ∀a, a′ ∈

A,∀ρ ∈ γA(a), ρ′ ∈ γA(a′), (l, ρ) −→ (l′, ρ′) =⇒ ρ ∈ γA(
←−
δ l,l′(a, a

′)). That is,
a is refined into a stronger precondition by taking into account the postcon-
dition a′.

Suppose that F sat =
−→
I #[lfinal 7→ asatfinal] be an invariant that enforces

asatfinal to hold at location lfinal, and everywhere else F sat coincides with

the invariant
−→
I # found by the forward abstract interpreter. The backward

abstract interpreter is defined as:

←−
F # = λF.λ(l ∈ L). uA {

←−
δ l,l′(F (l), F (l′)) | l′ ∈ L}

such that the results of the backward analyzer is:
←−
C #
sat = gfp

#
Fsat

←−
F #. The

necessary preconditions that the given expression ef is satisfied in linput is

asatinput =
←−
C #
sat(linput). We can now compute the over-approximated set E#

sat of
input environments Esat, which may lead to satisfaction of the expression ef,
as: E#

sat = E∩γA(asatinput), such that E#
sat ⊇ Esat. Note that input environments

from E\E#
sat will definitely lead to failure of the given expression ef.

4.3. Numerical Property Domains

So far, we have presented a generic static analyzer parameterized by the
choice of an abstract domain A equipped with a set of sound operators and
transfer functions. Now, we present several such numerical abstract domains
of intervals [3], octagons [12], and polyhedra [13]. Note that each domain
employs data structures and algorithms specific to the shape of invariants it
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represents and manipulates. For instance, we will see that interval domain
employs algorithms from interval arithmetic; octagon domain from matrices
and graphs; while polyhedra domain from the theory of convex polyhedra.

Intervals. The Interval domain [3] (also called Box domain), denoted as
〈I,vI〉, is a non-relational numerical property domain, which abstracts each
variable independently but do not take variable relationships into account.
It identifies the range of possible values for every variable as an interval. The
property elements are: {⊥I} ∪ {[l, h] | l ∈ Z ∪ {−∞}, h ∈ Z ∪ {+∞}, l≤h},
where the least element (bottom) ⊥I denotes the empty interval and the
greatest element (top) is >I = [−∞,+∞]. The abstract operations of the
Interval domain are defined in [3]. Interval analysis is very cheap, that is,
all the domain operations can be performed in linear time and space in the
number of variables.

We now give precise definitions of some operations. The concretization
function γI , which assigns a concrete meaning to each element from I, is:

γI(⊥I) = ∅, γI([l, h]) = {n ∈ Z | l ≤ n ≤ h}

The partial ordering vI , and meet uI are defined as:

[l1, h1] vI [l2, h2] ≡def l2 ≤ l1 ∧ h1 ≤ h2,

[l1, h1] uI [l2, h2] = [max{l1, l2},min{h1, h2}]

The interval domain has infinite strictly ascending chains so we need to
define widening operators in order to enforce convergence of the fixed point
of while loops. The standard widening consists in replacing any unstable
upper bound with +∞ and any unstable lower bound with −∞ [3]:

[l1, h1]∇I [l2, h2] =
[{l1, if l1 ≤ l2

−∞, otherwise
,

{
h1, if h1 ≥ h2

+∞, otherwise

]
In order to improve the precision of loop analysis, we can apply the narrowing
after stabilization with widening is achieved. This is a simple choice:

[l1, h1]∆I [l2, h2] =
[{l2, if l1 = −∞

l1, otherwise
,

{
h2, if h1 = +∞
h1, otherwise

]
Let a ∈ Var → I be an abstract state which maps each variable x to an
interval. The transfer function FILTERI abstracts tests (expressions) in
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while-s and if-s by restricting the input abstract store so that it satisfies
the given test. We can handle some simple cases precisely, and we use the
identity as a sound abstraction for the other cases. For example, we have:

FILTERI(x≤n : Exp, a : Var→I) =

{
a[x 7→ [l,min(h, n)]], if l≤n
⊥I , if l>n

where a(x) = [l, h]. The transfer function for assignments is:

ASSIGNI(x:=e : Stm, a : Var→ I) = a[x 7→ [[e]]Ia]

where [[e]]Ia is the value obtained by abstract evaluation of e in the store a.
The backward assignment for the invertible cases [6], x := x+[l, h] and

x := -x+[l, h], is defined by forward assignments (for all numerical domains):

B-ASSIGNA(x:=x+[l, h] :Stm, a :A, a′ :A)=ASSIGNA(x:=x+[-h, -l], a′) u a
B-ASSIGNA(x:=-x+[l, h] :Stm, a :A, a′ :A)=ASSIGNA(x:=-x+[l, h], a′) u a

We refer to [6, 12] for the definition of other cases.

Octagons. The Octagon domain [12], denoted as 〈O,vO〉, is a weakly rela-
tional numerical property domain, where property elements are conjunctions
of linear inequalities of the form +−xj +− xi ≤ c between variables xi and xj.
Abstract operations of the Octagon domain are defined in [12]. The octagon
analysis has a cubic time cost per domain operation. Thus, it represents a
trade-off between the interval analysis, which is very cheap but quite impre-
cise, and the polyhedra analysis, which is very expressive but costly.

Each property element is encoded as Difference Bound Matrix (DBM) m
which is a 2n× 2n matrix, where n is the total number of program variables.
For each variable xi ∈ Var, we consider two versions x′2i−1 and x′2i which
correspond to +xi and−xi respectively. The elementmij at row i and column
j of m (1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n), denotes the constraint x′j − x′i ≤ mij. The
concretization function γO is defined as:

γO(m)={(v1,. . ., vn)∈Zn |(v1,−v1,. . ., vn,−vn)∈γDBM(m)}
γDBM(m) = {(v1, . . . , v2n) ∈ Z2n | ∀i, j.vj − vi ≤ mij}

The structure 〈DBM,vDBM ,tDBM ,uDBM ,⊥DBM ,>DBM〉 is a lattice, where
vDBM , tDBM , and uDBM are defined element-wise, by extending the regular
arithmetic order ≤ on Z. The top element >DBM has all its elements +∞.
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As for the interval domain, the widening ∇O puts unstable bounds to
infinity, while the narrowing ∆O refines an upper bound only if it is infinity.

∀i, j.
[
m∇On

]
ij

=

{
mij, if nij≤mij

+∞, otherwise
, ∀i, j.

[
m∆On

]
ij

=

{
nij, if mij =+∞
mij, otherwise

We can model exactly tests of the form +−xj +− xi ≤ c and assignments of
the form xj:=+− xi + c [12]. For other tests and assignments we revert to the
sound identity and to the sound non-deterministic assignment, respectively.

Polyhedra. The Polyhedra domain [13], denoted as 〈P,vP 〉, is a fully rela-
tional numerical property domain, which allows manipulating conjunctions
of linear inequalities of the form α1x1 + . . .+αnxn ≥ β, where x1, . . ., xn are
variables and αi, β ∈ Q (rationals). The abstract operations of the Polyhedra
domain are defined in [13]. Polyhedra analysis is very expensive, that is, it
has time and memory cost exponential in the number of variables in practice.

A property element is represented as a conjunction of linear constraints
given in the matrix form 〈|A, ~b|〉which consists of a matrix A ∈ Qm×n and

a vector ~b ∈ Qm, where n is the number of variables and m is the number
of constraints. This is called the constraint representation of polyhedra ele-
ments, and there is another so-called generator representation. Some domain
operations can be performed more efficiently using the generator representa-
tion only, others based on the constraint representation, and some making
use of both. We now present some operations defined using the constraint
representation. The concretization function is:

γP (〈|A, ~b|〉) = {~v ∈ Qn | A · ~v ≥ ~b}
The meet uP , and the widening ∇P are defined as:

〈|A1, ~b1|〉uP 〈|A2, ~b2|〉= 〈|
(
A1

A2

)
,
( ~b1
~b2

)
|〉

〈|A1, ~b1|〉∇P 〈|A2, ~b2|〉= {c ∈ 〈|A1, ~b1|〉 | 〈|A2, ~b2|〉vP {c}}

where c represents one constraint from 〈|A1, ~b1|〉. FILTERP handles precisely
affine inequality tests by adding them to the input polyhedra.

FILTERP (
∑
i

αixi ≥ β : Exp, 〈|A, ~b|〉 : P ) = 〈|
(

A

α1 . . . αn

)
,

(~b
β

)
|〉

In all other cases, FILTERP performs the sound identity operation. Likewise,
ASSIGNP handles exactly affine assignments, and it performs the sound non-
deterministic assignment for all other (non-affine) cases.
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5. Lifted Analysis via Products

Lifted analyses are designed by lifting existing single-program analyses to
work on program families, rather than on individual programs. They directly
analyze program families, without preprocessing them by taking into account
variability-specific aspects of program families. In this section, we recall a
lifted analysis based on the lifted domain that is the |K|-fold product of an
existing (single-program) analysis domain A [8]. From now on, we assume
that the domain A is equipped with sound operators and transfer functions.

Lifted Domain. The lifted domain is defined as 〈AK, v̇, ṫ, u̇, ⊥̇, >̇〉, where AK

is shorthand for the |K|-fold product
∏

k∈KA, that is, there is one separate
copy of A for each valid configuration of K.

Example 2. Consider the tuple in Fig. 2a, in which components are analysis
properties from the Interval domain and K = {A∧B,A∧¬B,¬A∧B,¬A∧
¬B}. Note that to simplify the presentation, we write x ≥ n short for x 7→
[n,+∞], x ≤ n for x 7→ [−∞, n], n ≤ x ≤ n′ for x 7→ [n, n′], and x = n
for x 7→ [n, n]. In first order logic, the tuple in Fig. 2a can be written as the
following disjunctive property:(

A∧B∧[y ≥ 0, x = 0]
)
∨
(
A∧¬B∧[y ≥ 0, x = 0]

)
∨(

¬A∧B∧[y ≥ 0, x = 0]
)
∨
(
¬A∧¬B∧[0 ≤ y ≤ 9, x = 0]

)
(2)

Abstract Operations. Given a tuple (lifted domain element) a ∈ AK, the
projection πk selects the kth component of a.

Concretization function: Given a tuple a ∈ AK, the concretization func-
tion γ lifts configuration-wise the function γA of the domain A, defined as:
γ(a) =

∏
k∈K γA(πk(a)).

Ordering: Given two tuples a1, a2 ∈ AK, their approximation ordering
a1 v̇ a2 is computed by lifting configuration-wise the ordering vA of the
domain A: a1 v̇ a2 ≡def πk(a1)vA πk(a2) for all k ∈ K.

Join, Meet: Similarly, we lift configuration-wise all other elements of the
lattice A. Given a1, a2 ∈ AK, their join a1 ṫ a2 and meet a1 u̇ a2 are:

a1 ṫ a2 =
∏

k∈K(πk(a1) tA πk(a2)), a1 u̇ a2 =
∏

k∈K(πk(a1) uA πk(a2))

Top, Bottom: The top >̇ and bottom ⊥̇ elements are defined as: >̇ =∏
k∈K>A = (>A, . . . ,>A), ⊥̇ =

∏
k∈K⊥A = (⊥A, . . . ,⊥A)

Widening, Narrowing: The widening ∇̇ and the narrowing ∆̇ are:

a1∇̇a2 =
∏

k∈K(πk(a1)∇Aπk(a2)), a1∆̇a2 =
∏

k∈K(πk(a1)∆Aπk(a2))
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Transfer Functions. We now define transfer functions for tests and assign-
ments. There are two types of tests: expression-based tests that occur in
while-s and if-s, and feature-based tests that occur in #ifdef-s.

Expression-based tests: The transfer function FILTER for the expression
tests “e” in while and if statements is designed to handle the test “e”
independently on each configuration component k ∈ K using the transfer
function FILTERA of the domain A. That is,

FILTER(e : Exp, a : AK) =
∏

k∈K(FILTERA(e, πk(a)))

Feature-based tests: The transfer function F-FILTER for the feature ex-
pression tests “θ” in #ifdef-s is designed to check the satisfaction of k |= θ
for each configuration component k ∈ K. If k |= θ holds, then we keep the
corresponding component element, otherwise we replace it with ⊥A. That is,

F-FILTER(θ :FeatExp(F), a :AK) =
∏

k∈K

{
πk(a), if k |= θ

⊥A, if k 6|= θ

Assignments: The transfer functions ASSIGN and B-ASSIGN that han-
dle the assignment “x:=e” in the input tuple a ∈ AK are defined using
ASSIGNA and B-ASSIGNA, respectively, which are independently applied
on each component of a. We have:

ASSIGN(x:=e :Stm, a :AK) =
∏

k∈K(ASSIGNA(x:=e, πk(a)))

B-ASSIGN(x:=e :Stm, a, a′ :AK) =
∏

k∈K(B-ASSIGNA(x:=e, πk(a), πk(a′)))

#ifdef statements: Given the (lifted) forward
−→
[[s]] and backward transfer

functions
←−
[[s]] for statement s, the forward IFDEF and backward transfer

functions B-IFDEF for “#ifdef (θ) s #endif” are defined as:

IFDEF(#ifdef (θ) s #endif : Stm, a : AK) =
−→
[[s]](F-FILTER(θ, a)) ṫF-FILTER(¬θ, a)

B-IFDEF(#ifdef (θ) s #endif : Stm, a : AK, a′ : AK) =

a u̇
(←−
[[s]](a′) ṫF-FILTER(¬θ, >̇)

)
u̇
(
a′ ṫF-FILTER(θ, >̇)

)
For the backward transfer function B-IFDEF, the postcondition a′ is ob-
tained because either (1) θ is satisfied in the location before #ifdef, so we

get the respective precondition by calculating
←−
[[s]](a′) ṫF-FILTER(¬θ, >̇); or
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(2) ¬θ is satisfied in the location before #ifdef, so we get the respective
precondition by calculating a′ ṫF-FILTER(θ, >̇). Finally, we find the new,
stronger precondition by calculating meet of the precondition a found by for-
ward analysis and the two preconditions found by back-propagation (1) and
(2).

Lifted Analysis. In the first iteration of the forward lifted analysis, we con-
struct tuples based on the information we have for K. Initially, we build a
tuple ain = >̇ in which all components are set to >A for the first location,
whereas for the other locations all components are set to ⊥A. The opera-
tors of the lifted domain AK and forward transfer functions are combined
together to analyze program families. The ain = >̇ analysis property is then
propagated forward from the first location towards the final location taking
assignments and tests into account with join and widening around while-s.
We apply so-called delayed widening, which means we start extrapolating by
widening only after some fixed number of iterations we analyze the loop. This
way the widening can make a better guess about the while behavior. For
the backward lifted analysis, we start from a program location lfinal where
we want some invariant asatfinal to hold. Then, we back-propagate necessary
preconditions for the satisfaction of the given invariant asatfinal from location
lfinal to linput using operators and backward transfer functions of AK.

As a consequence of the soundness of all operators and transfer functions
of the abstract domain A, we can establish the soundness and correctness of
the lifted analyses based on tuples (proved in [8]).

Example 3. Consider the program family P from Section 2. We want to
perform polyhedra forward lifted analysis of P using the product lifted do-
main. In order to enforce convergence of the analysis, we apply the widening
operator at the loop head, that is, at the location before the while test. The
invariants inferred by our static analysis at program locations from 1© to
8© are shown in Fig. 4. They represent 4-sized tuples, which contain four

polyhedra properties (invariants), one for each configuration.
Assume that we want the invariant (y ≤ 15) to hold at location 8©. The

necessary preconditions inferred by polyhedra backward lifted analysis of P at
some selected locations from 8© to linput are shown in Fig. 5. We can see
that ⊥P is found at linput for configuration A∧B, which means that no input
value for y will make the given invariant hold at location 8©. On the other
hand, precondition 0≤y≤9 is found at linput for ¬A∧¬B, which means that
for all input values of y the given invariant will hold at 8©. �
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1© (
[y=>P, x=>P], [y=>P, x=>P], [y=>P, x=>P], [y=>P, x=>P]

)
linput

(
[0≤y≤9, x=>P], [0≤y≤9, x=>P], [0≤y≤9, x=>P], [0≤y≤9, x=>P]

)
3© (

[0≤y≤9, x=10], [0≤y≤9, x=10], [0≤y≤9, x=10], [0≤y≤9, x=10]
)

4© (
[20≤y+2x≤29, 0≤x≤10], [10≤y+x≤19, 0≤x≤10], [10≤y+x≤19, 0≤x≤10], [0≤y≤9, 0≤x≤10]

)
5© (

[18≤y+2x≤27,−1≤x≤9], [9≤y+x≤18,−1≤x≤9], [9≤y+x≤18,−1≤x≤9], [0≤y≤9,−1≤x≤9]
)

6© (
[19≤y+2x≤28,−1≤x≤9], [10≤y+x≤19,−1≤x≤9], [9≤y+x≤18,−1≤x≤9], [0≤y≤9,−1≤x≤9]

)
7© (

[20≤y+2x≤29,−1≤x≤9], [10≤y+x≤19,−1≤x≤9], [10≤y+x≤19,−1≤x≤9], [0≤y≤9,−1≤x≤9]
)

8© (
[20≤y≤29, x=0], [10≤y≤19, x=0], [10≤y≤19, x=0], [0≤y≤9, x=0]

)
Figure 4: Tuple-based forward polyhedra invariants at locations from 1© to 8© of P .

8©
(
[⊥P], [10≤y≤15, x=0], [10≤y≤15, x=0], [0≤y≤9, x=0]

)
7©

(
[⊥P], [10≤y+x≤15,−1≤x≤9], [10≤y+x≤15,−1≤x≤9], [0≤y≤9,−1≤x≤9]

)
3©

(
[⊥P], [10≤y+x≤15, x=10], [10≤y+x≤15, x=10], [0≤y≤9, x=10]

)
linput

(
[⊥P], [0≤y≤5], [0≤y≤5], [0≤y≤9]

)
Figure 5: Tuple-based backward polyhedra invariants at selected locations of P .

6. Lifted Analysis via Binary Decision Diagrams

In this section, we propose a new efficient lifted analysis by introducing
the lifted domain of binary decision diagrams (BDDs), denoted as D(F,K,A).
We exploit the well-known efficiency of BDDs, introduced by Bryant [19]
for representing Boolean functions, and adapt them to represent the lifted
domain AK more concisely. The elements of the domain D(F,K,A) are dis-
junctions of leaf nodes that belong to an existing (single-program) analysis
domain A, which are separated by the values of Boolean features from F
organized in the decision nodes. Therefore, we encapsulate the set K into
the decision nodes of a BDD where each top-down path represents one or
several configurations from K, and we store in each leaf node the property
generated from the variants derived by the corresponding configurations.

Lifted Domain. We first consider a simpler form of binary decision dia-
grams called binary decision trees (BDTs). A binary decision tree (BDT)
t ∈ T(F,K,A) over the set F of features, the set K of valid configurations,
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A

B B

[y≥0,x=0] [y≥0,x=0] [y≥0,x=0] [0≤y≤9,x=0]

Figure 6: A BDT.

A

B

[y≥0] [y=0]

tD

A

[y=1][y=-1]

=

A

B

[y≥-1] [y≥0] [0≤y≤1]

Figure 7: The join of two BDDs.

and the leaf abstract domain A is either a leaf node 〈|a|〉, with a ∈ A and
F = K = ∅, or [[A : tl, tr]], where A is the smallest element of F with re-
spect to its ordering, tl is the left subtree of t representing its true branch,
and tr is the right subtree of t representing its false branch, such that
tl, tr ∈ T(F\{A},K\{A},A). Note that, F = {A1, . . . , An} is a totally or-
dered set with ordering: A1 < . . . < An, and K\{A} denotes the removal of
feature A from each configuration in K. The left and right subtrees are either
both leafs or both rooted at decision nodes labeled with the same feature.

Example 4. The binary decision tree in Fig. 6 has decision nodes labeled
with features A and B, and leaf nodes are Interval properties. In first order
logic, this tree expresses the same formula as one in Eqn. (2), Example 2. �

However, BDTs contain some redundancy. There are three optimizations
we can apply to BDTs in order to reduce their representation [19, 20]:

(1) Removal of duplicate leaves. If a tree contains more than one same
leaf, we redirect all edges that point to such leaves to just one of them.

(2) Removal of redundant tests. If both outgoing edges of a node Ai point
to the same node Aj, we eliminate Ai by sending all its incoming edges
to Aj.

(3) Removal of duplicate non-leaves. If two nodes Ai and Aj are the roots
of identical subtrees, we eliminate Ai by sending all its incoming edges
to Aj.

If we apply reductions (1)-(3) to a binary decision tree t ∈ T(F,K,A) until no
further reductions are possible, then the result is a reduced binary decision
diagram. Thanks to the sharing of information enabled by the reductions
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(1)-(3), BDDs are quite compact representation of disjunctive analysis prop-
erties from AK. Moreover, if the ordering on the Boolean variables from F
occurring on any path is fixed to the ordered list [A1, . . . , An], then we ob-
tain a reduced ordered binary decision diagram d ∈ D(F,K,A). 3 Notice that
reduced ordered binary decision diagrams (BDDs) have a canonical form,
which means that any disjunctive analysis property from the lifted domain
AK can be represented in an unique way by a BDD from D(F,K,A). Fur-
thermore, by applying the abstract operations and transfer functions from
D(F,K,A) on BDDs in canonical forms, we also obtain BDDs in canonical
form.

Example 5. After applying reductions (1)-(3) to the binary decision tree in
Fig. 6, the resulting reduced ordered binary decision diagram (BDD) is shown
in Fig. 3a. �

Abstract Operations. The abstract operations on D(F,K,A) are implemented
by recursive traversal of the operand BDDs and by using hashtables to store
and reuse already computed subtrees [19]. The basic operations are:

• apply2(op, d1, d2) which lifts any binary operation op from the domain
A to BDDs, thus computing the reduced ordered binary decision dia-
gram of “d1op d2”.

• apply1(op, d) which applies any unary operation op from the domain
A to the leaf nodes of the BDD d, thus computing the reduced ordered
binary decision diagram of “op d”.

• meet condition(d, b) which restricts the top-down paths (Boolean part)
of the BDD d to those paths that satisfy the condition b.

With the help of apply2, apply1, and meet condition, abstract operations
and transfer functions from A are lifted to D(F,K,A).

Concretization function: Given a BDD d ∈ D(F,K,A), the concretization
function γD returns γA(a) for k ∈ K, where k satisfies the constraints reached
along the top-down path to the leaf node a ∈ A. More formally, γD(d) =
γD[K](d), where function γD is defined as:

γD[C](〈|a|〉)=
∏

k|=CγA(a), γD[C]([[A : tl, tr]])=γT[C∧A](tl)×γT[C∧¬A](tr)

3We abbreviate here a reduced ordered binary decision diagram with only BDD, but
this term is also abbreviated with ROBDD in the literature [19, 20]
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Ordering: The approximation ordering d1 vD d2 is defined as:

d1 vD d2 ≡def apply2(λ(a1, a2).a1 vA a2, d1, d2)

If the resulting BDD of the above operation is the constant true, then d1 vD
d2 holds.

Join, Meet: Similarly, we compute the other binary operations. For join
d1 tD d2 and meet d1 uD d2, we have:

d1 tD d2 = apply2(λ(a1, a2).a1 tA a2, d1, d2),
d1 uD d2 = apply2(λ(a1, a2).a1 uA a2, d1, d2)

For example, Fig. 7 shows the join of two BDDs from D(F,K,A). We can
observe that a loss of precision in the join operation can also have a negative
effect on the overall sharing possibilities. Thus, although both arguments of
the join in Fig. 7 have two leaf nodes, the resulting BDD has three leaves.

Top, Bottom: The BDDs >D and ⊥D representing the top and bottom
elements in D(F,K,A) have only one leaf node >A and ⊥A, respectively.

Widening, Narrowing: We have:

d1∇Dd2 = apply2(λ(a1, a2).a1∇Aa2, d1, d2),
d1∆Dd2 = apply2(λ(a1, a2).a1∆Aa2, d1, d2)

Transfer Functions. We proceed by defining transfer functions for expression-
based and feature-based tests as well as for assignments and #ifdef-s.

Expression-based tests: The transfer function FILTERD for the expression
tests “e” in while-s and if-s is implemented by handling “e” at each leaf
node of the input BDD using apply1. That is,

FILTERD(e :Exp, d :D(F,K,A)) = apply1(λa.FILTERA(e, a),d)

Feature-based tests: The transfer function F-FILTERD for the feature
expression tests “θ” in #ifdef-s is implemented using the meet condition

operation. We have

F-FILTERD(θ :FeatExp(F), d :D(F,K,A)) = meet condition(d, θ)

Assignments: The transfer functions ASSIGND and B-ASSIGND for the
assignment “x:=e” are implemented by applying ASSIGNA and B-ASSIGNA,
respectively, at each leaf node of the input BDD using apply1.

ASSIGND(x:=e :Stm, d :D(F,K,A)) = apply1(λa.ASSIGNA(x:=e, a),d)
B-ASSIGND(x:=e, d, d′)=apply2(λ(a, a′).B-ASSIGNA(x:=e, a, a′), d, d′)
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#ifdef statements: Given the (lifted) forward
−−→
[[s]]D and backward transfer

functions
←−−
[[s]]D for statement s, the forward IFDEFD and backward transfer

functions B-IFDEFD for “#ifdef (θ) s #endif” are defined as:

IFDEFD(#ifdef (θ) s #endif : Stm, d : D(F,K,A)) =
−−→
[[s]]D(F-FILTERD(θ, d)) tD F-FILTERD(¬θ, d)

B-IFDEFD(#ifdef (θ) s #endif : Stm, d : D(F,K,A), d′ : D(F,K,A)) =

d uD
(←−−
[[s]]D(d′) tD F-FILTERD(¬θ,>D)

)
uD
(
d′ tD F-FILTERD(θ,>D)

)
Lifted Analysis. A path in a BDD corresponds to one or several configura-
tions. We say that a path is valid if the corresponding configurations are
valid and belong to K. In the first iteration of the forward lifted analysis,
we build BDDs with only one leaf node that can be reached along only valid
paths. For the first program location the leaf node is >A, whereas for the
other program locations the leaf node is ⊥A. Thus, in the first iteration,
the BDD for the first location is din = meet condition(>D,∨k∈Kk), whereas
for the other locations is meet condition(⊥D,∨k∈Kk). Note that, if K = 2F

then ∨k∈Kk ≡ true, so din = >D for the first location and ⊥D for the others.
The operators of the lifted domain D(F,K,A) and transfer functions are

combined together to analyze forward and backward program families. The
non-⊥D analysis properties are propagated forward towards the final location
taking assignments and tests into account with join and widening around
while-s. For the backward analysis, the invariant dsatfinal we want to establish
at location lfinal is propagated backward towards the initial location.

We establish correctness of the lifted analysis based on D(F,K,A) by
showing that it produces identical results with tuple-based domain AK. Let−−→
[[s]]D and

−→
[[s]] denote forward transfer functions of statement s in D(F,K,A)

and AK respectively, while
←−−
[[s]]D and

←−
[[s]] denote backward transfer functions

of s in D(F,K,A) and AK respectively.

Theorem 6. Let ain ∈ AK, din ∈ D(F,K,A) be initial invariants in the first
program location, and let asatfinal ∈ AK, dsatfinal ∈ D(F,K,A) be final invariants
we want to establish. We have:

γD
(−−→
[[s]]D(din)

)
= γ

(−→
[[s]](ain)

)
; γD

(←−−
[[s]]D(dsatfinal)

)
= γ

(←−
[[s]](asatfinal)

)
Proof 1. The proof is by induction on structure of s. Assume γD(d) = γ(a)
(*). We consider the two most interesting cases for forward lifted analysis.
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Case x:=e. ASSIGN(x:=e, a) applies ASSIGNA(x:=e, d) to each component
of a. On the other hand, ASSIGND(x:=e, d) applies ASSIGNA(x:=e, d)
to each leaf a in d. The proof follows by correctness of assumption (*).

Case #if (θ) s #endif. Transfer functions for #if are identical in both lifted
domains. We only need to show that F-FILTER(θ, a) and F-FILTERD(θ, d)
are identical. This can be shown by induction on θ. Assume that θ is an
atomic constraint. F-FILTER(θ, a) keeps only those components k of
a such that k |= θ. On the other hand, F-FILTERD(θ, d) first restricts
all top-down paths of the BDD d to satisfy the condition θ. Thus, it
keeps only those leaf nodes that satisfy the newly generated constraints
from θ. The other cases are similar.

Similarly, we prove the corresponding cases for backward lifted analysis.

Example 7. Consider the program family P from Section 2. We want to
perform interval forward lifted analysis of P using the lifted domain D(F,K, I),
where F = {A,B}, K = 2{A,B}, and the ordering of features is A < B. The
final analysis results at program locations from 1© to 8© are shown in Fig. 8.
Compared to the analysis results obtained using the lifted domain IK (see Sec-
tion 2 and Example 3), which represent 4-sized tuples, it is obvious that results
based on the lifted domain D(F,K, I) have a lot of sharing of the redundant
information in all program locations. For example, in program locations from
1© to 4©, there is only one interval property (leaf node) that is shared by all

four configurations. In locations 5© and 8© there are two interval properties,
while in 6© and 7© there are three interval properties.

Similar possibilities for sharing are observed if we perform backward lifted
analysis using the lifted domain D(F,K, I). �

7. Implementation and Evaluation

We now evaluate our approach for speeding up lifted analysis based on
abstract interpretation. It consists of running the proposed tuple-based and
BDD-based lifted analyses on several #ifdef-enriched C case studies. In
particular, we ask the following research questions here:

RQ1: How efficient are our BDD-based lifted analyses compared to the cor-
responding tuple-based lifted analyses?
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[y=>I,x=>I]

(a) Loc. 1©

[0≤y≤9,x=>I]

(b) Loc. linput

[0≤y≤9,x=10]

(c) Loc. 3©

[0≤y≤9,x≤10]

(d) Loc. 4©

A

B

[y≥0,x≤9] [0≤y≤9,x≤9]

(e) Loc. 5©

A

B

[y≥1,x≤9] [y≥0,x≤9] [0≤y≤9,x≤9]

(f) Loc. 6©

A

B B

[y≥2,x≤9] [y≥1,x≤9] [0≤y≤9,x≤9]

(g) Loc. 7©

A

B

[y≥0,x=0] [0≤y≤9,x=0]

(h) Loc. 8©

Figure 8: BDD-based forward interval properties at locations from 1© to 8© of P .

RQ2: Can BDD-based lifted analyses turn some previously infeasible tuple-
based lifted analyses tasks into feasible ones?

RQ3: Can we find practical application scenarios of using our lifted analyses
to efficiently verify and analyze #ifdef-enriched C programs?

Implementation. We have implemented our lifted abstract domains of tuples
AK and binary decision diagrams D(K,F,A) into a prototype static analyzer.
The abstract domains A for encoding properties of leaf nodes are based on
intervals, octagons, and polyhedra. The operators and transfer functions
for the domains A: intervals, octagons, and polyhedra, are provided by the
APRON library [11]. The operators and transfer functions for the binary
decision diagram domains that combine Boolean formulae and APRON do-
mains are provided by the BDDAPRON library [10]. The prototype tool is
written in OCaml and consists of around 6K lines of code. It accepts pro-
grams written in a subset of C with #ifdef directives, but without struct

and union types. It provides only a limited support of arrays and pointers,
and the only basic data type is mathematical integers. As output, the tool
infers numerical invariants in all program locations. The tool performs either
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one forward reachability analysis for inferring invariants, or a combination
of preliminary forward and a backward analysis for inferring necessary pre-
conditions that a given invariant holds. The analyses proceed by structural
induction on the program syntax, iterating while-s until a fixed point is
reached. They compute the unique solutions which to every program loca-
tion assign an element from the lifted domain.

Experimental setup. All experiments are executed on a 64-bit IntelrCoreTM

i7-8700 CPU@3.20GHz × 12, Ubuntu 18.04.5 LTS, with 8 GB memory.
The reported times represent the average runtime of five independent ex-
ecutions. We report the times (in seconds) needed for actual forward analy-
sis to be performed. All reported times represent CPU-times measured via
Sys.time function of OCaml. The implementation, benchmarks, and all re-
sults obtained from our experiments are available from: https://github.

com/aleksdimovski/lifted_analyzer and https://zenodo.org/record/

4090354#.X4gKCNUzbIU. In our experiments, we use three instances of our
lifted analyses based on BDDs: AD(I), AD(O), and AD(P ) which use in-
tervals, octagons, and polyhedra domains for the leaf nodes, respectively.
We also consider three lifted analyses based on tuples: AΠ(I), AΠ(O), and
AΠ(P ), which use intervals, octagons, and polyhedra domains for the com-
ponent elements.

Benchmarks. For our experiment, we use a dozen of C programs extracted
from five different folders (categories) of the 8th International Competition on
Software Verification (SV-COMP 2019) (https://sv-comp.sosy-lab.org/
2019/) as well as from the real-world BusyBox project (https://busybox.
net). The folders from SV-COMP we consider are: loops, loop-invgen

(invgen for short), loop-lit (lit for short), termination-crafted (crafted
for short), and termination-restricted (restrict for short). Due to the
limitations in the current front-end of the tool we were not able to analyze
those programs that heavily use pointers, struct and union types. In the
case of SV-COMP, we have first selected some numerical programs with inte-
gers that our tool can handle, and then we have manually added variability
(features and #ifdef directives) in each of them. We have experimented
with benchmarks that contain four or five features, since the ability for shar-
ing and the speed ups of BDD-based lifted analysis should be visible for
them. For program families with higher number of features, the tuple-based
lifted analysis very quickly becomes impractically slow (see the paragraph
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“From infeasible to feasible analyses”). The presence conditions in gener-
ated #ifdef-s are with different complexities, from atomic to more complex
feature expressions. The #ifdef-s are inserted in different locations in the
code. More specifically, sometimes they are inserted in the input sections
so that input variables are initialized with different intervals based on the
enabled presence conditions (e.g., see program families P1 and P2 from the
paragraph “Application scenarios”). In some cases, the #ifdef-s are inserted
in the middle of the code, like in the bodies of while-s and if-s (e.g., see
program family P from Section 2). Some #ifdef-s are also inserted in the
end of the code, like in the final assertions to be checked. In the case of
BusyBox, we have first selected some programs with Boolean features, and
then we have simplified those programs so that our tool can handle them.
For example, any reference to a pointer or a library function is replaced with
? = [−∞,+∞]. All features are unconstrained, so the set of valid config-
urations is K = 2F. Finally, we have analyzed selected programs using our
prototype lifted static analyzer. Table 1 presents characteristics of the se-
lected benchmarks we analyzed: the file name (Benchmark), folder where it
is located (folder), number of features (|F|), and total number of lines of code
(LOC).

Performance. We now present the performance results of our empirical study
and discuss implications. Table 1 compares the performances of analyzing
our benchmarks by using different versions of our lifted analyses based on
BDDs and on tuples. For each analysis version based on BDDs, there are two
columns. In the first column, Time, we report the running time in seconds
to analyze the given benchmark using the following analyses versions based
on BDDs: AD(I), AD(O), and AD(P ). In the second columnn, Improve, we
report how many times a BDD-based analysis is faster than the corresponding
baseline analysis based on tuples (AD(I) vs. AΠ(I), AD(O) vs. AΠ(O), and
AD(P ) vs. AΠ(P )). The performance results match expectations. They
confirm that sharing is indeed effective and especially so for large values
of |K|. All BDD-based versions achieve significant speed-ups compared to
the tuple-based versions, which range from 2.6 to 14.4 times for programs
with four features and from 5.3 to 11.8 times for programs with five features
(addresses RQ1). Of course, the speed up depends on how much sharing is
possible for a given program. We can see that AD(I) is the fastest, then it
comes AD(O), and AD(P ) is the slowest but the most precise version.
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Table 1: Performance results for lifted static analyses based on binary decision diagrams
vs. lifted static analyses based on tuples (which are used as baseline). Times in sec.

Bench. folder |F|LOC
AD(I) AD(O) AD(P )

Time Improve Time Improve Time Improve

down.c invgen 4 25 0.0041 4.4× 0.0067 7.7× 0.0087 7×
half2.c invgen 4 30 0.0047 4.6× 0.0116 7.9× 0.0133 6.4×

heapsort.c invgen 4 60 0.0124 7.6× 0.0425 14.4× 0.0547 12.7×
seq.c invgen 4 40 0.0076 5.7× 0.0355 8.6× 0.0333 6.3×
eq1.c loops 4 20 0.0109 2.6× 0.0196 4.5× 0.0252 4.2×
eq2.c loops 5 20 0.0064 7.7× 0.0127 11.8× 0.0138 11.4×

sum01*.c loops 4 20 0.0084 5.2× 0.0236 9.9× 0.0269 7.5×
count up down*.c loops 4 30 0.0023 4.2× 0.0036 5.8× 0.0051 5.9×
hhk2008.c lit 5 30 0.0048 6.6× 0.0101 10.7× 0.0135 8.9×
gsv2008.c lit 5 25 0.0040 7.5× 0.0084 11.1× 0.0095 10.7×
gcnr2008.c lit 4 30 0.0085 3.0× 0.0123 6.2× 0.0301 6.3×
bhmr2007.c lit 4 30 0.0043 5.6× 0.0161 8.4× 0.0116 7.4×
GCD4.c restrict 4 30 0.0031 6.3× 0.0042 10.1× 0.0085 8.7×

UpAndDown.c restrict 4 30 0.0053 4.8× 0.0077 5.3× 0.0207 4.7×
Log.c restrict 4 35 0.0041 5.7× 0.0081 9.7× 0.0101 8.8×

java Sequence.c restrict 4 25 0.0042 3× 0.0065 4.1× 0.0085 4.6×
Toulouse*.c crafted 4 75 0.0078 4.1× 0.0116 4.4× 0.0201 5.2×
TelAviv*.c crafted 4 50 0.0035 3.1× 0.0037 3.4× 0.0078 4.7×
Mysore.c crafted 5 35 0.0046 5.3× 0.0054 5.8× 0.0118 7.4×

realpath.c BusyBox 4 50 0.0030 3.9× 0.0057 4.8× 0.0091 4.7×
copyfd.c BusyBox 4 90 0.0079 5.6× 0.0264 8.3× 0.0347 6.7×

From infeasible to feasible analyses. For very large values of |K|, tuple-based
lifted analyses may become impractically slow or even infeasible since they
work on |K|-sized tuples. In that case, we can use BDD-based lifted analyses
with improved representation via sharing to obtain feasible lifted analyses.

As an experiment, we have tested the limits of the tuple-based lifted anal-
ysis AΠ(P ). We took a method, foon(), which contains n features A1, . . . , An
and n sequentially composed #ifdef-s of the form #ifdef (Ai) i := i+1 #endif.
For example, the method foo3() with three features A1, A2, and A3 is:
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( A1∧A2∧A3︷ ︸︸ ︷
[i = 3],

A1∧A2∧¬A3︷ ︸︸ ︷
[i = 2] ,

A1∧¬A2∧A3︷ ︸︸ ︷
[i = 2] ,

A1∧¬A2∧¬A3︷ ︸︸ ︷
[i = 1] ,

¬A1∧A2∧A3︷ ︸︸ ︷
[i = 2] ,

¬A1∧A2∧¬A3︷ ︸︸ ︷
[i = 1] ,

¬A1∧¬A2∧A3︷ ︸︸ ︷
[i = 1] ,

¬A1∧¬A2∧¬A3︷ ︸︸ ︷
[i = 0]

)
Figure 9: AΠ(P ) results at loc. 5© of foo3().

A1

A2 A2

A3 A3 A3

[i=3] [i=2] [i=1] [i=0]

Figure 10: AD(P ) results at loc. 5©
of foo3().

Table 2: The performance results of analyzing foon.

n AΠ(P ) AD(P ) Improve

3 0.0017 0.0007 2.4×
5 0.0103 0.0022 4.7×
10 0.5927 0.0511 11.6×
15 34.157 1.6939 20.2×
16 90.38 2.2196 40.7×
17 infeasible 2.5977 ∞×
18 infeasible 3.0433 ∞×

1© int i := 0;
2© #ifdef (A1) i := i+1; #endif
3© #ifdef (A2) i := i+1; #endif
4© #ifdef (A3) i := i+1; #endif 5©

Depending on which features are enabled in a configuration, the variable i in
location 5© can have a value in the range from 0 (when A1, A2, and A3 are all
disabled) to 3 (when A1, A2, and A3 are all enabled). The analysis results in
program location 5© obtained using AΠ(P ) and AD(P ) are shown in Fig. 9
and Fig. 10, respectively. The tuple-based AΠ(P ) uses 8 interval properties
(components), while the BDD-based AD(P ) uses only 4 interval properties
(leaf nodes) that are shared between all 8 configurations.

We have gradually added unconstrained variability into foo3 by adding
optional features and by sequentially composing #ifdef statements guarded
by all existing features. In general, the number of interval properties used
by AΠ(P ) grows exponentially (that is, 2n) with n, whereas the number
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of interval properties used by AD(P ) in the final program location grows
linearly (that is, n + 1) with n. The performance results of analyzing foon,
for different values of n, using AΠ(P ) and AD(P ) are shown in Table 2.
Already for |K| = 216 =65,536 configurations, the analysis AΠ(P ) took 90.4
seconds, while the analysis AD(P ) took only 2.2 seconds thus giving speed up
of 40.7 times. For |K| = 217 =131,172, AΠ(P ) crashes with an out-of-memory
error, while AD(P ) ends in less than 2.6 seconds, producing a BDD with 18
leaf nodes: one node for each i∈ {0, . . . , 17}. Hence, we can conclude that
BDDs can not only greatly speed up lifted analyses, but also turn previously
infeasible analyses into feasible by giving very compact representation of
lifted analysis results, thus effectively eliminating the exponential blowup
(addresses RQ2).

Application scenarios. To illustrate the effectiveness of our approach, we
consider some practical applications to program verification, and we present
the results produced by our analyzer (addresses RQ3).

Let us consider the program family P1:

1© #ifdef (A ∨ B ∨ C) int x := input([10, 20]);
2© #else int x := input([0, 20]); #endif
3© int y := input([0, 1]);
linput if (y ≥ 1) x := −x;
5© assert(x!=0); 6©

which has three features A, B, and C. When at least one feature is on, the
program stores a random value from [10, 20] in x. Otherwise, when all fea-
tures are off, it stores a random value from [0, 20] in x. Then, depending on
the input value of the variable y, x is negated or not. We want to check when
the assertion at location 5© is valid. For example, later on in the program,
there may be divisions by x (e.g. n/x). In this way, we can verify that there
are no divisions-by-zero.

The lifted analysis using the Interval domain will take at location linput the
join of the then branch of conditional and its else branch. Hence, the BDD
found in location 5© will have only one shared leaf node for all configurations
x ∈ [−20, 20]. Thus, the tool reports that the assertion may fail for all
configurations. However, the lifted analysis using the Polyhedra domain will
be more successful. The BDD found in location 5© will have only two leaf
nodes (although there are 8 configurations), such that the shared invariant
for configurations that satisfy A ∨ B ∨ C is: 10 ≤ x+30y ≤ 20 ∧ 0 ≤ y ≤ 1.
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Hence, the BDD analysis will effectively conclude that the assertion is valid
for configurations A∨B∨C, whereas it may fail for configuration ¬A∧¬B∧¬C.

Consider the following program family P2:

1© #ifdef (A ∨ B) int j := input([0, 9]);
2© #else int j := input([10, 19]); #endif

linput int i := 0;
4© while (i < 100) {
5© i := i+1;
6© j := j+1; }
7© assert (j ≤ 105);

We want to prove the assertion (j ≤ 105), since, for example, later on in
the program there are references to an array using the index 105-j (e.g.
a[105-j] := 0). At location 7©, a forward lifted analysis will find the invari-
ant 100 ≤ j ≤ 109 for configurations A ∨ B and the invariant 110 ≤ j ≤ 119
for configurations ¬A ∧ ¬B. Hence, the assertion can be satisfied for con-
figurations A ∨ B when 100 ≤ j ≤ 105, and always fails for ¬A ∧ ¬B. We
can perform a backward analyses to find the necessary preconditions on the
input state at linput in order the assertion to hold. The tool will report that
the necessary precondition for the assertion to hold at linput is: 0 ≤ j ≤ 5
for configurations A ∨ B, and it never holds for ¬A ∧ ¬B.

Threats to validity. The current tool has only limited support for arrays,
pointers, recursion, struct and union types. Unfortunately, the most real-
world program families contain the above features. Thus, we use as bench-
marks either programs from single-program verification community (SV-
COMP) in which we have manually added variability or more realistic pro-
gram families (BusyBox) that have been simplified. However, the above
features (arrays, pointers, etc) are largely orthogonal to the issue we are
addressing here. In particular, these features complicate the semantics of
single-programs and implementation of the domains for leaf nodes, but have
no impact on the semantics of variability-specific constructs and the BDD
lifted domain we introduce in this work. Therefore, if a real-world tool based
on abstract interpretation, such as ASTREE [5], becomes freely available
in the future, we can easily transfer our implementation to it. We perform
lifted analysis of relatively small benchmarks (below 100 LOC). However, the
focus of the BDD lifted domain is to combat the configuration space blow-up

35



of program families, not their LOC size. So, we expect to obtain similar or
even better results for larger benchmarks.

Another threat to validity is the synthetic variability that has been manu-
ally added to the SV-COMP benchmarks. We have generated benchmarks
with moderate feature use (4 or 5 features), due to the fact that they are very
common in practice and any speed ups of lifted analysis should be visible for
them. For benchmarks with intensive feature use (10 or more features), the
tuple-based lifted analysis is very likely to become infeasible, as demonstrated
by the simple foon method, so the BDD lifted analysis will be significantly
faster in that case. We have also inserted presence conditions with different
complexities, from atomic to more complex feature expressions, and #ifdef-s
are placed in different locations of the code.

8. Related Work

Disjunctive abstract domains have attracted considerable attention in ab-
stract interpretation community recently [21, 22, 23, 24]. They enrich an ab-
stract domain with disjunctions of several abstract elements. Decision trees
have been applied for the disjunctive refinement of interval (boxes) domain
[21], such that each element of the new domain is a propositional formula
over interval linear constraints. Segmented decision tree abstract domains
have also been defined in the literature [22, 23] to enable path dependent
static analysis. Their elements contain decision nodes that are determined
either by values of program variables [22] or by the branch (if) conditions
[23], whereas the leaf nodes are numerical properties. Urban and Mine [24]
use decision tree-based abstract domains to prove program termination. De-
cision nodes are labelled with linear constraints that split the memory space
and leaf nodes contain affine ranking functions for proving program termina-
tion. Logico-numerical abstract domain implemented using BDDAPRON
and specifically designed acceleration methods are used in [25] to verify syn-
chronous data-flow programs with Boolean and numerical variables, such as
LUSTRE programs. The BDDAPRON library has been developed by
Jeannet [10] to implement a relational inter-procedural analysis of concur-
rent programs, whereas the APRON library has been developed by Jeannet
and Mine [11] for the application of numerical domains in static analysis.

A combination forward-backward analyses based on abstract interpreta-
tion have also been used in practice for a long time [26, 27, 28, 14, 15].
Rival [26] uses forward-backward analysis to inspect more closely reported
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alarms by ASTREE, which are then classified as true errors (bugs) or false
alarms. Urban and Mine [28] use forward-backward analysis for the auto-
matic inference of preconditions for program termination. Forward-backward
analysis schemes have been used in [27] for the inference of safety properties
of declarative synchronous programs. A combination of forward-backward
analysis and model counting techniques [14, 15] are used to calculate the
probability that a given assertion is valid or fails. In this work, we employ
forward-backward analysis for analyzing program families.

Recently, two mainstream styles of static analysis have been a topic of
considerable research in the SPL community: a dataflow analysis from the
monotone framework developed by Kildall [29] that is algorithmically de-
fined on syntactic CFGs, and an abstract interpretation-based static analysis
developed by Cousot and Cousot [3] that is more general and semantically
defined. Brabrand et. al. [7] lift a dataflow analysis from the monotone
framework, resulting in a tuple-based lifted dataflow analysis that works on
the level of families. The obtained lifted dataflow analyses are much faster
than ones based on the “brute force” strategy, which generates and ana-
lyzes all variants one by one. Another efficient implementation of the lifted
dataflow analysis from the monotone framework is by using variational data
structures [30] (e.g., variational CFGs, variational data-flow facts) for achiev-
ing efficient dataflow computation. Several dataflow and control flow analysis
(e.g., case termination, dangling switch, dead store, double free, freeing of
static memory) are implemented and evaluated on some real-world systems.
SPLLIFT [31] is an efficient implementation of the lifted dataflow analysis for-
mulated within the IFDS framework, which represents a subset of dataflow
analyses with certain properties such as distributivity of transfer functions.
Many dataflow analyses, including numerical analyses considered here, are
not distributive and cannot be encoded in IFDS.

Midtgaard et. al. [8] have proposed a formal methodology for systematic
derivation of tuple-based lifted static analyses from existing single-program
analyses phrased in the abstract interpretation framework. There are two
ways to speed up analyses: improving representation and increasing abstrac-
tion. In this paper, we investigate the former. The latter has also received
attention in the field of lifted analysis [32, 33, 34]. Variability abstractions
introduced in [32, 33, 34] aim to tame the combinatorial explosion of the
number of configurations and reduce it to something more tractable by ma-
nipulating the configuration space. Such variability abstractions are used for
deriving abstract lifted analyses, which enable deliberate trading of precision
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for speed. However, the above tuple-based lifted analyses [7, 8, 32, 33, 34] are
only applied to CIDE-based Java program families [35] using toy client anal-
yses, such as reaching definitions and uninitialized variables. On the other
hand, here we consider #ifdef-enriched C programs which represent the ma-
jority of industrial embedded code, as well as the most known numeric client
analyses which enable verification of the most common invariance properties.

Various approaches have been proposed for lifting other existing analysis
and verification techniques to work on the level of families (see [36] for a sur-
vey). Many family-based (lifted) approaches analyze entire families at once
through sharing, by splitting where necessary and joining at fine granularity.
Our lifted static analysis based on BDDs is an example of such analysis with
sharing. There are other successful lifted techniques that use sharing through
BDDs. SPLVerify [37] performs software model checking of program families
based on variability encoding [38] which transforms compile-time to run-time
variability [38], VarexJ [39] performs dynamic analysis of program families
based on variability-aware execution, whereas SuperC [40] is a variability-
aware parser, which can parse C language with preprocessor annotations
thus producing ASTs with variability nodes. All of them use BDDs and
standard BDD libraries (e.g. JavaBDD) to represent feature expressions. In
this paper, we employ BDDs and widely-known numerical abstract domain
libraries (APRON and BDDAPRON) for automatic inference of invariants
of program families.

Lifted model checking has also been an active research field in recent
years. One of the most known models of system families is by using the pop-
ular Feature Transition Systems (FTSs) [41]. Several specially designed lifted
model checking algorithms for efficient verification of temporal properties of
such models have been proposed [41, 42, 43, 44]. However, these approaches
work on the level of models (i.e. high-level designs of SPLs), while our ap-
proach being based on abstract interpretation works directly on the level of
source code. Specifically designed lifted model checking algorithms are used
[45] for verifying symbolic game semantics models [46, 47] extracted from
#ifdef-enriched imperative programs that contain undefined identifiers.

9. Conclusion

In this work we proposed lifted analysis domains based on tuples and bi-
nary decision diagrams, which are used for performing several lifted numeric
analyses of program families. The BDD-based lifted domain provides a sym-
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bolic and very compact representation of such lifted properties of program
families, where the sharing of information is maximized. In effect, we obtain
faster lifted analyses without losing any precision. We evaluate the proposed
lifted domains on several C product lines. We experimentally demonstrate
the effectiveness of BDD-based lifted domain.

In the future, we would like to extend the lifted abstract domain to also
support non-Boolean (e.g., numerical) features [48]. We also plan to handle
more complex heap-manipulating program families, so we would like to inves-
tigate the adaptability of such existing abstract domains [49] in our context.
We also want to try other libraries that support numerical abstract domains,
such as ELINA [50], and estimate their performance in this context.
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[36] T. Thüm, S. Apel, C. Kästner, I. Schaefer, G. Saake, A classification and
survey of analysis strategies for software product lines, ACM Comput.
Surv. 47 (1) (2014) 6.

[37] A. von Rhein, Analysis strategies for configurable systems, Ph.D. thesis,
University of Passau, Germany (2016).

[38] A. F. Iosif-Lazar, A. S. Al-Sibahi, A. S. Dimovski, J. E. Savolainen,
K. Sierszecki, A. Wasowski, Experiences from designing and validating a
software modernization transformation (E), in: 30th IEEE/ACM Inter.
Conf. on Automated Software Engineering, ASE’15, 2015, pp. 597–607.
doi:10.1109/ASE.2015.84.
URL http://dx.doi.org/10.1109/ASE.2015.84

43

https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
https://doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s00165-019-00479-y
http://dx.doi.org/10.1109/ASE.2015.84
http://dx.doi.org/10.1109/ASE.2015.84
https://doi.org/10.1109/ASE.2015.84
http://dx.doi.org/10.1109/ASE.2015.84
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