
Journal of Computer Languages 75 (2023) 101206

Q
A
M

A

K
Q
L
A
S
D

1

s
e
t
o
a
m
r
t
B
S
a
p
e
c

h
R
A
2

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

uantitative program sketching using decision tree-based lifted analysis
leksandar S. Dimovski
other Teresa University, st. Mirche Acev nr. 4, 1000 Skopje, North Macedonia

R T I C L E I N F O

eywords:
uantitative program sketching
ifted static analysis
bstract interpretation
oftware product lines
ecision tree lifted domain

A B S T R A C T

We present a novel approach for resolving numerical program sketches under Boolean and quantitative
objectives. The input is a program sketch, which represents a partial program with missing numerical
parameters (holes). The aim is to automatically synthesize values for the parameters, such that the resulting
complete program satisfies: a Boolean (qualitative) specification given in the form of assertions; and a quantitative
specification that estimates the number of execution steps to termination and which the synthesizer is expected
to optimize.

To address the above quantitative sketching problem, we encode a program sketch as a program family
(a.k.a. Software Product Line) and use the specifically designed lifted analysis algorithms based on abstract
interpretation for efficiently analyzing program families with numerical features. The elements of the lifted
analysis domain are decision trees, in which decision nodes are labeled with linear constraints defined over
numerical features and leaf nodes belong to an existing single-program analysis domain. First, we transform
a program sketch into a program family, such that numerical holes correspond to numerical features and
all possible sketch realizations correspond to variants in the program family. Then, we use a combination of
forward (numerical) and backward (quantitative termination) lifted analysis of program families to find the
variants (family members) that satisfy all assertions, and moreover are optimal with respect to the given
quantitative objective. Such obtained variants represent the ‘‘correct & optimal’’ realizations of the given
program sketch.

We present a prototype implementation of our approach within the FamilySketcher tool for resolving C
sketches with numerical data types. We have evaluated our approach on a set of numerical benchmarks, and
experimental results confirm the effectiveness of our approach. In some cases, our approach provides speedups
against the well-known sketching tool Sketch and resolves some numerical benchmarks that Sketch cannot
handle.
. Introduction

Sketching [1,2] is one of the earliest and successful forms of program
ynthesis [3]. A sketch is a partial program with missing numerical
xpressions called holes to be discovered by the synthesizer. The inputs
o the program sketching problem are a sketch and a specification
f the required complete program in the form of assertions. Previous
pproaches for solving the program sketching problem [1,2,4] auto-
atically synthesize integer constant values for the holes so that the

esulting complete program satisfies Boolean (qualitative) properties in
he form of assertions. However, the need for considering combined
oolean and quantitative properties is prominent in many applications.
till, quantitative properties have been largely missing from previous
pproaches for program sketching. In particular, there has been no
ossibility for measuring the ‘‘goodness’’ of solutions. Boolean prop-
rties are used to define minimal requirements for the synthesized
omplete programs, that is, they should at least satisfy the given

E-mail address: aleksandar.dimovski@unt.edu.mk.

assertions. Still, there are usually many different complete programs
that satisfy the Boolean properties, and some of them may be preferred
over the others. Therefore, it is important to define synthesis algo-
rithms, which construct complete programs (solutions) that not only
meet the Boolean properties, but are also optimal with respect to a
given quantitative objective [5,6]. This is so-called quantitative sketching
problem.

In this paper, we use lifted static analysis based on abstract inter-
pretation for program families (a.k.a. Software Product Lines) [7] to
solve this quantitative sketching problem. Abstract interpretation [8,9]
is a general theory for approximating the semantics of programs. It
represents a powerful technique for deriving approximate, albeit com-
putable static analyses, by using fully automatic algorithms. The key
observation is that all possible sketch realizations constitute a program
family, where each numerical hole is represented as a numerical fea-
ture. A program family describes a set of similar programs as variants
of some common code base [10,11]. At compile-time, a variant of
ttps://doi.org/10.1016/j.cola.2023.101206
eceived 14 September 2022; Received in revised form 30 March 2023; Accepted 3
vailable online 6 April 2023
590-1184/© 2023 Elsevier Ltd. All rights reserved.
1 March 2023

https://doi.org/10.1016/j.cola.2023.101206
https://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2023.101206&domain=pdf
mailto:aleksandar.dimovski@unt.edu.mk
https://doi.org/10.1016/j.cola.2023.101206

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206

a
u
f
t
i
q
s
t
o
w
s
m
t
S
a
f
s
f
o

a
(
o
t
n
s
A
d
s
v
h
i

w
2
v
d
l
p
a
n
e
e
p
y
u
d
r
m
l
t
d
r
c
t
(
t
r
a
d
t
a

t
s
r
b
f
i
m
s

a program family is derived by assigning concrete values to a set of
features (configuration options) relevant for it, and only then is this
variant compiled or interpreted. Program families (often in C) enriched
with compile-time configurability by the C preprocessor CPP [7,12]
re today widely used in open-source projects and industry [12]. By
sing the proposed transformation from program sketches to program
amilies, we translate the quantitative sketching problem to selecting
hose variants (family members) from the corresponding program fam-
ly that satisfy all assertions and are optimal with respect to the given
uantitative objective. As a quantitative objective we consider here the
ufficient preconditions inferred by a quantitative termination analysis
hat estimates the efficiency of a program by counting upper-bounds
n the number of execution steps to termination. More specifically,
e use a combination of forward and backward lifted analysis to

olve this problem. The forward numerical lifted analysis infers nu-
erical invariants for all members of a program family, thus finding

he ‘‘correct’’ variants (family members) that satisfy all assertions.
ubsequently, the backward termination lifted analysis is performed on
sub-family of ‘‘correct’’ variants to infer piecewise-defined ranking

unctions, which provide upper-bounds on the number of execution
teps to termination. The ‘‘correct’’ variants with minimal ranking
unction are reported as optimal complete programs that solve the
riginal quantitative sketching problem.

However, the automated analysis of program families for finding
‘‘correct & optimal’’ variant is challenging since the family size

i.e., number of variants) typically grows exponentially in the number
f features. This is particularly apparent in the case of program families
hat contain numerical features with big domains, thus admitting astro-
omic family sizes. Program sketching is also affected by this problem,
ince the family size corresponds to the space of sketch realizations.

naive enumerative (brute-force) approach, which analyzes each in-
ividual variant of the program family by an existing single-program
tatic analyzer based on abstract interpretation, has been shown to be
ery inefficient for larger families [13,14]. This brute-force approach
as to preprocess, build control flow graph, and execute the fixed point
terative algorithm once for each possible variant.

To overcome this efficiency problem of the brute-force approach,
e use the specifically designed lifted static analysis algorithms [14–
1] to speed up the process of finding the required (correct & optimal)
ariants. They analyze the common code base of a program family
irectly, without preprocessing any of variants explicitly. Thus, the
ifted analysis builds the control flow graph and executes the fixed
oint iterative algorithm only once per family. In particular, we use an
bstract interpretation-based lifted analysis of program families with
umerical features [18], where sharing is explicitly possible between
quivalent analysis elements corresponding to different variants. In
ffect, the lifted analysis and the brute-force enumeration approach
roduce identical (precision-wise) analysis results, but the lifted anal-
sis is more efficient thanks to the improved representation of the
nderlying analysis elements. This is achieved by using a specialized
ecision tree lifted domain [18] that provides a symbolic and compact
epresentation of the lifted analysis elements. More precisely, the ele-
ents of the lifted domain are decision trees, in which decision nodes are

abeled with linear constraints over features, while leaf nodes belong
o an existing single-program analysis domain (e.g., some numerical
omain [9] or the termination domain [22,23]). The decision trees
ecursively partition the space of variants (i.e., the space of possible
ombinations of feature’s values), whereas the program properties at
he leaves provide analysis information corresponding to each partition
i.e., to those variants that satisfy the constraints along the path to
he given leaf node), thus producing disjunctive analysis results cor-
esponding to all partitions. This way, the forward (numerical) lifted
nalysis partitions the given family into: ‘‘correct’’, ‘‘incorrect’’, and ‘‘I
on’t know’’ (inconclusive) sub-families (sets of variants) with respect
o the given assertions. Phrased in terms of program sketching, the
nalysis partitions the family into a sub-family with correct sketch
2

completions; a sub-family with incorrect sketch completions; and a
sub-family with inconclusive sketch completions for which indefinite
answer is obtained due to the precision loss (over-approximation) intro-
duced in the static analysis by abstraction. The backward (quantitative
termination) lifted analysis additionally partitions the ‘‘correct’’ sub-
family with respect to the estimated number of execution steps to
termination. Because of its special structure and possibilities for sharing
of equivalent analysis results, the decision tree-based lifted analyses
are able to converge to a solution very fast even for program families
(sketches) that contain numerical features (holes) with large domains,
thus giving rise to astronomical search spaces. This is particularly true
for sketches in which holes appear in linear expressions that can be
exactly represented in the underlying numerical domains used in the
decision trees (e.g., intervals, octagons, polyhedra). In those cases, we
can extend the standard lifted analysis for classical program families
and design more efficient lifted analysis algorithms with improved
transfer functions for analyzing assignments and tests in which holes in
linear expressions are present. Note that transfer functions in abstract
analyses [9,14] capture the effect of abstractly analyzing statements in
a given abstract element.

Moreover, we also examine various quantitative cost-sensitive anal-
yses and the corresponding quantitative objectives induced by assigning
different costs on various operations of the language. This way, we
can define an endless variety of quantitative cost-sensitive analyses
parameterized by the resource one needs to observe and how different
operations of the language consume that resource. In this work, we
also show how to solve the quantitative sketching problem with respect
to a specific quantitative objective, which is defined by a cost model
showing the overhead of executing different operations of the language.

We have implemented our approach in a prototype program syn-
thesizer, called FamilySketcher [4]. The numerical abstract domains
(e.g., intervals, octagons, polyhedra) from the APRON library [24] are
used as parameters of the underlying decision trees. FamilySketcher
calls the Z3 SMT solver [25] to solve the optimization problem that
represents the given quantitative objective. We illustrate this approach
for automatic completion of various numerical C sketches with nu-
merical data types from the Sketch project [1,2], SV-COMP (https:
//sv-comp.sosy-lab.org/), and from the Syntax-Guided Synthesis Com-
petition (https://sygus.org/). We also compare performances of our
approach against the most popular sketching tool Sketch [1,2] and
the brute-force enumeration approach that checks for correctness and
optimality all sketch realizations one by one.

In summary, this work makes the following contributions:

1. We combine forward and backward lifted analyses to resolve
numerical program sketches with respect to both Boolean and
quantitative specifications;

2. We consider various quantitative cost-sensitive specifications
induced by a cost model that specifies the overhead of executing
different operations of the language;

3. We implement our approach in the FamilySketcher tool, which
uses numerical domains from the APRON library as parameters
and the Z3 tool for solving the underlying (linear) optimization
problem;

4. We evaluate our approach and compare its performances with
the popular Sketch tool and the brute-force enumeration ap-
proach.

This work extends and revises the conference article [26]. We make
he following extensions here: (1) we introduce novel quantitative cost-
ensitive objectives and solve the quantitative sketching problem with
espect to them; (2) we expand the evaluation by considering more
enchmarks and by extending the performance results; (3) we provide
ormal proofs for all main results in the work; (4) we provide additional
llustrations, explanations, and examples. The paper proceeds with
otivating examples that illustrate our new approaches for quantitative

ketching. The languages for writing sketches and program families,

https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://sygus.org/

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206

a
i
t
t
q
p
a

2

G

⃝
⃝
⃝
⃝

i

w

t
p
t
d
t
s
r

q
t
r
a
n
a
s
f
(
t
a
B
l
t
a
w
s
p
i
c
c

Fig. 1. Lifted numerical invariant at location 5⃝ of Loop1a (solid edges = true, dashed
edges = false).

Fig. 2. Lifted ranking function at location 1⃝ of Loop1a.

s well as rules for transforming sketches into program families are
ntroduced in Section 3. Section 4 defines the algorithms for decision
ree-based lifted analysis, while Section 5 introduces a variety of quan-
itative cost-sensitive analyses. The synthesis algorithm for solving the
uantitative sketching problem is described in Section 6. Section 7
resents the evaluation on benchmarks taken from SV-COMP, SyGuS,
nd Sketch. Finally, we discuss related work and conclude.

. Motivating examples

Let us consider the following Loop1a sketch taken from Syntax-
uided Synthesis Competition (https://sygus.org/) [3]:

void main() {
1⃝ int x ∶= ??1, y ∶= 0;
2 while h⃝(x > ??2) {
3 x ∶= x-1;
4 y ∶= y+1; }
5 assert (y > 2); ∕∕assert (y < 8); }

It contains two numerical holes, denoted by ??1 and ??2. The syn-
thesizer should replace the holes with constants from Z, such that the
synthesized program satisfies the assertion at location 5⃝ under all
possible inputs. Moreover, we want to select the most time-efficient
correct program, i.e. the one that terminates in the minimum number
of execution steps.

We transform the Loop1a sketch to a program family, which con-
tains two numerical features A and B with domains [𝙼𝚒𝚗, 𝙼𝚊𝚡] ⊆ Z.1
Since both holes in the Loop1a sketch occur in (linear) expressions that
can be exactly represented in numerical domains (e.g. intervals), the
Loop1a program family is obtained by replacing the two holes ??1 and
??2 with the features A and B (see Fig. 7). The total number of variants
that can be generated from this family is (𝙼𝚊𝚡− 𝙼𝚒𝚗+ 1)2, so that each
variant corresponds to one possible sketch realization. For example, the
variant in which (𝙰 = 0∧𝙱 = 0) corresponds to the sketch realization in
which ??1 and ??2 are both set to 0. We perform a forward numerical
lifted analysis based on decision trees [18] of the Loop1a program
family. The input decision tree at location 1⃝ has only one leaf node ⊤
and one decision node describing all possible values of features A and B,
i.e. (𝙼𝚒𝚗 ≤ 𝙰 ≤ 𝙼𝚊𝚡)∧(𝙼𝚒𝚗 ≤ 𝙱 ≤ 𝙼𝚊𝚡), thus representing the uninitialized
store for all variants. Analysis elements are propagated forward from
the initial to the final location taking assignments and tests into account

1 Note that 𝙼𝚒𝚗 and 𝙼𝚊𝚡 represent some minimal and maximal representable
ntegers. E.g., we may take 𝙼𝚒𝚗 = 0 and 𝙼𝚊𝚡 = 31 for 5-bit sizes of holes.
3

ith delayed widening around while. Hence, at location 2⃝ we infer a
decision tree with the leaf node: (𝚢 = 𝟶∧ 𝙰 = 𝚡), and the same decision
node as in location 1⃝. This decision node is split by the test at location
h⃝, giving rise to the node (𝙰 ≤ 𝙱), where the left-subtree represents

the control flow that executes while zero times (so we propagate leaf
node at loc. 2⃝ without changing it here), whereas the right-subtree
represents the control flow that executes while one or more times.
Hence, the decision tree inferred at the location 5⃝ is shown in Fig. 1.
Notice that the inner nodes of the decision tree in Fig. 1 are labeled
with polyhedral linear constraints defined over feature variables A and
B, while the leaves are labeled with polyhedral linear constraints defined
over program and feature variables x, y, A and B. The edges of decision
trees are labeled with the truth value of the decision on the parent node:
we use solid edges for true (i.e., the constraint in the parent node is
satisfied) and dashed edges for false (i.e., the negation of the constraint
in the parent node is satisfied). Hence, this decision tree represents the
following disjunctive property in first-order logic:

(𝙰 ≤ 𝙱 ∧ 𝚢 = 𝟶 ∧ 𝙰 = 𝚡) ∨ (𝙰 − 𝙱 ≥ 1 ∧ 𝙱 = 𝚡 ∧ 𝙰 = 𝙱 + 𝚢)

From this property, we can see that the given assertion (𝚢 > 2) may
be valid in the leaf node that can be reached along the path satisfying
the constraint ¬(𝙰 ≤ 𝙱), i.e. (𝙰 − 𝙱 ≥ 1). In fact, (𝚢 > 2) holds when
(𝙰 − 𝙱 ≥ 1 ∧ 𝙱 = 𝚡 ∧ 𝙰 = 𝙱 + 𝚢 ∧ 𝚢 > 2) holds, which is computed using
he meet (⊓) operator from the Polyhedra domain of the corresponding
olyhedra constraints (𝙰 − 𝙱 ≥ 1 ∧ 𝙱 = 𝚡 ∧ 𝙰 = 𝙱 + 𝚢) and (𝚢 > 2). Note
hat Polyhedra domain is used as parameter in the given decision tree
omain for implementing decision and leaf nodes. This way, we infer
hat the assertion is valid is when the stronger constraint (𝙰 − 𝙱 ≥ 3) is
atisfied. Thus, any variant that satisfies the above constraint (𝙰 − 𝙱 ≥ 3)
epresents a ‘‘correct’’ solution to the Loop1a sketch.

To find a ‘‘correct & optimal’’ solution, we perform a backward
uantitative termination lifted analysis based on decision trees [23] of
he Loop1a sub-family satisfying (𝙰 − 𝙱 ≥ 3). It infers piecewise-defined
anking functions represented by decision trees, where decision nodes
re linear constraints over program and feature variables and leaf
odes are affine functions over program and feature variables. The
ffine functions provide an upper bound on the number of execution
teps until termination. The backward termination analysis starts at
inal location, where the input decision tree has one decision node:
𝙰 − 𝙱 ≥ 3) and one leaf node: 0 (i.e. zero function describing that
here are zero execution steps until termination). Analysis elements
re then propagated backwards from final towards initial location.
y analyzing while-loop using delayed widening [9], we obtain at

ocation h⃝ the following ranking function: 2 when (𝚡 ≤ 𝙱) since in
his case while is executed zero times so assertion and while tests
re only executed; and 𝟹𝚡 − 𝟹𝙱 + 𝟸 when (𝚡 > 𝙱) since in this case
hile-body is executed (𝚡 − 𝙱)-times and there are three execution
teps (two assignments and one test) in the body of while. After
ropagating this ranking function through statements at location 1⃝ (x
s substituted by A), we infer the decision tree shown in Fig. 2. We
an see that the ranking function is: 𝟹𝙰 − 𝟹𝙱 + 𝟺, since the case (𝙰 ≤ 𝙱)
ontradicts with (𝙰 − 𝙱 ≥ 3). We now call the Z3 solver [25] to solve

the following linear optimization problem: find values for A and B that
minimizes the value of ranking function 𝟹𝙰 − 𝟹𝙱 + 𝟺 over the constraint
(𝙰 − 𝙱 ≥ 3) ∧ (𝟹𝙰 − 𝟹𝙱 + 𝟺 > 0). Minimizing this function gives us values
for A and B that are desirable according to the quantitative criterion
while satisfying the given assertion. The solution produced by Z3 is:
A=3 and B=0 with the minimal objective 13. Therefore, the synthesizer
reports this variant, i.e. complete single program where ??1=3 and
??2=0, as a ‘‘correct & optimal’’ solution to the Loop1a sketch.

We consider an alternative sketch of Loop1a, denoted by Loop1b, in
which the assertion in location 5⃝ is (𝚢 < 8). The numerical invariant
inferred in location 5⃝ is the same as for Loop1a as shown in Fig. 1.
However, there are now two solutions to the assertion (𝚢 < 8): (𝙰 ≤
𝙱) when the left leaf node is reached, and (1 ≤ 𝙰 − 𝙱 ≤ 7) when
the right leaf node is reached. We perform two backward termination

https://sygus.org/

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206

⃝

n

l
a
e
l
s
t
o
v
o
T
l
f
p
i
f
s
d
t
a
s
a
i
a
f
t
c

t
f
(

Fig. 3. Lifted ranking function at location 1⃝ of Loop1b.

Fig. 4. Lifted numerical invariant at location 5⃝ of Loop2a.

Fig. 5. Lifted ranking function at location 1⃝ of Loop2a.

Fig. 6. Lifted ranking function at location 1⃝ of Loop2b.

lifted analysis to find optimal solutions for both correct sub-families:
(𝙰 ≤ 𝙱) and (1 ≤ 𝙰 − 𝙱 ≤ 7). The lifted ranking function inferred
at the initial location is given in Fig. 3. The solutions to the given
optimization problem produced by Z3 solver are: A=0, B=0 with the
minimal objective 4 for the case (𝙰 ≤ 𝙱); and A=1, B=0 with the
minimal objective 7 for the case (1 ≤ 𝙰 − 𝙱 ≤ 7). The solution A=0,
B=0 is reported as ‘‘correct & optimal’’ of the Loop1b sketch.

We now illustrate a particular quantitative cost-sensitive (termina-
tion) analysis. Let us consider the following Loop2a sketch:

void main(int x) {
1⃝ int y ∶= ??1;
2⃝ while (x ≤ 10) {
3 if (y >??2) x ∶= x+1;
4⃝ else x ∶= x-1; }
5⃝ assert (y > 2); ∕∕assert (y < 8); }

We transform the Loop2a sketch to a program family with two
umerical features A and B corresponding to holes ??1 and ??2 (see

Fig. 8). First, we perform a forward numerical lifted analysis, and the
 a

4

lifted numerical invariant inferred at location 5⃝ is shown in Fig. 4.
The initial decision node (𝙼𝚒𝚗 ≤ 𝙰 ≤ 𝙼𝚊𝚡) ∧ (𝙼𝚒𝚗 ≤ 𝙱 ≤ 𝙼𝚊𝚡) is split
by the test at location 3⃝, giving rise to the node (𝙰 ≤ 𝙱), where the
eft-subtree represents the control flow that executes else statement
t location 3⃝ whereas the right-subtree represents the control flow that
xecutes then statement at location 3⃝. From the inferred invariant at
ocation 5⃝, we can see that the assertion (𝚢 > 2) is valid for variants
atisfying: (𝙰 − 𝙱 ≥ 1) ∧ (3 ≤ 𝙰 ≤ 𝙼𝚊𝚡). Suppose we wish to analyze
he ‘‘correct’’ sub-family in an environment where there is a significant
verhead in the operations: assignment and reads (dereferencing) of
ariables because of memory access. In our particular cost model, the
verhead of assignment is 2 units and that of dereferencing is 1 unit.2
hen, we perform a backward quantitative cost-sensitive (termination)
ifted analysis of the Loop2a ‘‘correct’’ sub-family. The lifted ranking
unction inferred for this sub-family is shown in Fig. 5. It represents a
iecewise-defined ranking function since it depends on the value of the
nput variable x. To represent graphically piecewise-defined ranking
unctions in decision trees, we use rounded rectangles to represent
econd-level decision nodes that are labeled with linear constraints
efined over both feature and program variables. Thus, they partition
he configuration and memory space, i.e. the possible values of feature
nd program variables (see Fig. 5). The obtained ‘‘correct & optimal’’
olution is: A=3 and B=0 with the minimal objective 6 when (𝚡 > 10)
nd −𝟼𝚡 + 𝟽𝟸 when (𝚡 ≤ 10). Note that when (𝚡 > 10) the while-body
s not executed, thus there are two assignments (in locations 1⃝ and 2⃝)
nd two reads of variables (in locations 2⃝ and 3⃝) and so the ranking
unction is 6. When (𝚡 = 10) the while-body is executed once, thus
here are one assignment and four reads of variables more than the
ase when (𝚡 > 10) and so the ranking function is 12.

Similarly, we can resolve the Loop2b sketch, where we consider
he assertion (𝚢 < 8) and a cost model with overheads of 2 units
or both assignment and dereferencing. The ‘‘correct’’ variants satisfy:
𝙰 − 𝙱 ≥ 1) ∧ (𝙼𝚒𝚗 ≤ 𝙰 ≤ 7), and the ‘‘correct & optimal’’ solution is (see

the lifted ranking function in Fig. 6): A=1 and B=0 with the minimal
objective 8 when (𝚡 > 10) and −𝟷𝟶𝚡 + 𝟷𝟷𝟾 when (𝚡 ≤ 10). Note that,
the inferred ranking functions for ‘‘correct’’ sub-families of Loop2a and
Loop2b in Figs. 5 and 6 do not depend on feature variables, so any
‘‘correct’’ solution is ‘‘optimal’’ as well.

We can see that decision trees inferred by performing lifted analyses
of our motivating examples use only one or two leaf nodes (invariants
or ranking functions). In contrast, if we use the brute-force enumeration
then we will need (𝙼𝚊𝚡 − 𝙼𝚒𝚗 + 1)2 invariants and ranking functions,
i.e. one for each variant. This possibility for sharing of equivalent
analysis information corresponding to different variants confirms that
decision trees are symbolic and compact representation of lifted anal-
ysis elements. This is the key for obtaining efficient lifted analyses of
program families with large number of variants, and thus for efficiently
solving the quantitative sketching problem.

3. Transforming sketches to program families

We now introduce the IMP language that we use to illustrate our
work. We describe two extensions of IMP: IMP?? for writing program
sketches, and IMP for writing program families. Finally, we define
the transformation of sketches to program families and show its cor-
rectness. IMP language for program families is specifically designed
intermediate language used for constructing suitable analysis and syn-
thesis algorithms for sketches. Thus, IMP is more expressive than the
language for classical program families [27] in which features occur
only in presence conditions of #if-s. Here, IMP allows features to occur
in arbitrary expressions as well.

Note that the intermediate language IMP could be avoided and we
could design analysis and synthesis algorithms that work directly on

2 The default cost model in standard termination analysis is 1 unit for
ssignments and 0 units for dereferencing.

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206

3

g

d
t
𝑘

v
v
a
a
f
(
r
F
o

𝜃

c
s
w

𝑠

A
r
#

F
v

E
f

𝚒

3

h

h

program sketches from IMP??, rather than on program families from
IMP. However, in this work we want to re-use the efficient lifted
analysis algorithms developed for program families, and to adapt them
for program sketching. In order to make this connection explicit, we
use IMP as an intermediate language.

.1. IMP

We use a simple imperative language, called IMP [9,28], for writing
eneral-purpose single-programs. The program variables Var are stat-

ically allocated, and the only data type is the set Z of mathematical
integers. The syntax of the language is given by:

𝑠 ∶∶= 𝚜𝚔𝚒𝚙 ∣ 𝚡 ∶=𝑎𝑒 ∣ 𝑠; 𝑠 ∣ 𝚒𝚏 (𝑏𝑒) 𝚝𝚑𝚎𝚗 𝑠 𝚎𝚕𝚜𝚎 𝑠 ∣ 𝚠𝚑𝚒𝚕𝚎 (𝑏𝑒) 𝚍𝚘 𝑠 ∣ 𝚊𝚜𝚜𝚎𝚛𝚝 (𝑏𝑒),
𝑏𝑒 ∶∶= 𝑎𝑒 ⋈ 𝑎𝑒 ∣ ¬𝑏𝑒 ∣ 𝑏𝑒 ∧ 𝑏𝑒 ∣ 𝑏𝑒 ∨ 𝑏𝑒,
𝑎𝑒 ∶∶= 𝑛 ∣ [𝑛, 𝑛′] ∣ 𝚡 ∣ 𝑎𝑒 ⊕ 𝑎𝑒

where 𝑛 ranges over integers Z, [𝑛, 𝑛′] over integer intervals, 𝚡 over
program variables Var, ⊕ ∈ {+,−, ∗, ∕}, and ⋈∈ {<,≤,=,≠}. Intervals
[𝑛, 𝑛′] denote a random choice of an integer in the interval. The set of all
statements 𝑠 is denoted by Stm; the set of all boolean expressions 𝑏𝑒 is
denoted by BExp; and the set of all arithmetic expressions 𝑎𝑒 is denoted
by AExp. Notice that IMP is only used for presentational purposes as a
well established minimal language. The introduced methodology is not
limited to IMP or its constructs. In fact, our implementation described
in Section 7 supports a subset of the C language, which is sufficient to
handle realistic programs.

A program state 𝜎 ∶ 𝛴 = 𝑉 𝑎𝑟 → Z is a mapping from program
variables to values. The meaning of arithmetic expressions [[𝑎𝑒]] ∶ 𝛴 →
(Z) is a function from a state to a set of values:

[[𝑛]] 𝜎 = {𝑛},
[[

[𝑛, 𝑛′]
]]

𝜎 = {𝑛,… , 𝑛′}, [[𝚡]] 𝜎 = {𝜎(𝚡)},
[[

𝑎𝑒0 ⊕ 𝑎𝑒1
]]

𝜎 = {𝑛0 ⊕ 𝑛1 ∣ 𝑛0 ∈
[[

𝑎𝑒0
]]

𝜎, 𝑛1 ∈
[[

𝑎𝑒1
]]

𝜎}

The semantics of boolean expressions [[𝑏𝑒]] ∶ 𝛴 → ({true, false}) is the
set of possible truth values for expression 𝑏𝑒 in a given state.
[[

𝑎𝑒0 ⋈ 𝑎𝑒1
]]

𝜎 = {𝑛0 ⋈ 𝑛1 ∣ 𝑛0 ∈
[[

𝑎𝑒0
]]

𝜎, 𝑛1 ∈
[[

𝑎𝑒1
]]

𝜎}
[[¬𝑏𝑒]] 𝜎 = {¬𝑡 ∣ 𝑡 ∈ [[𝑏𝑒]] 𝜎},
[[

𝑏𝑒0 ∧ 𝑏𝑒1
]]

𝜎 = {𝑡0 ∧ 𝑡1 ∣ 𝑡0 ∈
[[

𝑏𝑒0
]]

𝜎, 𝑡1 ∈
[[

𝑏𝑒1
]]

𝜎}
[[

𝑏𝑒0 ∨ 𝑏𝑒1
]]

𝜎 = {𝑡0 ∨ 𝑡1 ∣ 𝑡0 ∈
[[

𝑏𝑒0
]]

𝜎, 𝑡1 ∈
[[

𝑏𝑒1
]]

𝜎}

The meaning of statements [[𝑠]] ∶ 𝛴 → (𝛴) is the set of final states that
can be derived by executing 𝑠 from some initial input state [9,28].

3.2. IMP??

The language for sketches IMP?? is obtained by extending arithmetic
expressions of IMP with a basic integer hole construct, denoted by
??. The numerical hole ?? is a placeholder that the synthesizer must
replace with a suitable integer constant.

𝑎𝑒 ∶∶= … ∣ ??

Each hole occurrence in a program sketch is assumed to be uniquely
labeled as ??𝑖 and has a bounded integer domain [𝑛, 𝑛′]. We will
sometimes write ??[𝑛,𝑛

′]
𝑖 to make explicit the domain of a given hole.

Let 𝐻 be a set of holes in a program sketch. We define a control
function 𝜙 ∶ 𝛷 = 𝐻 → Z to describe the value of each hole in the
sketch. Thus, 𝜙 fully describes a candidate solution to the sketch (i.e. a
sketch realization). We write 𝑠𝜙 to describe a candidate solution to the
sketch 𝑠 fully defined by control function 𝜙.

3.3. IMP

Let  = {𝐴1,… , 𝐴𝑛} be a finite and totally ordered set of numerical
features available in a program family. For each feature 𝐴 ∈  ,
om(𝐴) ⊆ Z denotes the set of possible values that can be assigned
o 𝐴. A valid combination of feature’s values represents a configuration
, which specifies one variant of a program family. It is given as a
 o

5

aluation function 𝑘 ∶  → Z, which is a mapping that assigns a
alue from dom(𝐴) to each feature 𝐴 ∈  , i.e. 𝑘(𝐴) ∈ dom(𝐴). We
ssume that only a subset K of all possible configurations are valid. An
lternative representation of configurations is based upon propositional
ormulae. Each configuration 𝑘 ∈ K can be represented by a formula:
𝐴1 = 𝑘(𝐴1))∧…∧(𝐴𝑛 = 𝑘(𝐴𝑛)). The set of configurations K can be also
epresented as a formula: ∨𝑘∈K𝑘. We define feature expressions, denoted
eatExp(), as the set of propositional logic formulas over constraints
f  generated by:

∶∶= true | 𝑒 ⋈ 𝑒 |¬𝜃 | 𝜃1 ∧ 𝜃2 | 𝜃1 ∨ 𝜃2, 𝑒 ∶∶= 𝑛 ∣ 𝐴 ∣ 𝑒 ⊕ 𝑒

where 𝐴 ∈  , 𝑛 ∈ Z, ⊕ ∈ {+,−, ∗}, and ⋈∈ {<,≤,=,≠}. When a
configuration 𝑘 ∈ K satisfies a feature expression 𝜃 ∈ 𝐹𝑒𝑎𝑡𝐸𝑥𝑝(), we
write 𝑘 ⊧ 𝜃, where ⊧ is the standard satisfaction relation. We write [[𝜃]]
to denote the set of configurations from K that satisfy 𝜃, that is, 𝑘 ∈ [[𝜃]]
iff 𝑘 ⊧ 𝜃.

The language for program families IMP is obtained by extending
IMP with a new compile-time conditional statement for encoding mul-
tiple variants and a new basic arithmetic expression construct that
represents a feature variable. The new statement ‘‘#𝚒𝚏 (𝜃) 𝑠 #𝚎𝚗𝚍𝚒𝚏’’
ontains a feature expression 𝜃 ∈ 𝐹𝑒𝑎𝑡𝐸𝑥𝑝() as a presence condition,
uch that only if 𝜃 is satisfied by a configuration 𝑘 ∈ K the statement 𝑠
ill be included in the variant corresponding to 𝑘. The syntax is:

∶∶= … ∣ #𝚒𝚏 (𝜃) 𝑠 #𝚎𝚗𝚍𝚒𝚏, 𝑎𝑒 ∶∶= … ∣ 𝐴 ∈ 

ny other preprocessor conditional constructs can be desugared and
epresented only by #if construct. For example, #𝚒𝚏 (𝜃) 𝑠0 #𝚎𝚕𝚒𝚏 (𝜃′) 𝑠1
𝚎𝚗𝚍𝚒𝚏 is translated into: #𝚒𝚏 (𝜃) 𝑠0 #𝚎𝚗𝚍𝚒𝚏 ; #𝚒𝚏 (¬𝜃 ∧ 𝜃′) 𝑠1 #𝚎𝚗𝚍𝚒𝚏.

The semantics of IMP has two stages: first, given a configuration
𝑘 ∈ K compute an IMP single-program without #if-s and 𝐴 ∈
 ; second, the obtained program is evaluated using the standard
IMP semantics [14]. The first stage is specified by the projection
function 𝑃𝑘, which recursively pre-processes all sub-statements and
sub-expressions of statements. Hence, we have 𝑃𝑘(𝚜𝚔𝚒𝚙) = 𝚜𝚔𝚒𝚙,
𝑃𝑘(𝚡 ∶=𝑎𝑒) = 𝚡 ∶=𝑃𝑘(𝑎𝑒), 𝑃𝑘(𝑠; 𝑠′) = 𝑃𝑘(𝑠);𝑃𝑘(𝑠′), and 𝑃𝑘(𝑎𝑒 ⊕ 𝑎𝑒′) =
𝑃𝑘(𝑎𝑒)⊕𝑃𝑘(𝑎𝑒′). For ‘‘#𝚒𝚏 (𝜃) 𝑠 #𝚎𝚗𝚍𝚒𝚏’’, statement 𝑠 is included in the
variant if 𝑘 ⊧ 𝜃, otherwise, if 𝑘 ̸⊧ 𝜃 then 𝑠 is removed.3

𝑃𝑘(#𝚒𝚏 (𝜃) 𝑠 #𝚎𝚗𝚍𝚒𝚏) =

{

𝑃𝑘(𝑠) if 𝑘 ⊧ 𝜃
𝚜𝚔𝚒𝚙 if 𝑘 ̸⊧ 𝜃

or a feature 𝐴 ∈  , the projection function 𝑃𝑘 replaces 𝐴 with the
alue 𝑘(𝐴) ∈ Z, that is 𝑃𝑘(𝐴) = 𝑘(𝐴).

xample 1. The variant 𝑃(𝙰=𝟹)∧(𝙱=0)(Loop1a) derived from the program
amily Loop1a in Fig. 7, using configuration (𝙰 = 𝟹) ∧ (𝙱 =0), is:

𝚗𝚝 𝚡 ∶= 𝟹, 𝚢 ∶= 0; 𝚠𝚑𝚒𝚕𝚎 (𝚡 > 0) {𝚡 ∶= 𝚡−1; 𝚢 ∶= 𝚢+1; } 𝚊𝚜𝚜𝚎𝚛𝚝 (𝚢 > 2);

while the variant 𝑃(𝙰=𝟷)(vmcai2004a) derived from the program family
vmcai2004a in Fig. 9, using configuration (𝙰 = 𝟷), is:

𝚒𝚗𝚝𝚡; 𝚠𝚑𝚒𝚕𝚎 (𝚡 ≥ 0) 𝚡 ∶= 𝟷 ∗ 𝚡+10;

.4. Transformation

We now show how to transform an input sketch 𝑠̂ with a set of 𝑚
oles ??

[𝑛1 ,𝑛′1]
1 ,… , ??[𝑛𝑚 ,𝑛

′
𝑚]

𝑚 into an output program family 𝑠 with a set
of 𝑚 features 𝐴1,… , 𝐴𝑚 with domains [𝑛1, 𝑛′1],… , [𝑛𝑚, 𝑛′𝑚], respectively.
The set of configurations K in 𝑠 includes all possible combinations of
feature values.

If a hole occurs in a (linear) expression that can be exactly repre-
sented in the underlying numerical domain D, then we can handle the
ole in a more efficient symbolic way by an extended lifted analysis.

3 Since any 𝑘 ∈ K is a valuation function, we have that either 𝑘 ⊧ 𝜃 holds
r 𝑘 ̸⊧ 𝜃 (which is equivalent to 𝑘 ⊧ ¬𝜃) holds, for any 𝜃 ∈ 𝐹𝑒𝑎𝑡𝐸𝑥𝑝().

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206

F

4

a
a

c
p
f
i

Fig. 7. The Loop1a family.

Given the polyhedra domain P, we say that a hole ?? can be exactly
represented in P, if it occurs in an expression of the form: 𝛼1𝑥1+⋯ 𝛼𝑖??+
⋯ 𝛼𝑛𝑥𝑛 + 𝛽, where 𝛼1,… , 𝛼𝑛, 𝛽 ∈ Z and 𝑥1,… , 𝑥𝑛 are program variables
or other hole occurrences. Similarly, we define that a hole can be
exactly represented in the Interval I and the Octagon O domains, if it
occurs in expressions of the form: ±??+𝛽 and ±𝚡±??+𝛽 (where 𝛽 ∈ Z,
𝚡 is a program variable or other hole occurrence).

We now define rewrite rules for eliminating holes ?? from a pro-
gram sketch 𝑠̂. Let 𝑠[??[𝑛,𝑛

′]] be a basic (non-compound) statement in
which the hole ??[𝑛,𝑛

′] occurs as a sub-expression. When the hole ??[𝑛,𝑛
′]

occurs in an expression that can be represented exactly in the numerical
domain D, we eliminate ?? using the symbolic rewrite rule:

𝑠[??[𝑛,𝑛
′]] ⇝ 𝑠[𝙰] (SR)

Otherwise, if the hole ??[𝑛,𝑛
′] occurs in an expression that cannot be

represented exactly in the numerical domain D, we use the explicit
rewrite rule:

𝑠[??[𝑛,𝑛
′]] ⇝ #𝚒𝚏 (𝙰 =𝑛) 𝑠[𝑛] #𝚎𝚕𝚒𝚏…#𝚎𝚕𝚒𝚏 (𝙰 =𝑛′−𝟷) 𝑠[𝑛′−𝟷]

#𝚎𝚕𝚜𝚎 𝑠[𝑛′] #𝚎𝚗𝚍𝚒𝚏…#𝚎𝚗𝚍𝚒𝚏
(ER)

The set of features  is also updated with the fresh feature A. If the
current sketch 𝑠̂ being transformed matches any abstract syntax tree
(AST) node of the shape 𝑠[??], where 𝑠 ia a basic statement, then we
replace 𝑠[??] as described by rules (SR) and (ER). We write 𝚁𝚎𝚠𝚛𝚒𝚝𝚎(𝑠̂)
to be the resulting program family obtained by repeatedly applying
rules (SR) and (ER) on a program sketch 𝑠̂ to saturation, i.e. until we
reach a point when all holes are eliminated. Given a basic statement
𝑠[??], we can apply either rule (SR) or rule (ER) depending on whether
hole ?? can be exactly represented in a given numerical domain or not.
Therefore, this rewriting system is confluent as 𝚁𝚎𝚠𝚛𝚒𝚝𝚎(𝑠̂) will always
return the same result (program family) regardless of the order in which
we eliminate holes.

Example 2. Reconsider Loop1a and Loop2a sketches from Section 2.
All holes ?? can be represented exactly in the Interval domain 𝐼 , so
we use the symbolic (SR) rule to obtain the corresponding program
families shown in Figs. 7 and 8. Consider the vmcai2004a sketch taken
from SV-COMP:

𝚒𝚗𝚝 𝚡; 𝚠𝚑𝚒𝚕𝚎 (𝚡 ≥ 0) 𝚡 ∶= ?? ∗ 𝚡+10;

The hole ?? occurs in a non-linear expression ?? ∗ 𝚡+10, so it cannot
be represented exactly in any numerical domain D. Thus, we use the
explicit (ER) rule to obtain the corresponding program family shown in
Fig. 9. □

The following result establishes the correctness of our transforma-
tion.

Theorem 3. Let 𝑠̂ be a sketch with holes ??1,… , ??𝑛, 𝜙 be a control func-
tion, and 𝑠̂𝜙 be a candidate solution of 𝑠̂. Let 𝑠 = 𝚁𝚎𝚠𝚛𝚒𝚝𝚎(𝑠̂) be a program
family, in which features 𝐴1,… , 𝐴𝑛 correspond to holes ??1,… , ??𝑛. We
define a configuration 𝑘 ∈ K, s.t. 𝑘(𝐴𝑖) = 𝜙(??𝑖) for 1 ≤ 𝑖 ≤ 𝑛. Then, we
have:

[[

𝑠̂𝜙
]]

=
[[

𝑃 (𝑠)
]]

.
𝑘 t

6

Fig. 8. The Loop2a family.

Fig. 9. The vmcai2004a family.

Proof. By structural induction on statements of sketch 𝑠̂. The only
interesting cases are basic statements 𝑠[??] that fulfill requirements
of rules (SR) and (ER), since in all other cases we have identity
transformations.

For rule (SR), we have:
[[

𝑃𝑘(𝑠[𝐴])
]] def. of 𝑃𝑘= [[𝑠[𝑘(𝙰)]]]

hyp. 𝑘(𝐴)=𝜙(??)
=

[[

𝑠[??]𝜙
]]

or rule (ER), we have:
[[

𝑃𝑘(#𝚒𝚏 (𝙰 =𝑛) 𝑠[𝑛] #𝚎𝚕𝚒𝚏…#𝚎𝚕𝚒𝚏 (𝙰 =𝑛′−𝟷) 𝑠[𝑛′−𝟷] #𝚎𝚕𝚜𝚎 𝑠[𝑛′] …#𝚎𝚗𝚍𝚒𝚏)
]]

def. of 𝑃𝑘= [[𝑠[𝑘(𝙰)]]]
hyp. 𝑘(𝐴)=𝜙(??)

=
[[

𝑠[??]𝜙
]]

□

. Decision tree-based lifted analyses

In the context of program families, lifting means taking a static
nalysis that works on IMP single-programs, and transforming it into
n analysis that works on IMP program families, without preprocessing

them. In this work, we will use lifted versions of the (forward) numerical
analysis [9] and the (backward) termination analysis [22,23] from
the abstract interpretation framework [8]. They will be used to infer
numerical invariants and piecewise-defined ranking functions in all
program locations. We work with lifted analyses based on the lifted
domain of decision trees [18], in which the leaf nodes belong to an ex-
isting single-program domain (e.g., a numerical or termination domain)
and decision nodes are linear constraints over feature variables. This
way, we encapsulate the set of configurations K into decision nodes
where each top-down path represents a subset of configurations from K,
and we store in each leaf node the analysis property generated from the
variants corresponding to the given configurations. We now describe
the decision tree lifted domain.

4.1. Abstract domain for decision nodes

The domain of decision nodes CD𝑉
is the finite set of linear con-

straints defined over a set of variables 𝑉 = {𝑋1,… , 𝑋𝑙}. CD𝑉
is

onstructed using the numerical domain D (see Section 4.2.1) by map-
ing a conjunction of constraints from D to a finite set of constraints
rom CD𝑉

. From now on, we omit to write subscript 𝑉 in CD𝑉
whenever

t is clear from the context.
We assume the set of variables 𝑉 = {𝑋1,… , 𝑋𝑙} to be a finite and

otally ordered, such that the ordering is 𝑋 > ⋯ > 𝑋 . We impose a
1 𝑘

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206
total order <CD
on CD to be the lexicographic order on the coefficients

𝛼1,… , 𝛼𝑘 and constant 𝛼𝑘+1 of the linear constraints, such that:

(𝛼1 ⋅𝑋1 +…+ 𝛼𝑘 ⋅𝑋𝑘 + 𝛼𝑘+1 ≥ 0) <CD
(𝛼′

1 ⋅𝑋1 +…+ 𝛼′
𝑘 ⋅𝑋𝑘 + 𝛼′

𝑘+1 ≥ 0)
⟺ ∃𝑗 > 0.∀𝑖 < 𝑗.(𝛼𝑖 = 𝛼′

𝑖) ∧ (𝛼𝑗 < 𝛼′
𝑗)

The negation of linear constraints is formed as: ¬(𝛼1𝑋1 +… 𝛼𝑘𝑋𝑘 + 𝛽 ≥
0) = −𝛼1𝑋1−⋯−𝛼𝑘𝑋𝑘−𝛽−1 ≥ 0. For example, the negation of 𝑋−3 ≥ 0
is −𝑋 + 2 ≥ 0. To ensure canonical representation of decision trees, a
linear constraint 𝑐 and its negation ¬𝑐 cannot both appear as decision
nodes. Thus, we only keep the largest constraint with respect to <𝐶D
between 𝑐 and ¬𝑐.

4.2. Abstract domain for leaf nodes

We assume the existence of a single-program abstract domain A
defined over a set of variables 𝑉 = {𝑋1,… , 𝑋𝑙}. The domain A is
equipped with sound operators for concretization 𝛾A, ordering ⊑A,
join ⊔A, meet ⊓A, bottom ⊥A, top ⊤A, widening ∇A, and narrowing
▵A, as well as sound transfer functions for tests (boolean expressions)
FILTERA, forward assignments F-ASSIGNA, and backward assignments
B-ASSIGNA. More specifically, the concretization function 𝛾A assigns a
concrete meaning to each element in the abstract domain A, ordering
⊑A conveys the idea of approximation since some analysis results
may be coarser than some other results, whereas join ⊔A and meet
⊓A convey the idea of convergence since a new abstract element is
computed when merging control flows. To analyze loops effectively and
efficiently, the convergence acceleration operators such as widening
∇A and narrowing ▵A are used. Transfer functions provide abstract
semantics of expressions and statements that operate on the abstract
domain A. Thus, they capture the effect of abstractly analyzing expres-
sions and statements in an abstract element (i.e. abstract state). Hence,
transfer function FILTERA(𝑎 ∶ A, 𝑏𝑒 ∶ 𝐵𝐸𝑥𝑝) returns an abstract element
from A obtained by restricting 𝑎 to satisfy the test 𝑏𝑒; F-ASSIGNA(𝑎 ∶
A, 𝚡 ∶=𝑎𝑒 ∶ 𝑆𝑡𝑚) returns an updated version of 𝑎 by abstractly evalu-
ating 𝚡 ∶=𝑎𝑒 in it; whereas B-ASSIGNA(𝑏 ∶ A, 𝚡 ∶=𝑎𝑒 ∶ 𝑆𝑡𝑚) returns an
abstract element from A such that by abstractly evaluating 𝚡 ∶=𝑎𝑒 in it
produces the abstract element 𝑟. Note that parameter 𝑎 in F-ASSIGNA
is an invariant in the initial location of 𝚡 ∶=𝑎𝑒 that needs to be propa-
gated forward, while parameter 𝑏 in B-ASSIGNA is an invariant in the
final location of 𝚡 ∶=𝑎𝑒 that needs to be propagated backwards. These
transfer functions are composed to construct abstract analysis of single
programs by induction on the syntax. We will sometimes write A𝑉 to
explicitly denote the set of variables 𝑉 over which domain A is defined.
In this work, we will use domains A𝑉 𝑎𝑟, A , and A𝑉 𝑎𝑟∪ .

4.2.1. Numerical domains
For the forward numerical analysis, we will instantiate A with some

of the known numerical domains ⟨D, ⊑D⟩, such as Intervals ⟨𝐼, ⊑𝐼 ⟩ [8],
Octagons ⟨𝑂,⊑𝑂⟩ [29], and Polyhedra ⟨𝑃 , ⊑𝑃 ⟩ [30]. The elements of I
are intervals of the form: ±𝑋 ≥ 𝛽, where 𝑋 ∈ 𝑉 , 𝛽 ∈ Z; the elements of
O are conjunctions of octagonal constraints of the form ±𝑋1 ±𝑋2 ≥ 𝛽,
where 𝑋1, 𝑋2 ∈ 𝑉 , 𝛽 ∈ Z; while the elements of P are conjunctions of
polyhedral constraints of the form 𝛼1𝑋1 + ⋯ + 𝛼𝑘𝑋𝑘 + 𝛽 ≥ 0, where
𝑋1,… , 𝑋𝑘 ∈ 𝑉 , 𝛼1,… , 𝛼𝑘, 𝛽 ∈ Z.

We refer to [9] for a precise definition of all abstract operations and
transfer functions of intervals, octagons, and polyhedra domains.

4.2.2. Termination domain
For the backward termination analysis, we will instantiate A with

the termination decision tree domain T𝑇 (CD𝑉 𝑎𝑟∪
,F), also written T𝑇

for short, introduced by Urban and Mine [22,23], where CD𝑉 𝑎𝑟∪
is the

domain for decision nodes and F is the domain of affine functions for
leaf nodes. The elements of F are:

{⊥ ,⊤ } ∪ {𝑓 ∶ Z|𝑉 𝑎𝑟∪F| → N ∣ 𝑓 (𝑥 ,… , 𝑥) = 𝑚 𝑥 +⋯ + 𝑚 𝑥 + 𝑞}
F F 1 𝑛 1 1 𝑛 𝑛

7

where 𝑓 ∈ F is a natural-valued function of program and feature
variables representing an upper bound on the number of steps to
termination; the element ⊥F represents potential non-termination; and
⊤F represents the lack of information to conclude. The function 𝑓 ∈ F
represents a piece of a partially-defined ranking function. The leaf
nodes belonging to F∖{⊥F, ⊤F} and {⊥F, ⊤F} represent defined and
undefined leaf nodes, respectively. The function 𝚜𝚞𝚌𝚌F ∶ F → F
increments the constant of a defined function 𝑓 to take into account
that one more execution step is needed before termination:

𝚜𝚞𝚌𝚌F(𝑓) =

{

𝑓 if 𝑓 ∈ {⊥F, ⊤F}
𝜆𝑥1,… , 𝑥𝑛.𝑓 (𝑥1,… , 𝑥𝑛) + 1 otherwise

A termination decision tree 𝑡′ ∈ T𝑇 is: either a leaf node ⟨|𝑓 |⟩ with
𝑓 ∈ F𝐴, or

[[

𝑐′ ∶ 𝑡𝑙′, 𝑡𝑟′
]]

, where 𝑐′ ∈ CD𝑉 𝑎𝑟∪
(denoted by 𝑡′.𝑐) is the

smallest constraint with respect to <CD
appearing in the tree 𝑡′, 𝑡𝑙′

(denoted by 𝑡′.𝑙) is the left subtree of 𝑡′ representing its true branch,
and 𝑡𝑟′ (denoted by 𝑡′.𝑟) is the right subtree of 𝑡′ representing its false
branch. The path along a decision tree establishes a set of program
states and a set of configurations (those that satisfy the encountered
constraints), and the leaf nodes represent the partially defined ranking
functions over the corresponding program states and configurations.

We use the 𝚜𝚞𝚌𝚌F function to define the transfer functions for
backward assignment and tests [23] in order to record that one more
execution step is needed to termination before executing those op-
erations. The transfer function 𝙱 − 𝙰𝚂𝚂𝙸𝙶𝙽T𝑇 (𝑡′, 𝚡 ∶=𝑎𝑒) substitutes the
arithmetic expression 𝑎𝑒 to the variable 𝚡 in linear constraints occurring
within decision nodes of 𝑡′ and in functions occurring in leaf nodes of 𝑡′,
whereas the transfer function 𝙵𝙸𝙻𝚃𝙴𝚁T𝑇 (𝑡′, 𝑏𝑒) generates a set of linear
constraints 𝐽 from test 𝑏𝑒 and restricts 𝑡′ such that all paths satisfy
the constraints from 𝐽 . Finally, both transfer functions increment the
constant of defined functions 𝑓 ∈ F∖{⊥F, ⊤F} in all leaf nodes of 𝑡′ by
calling 𝚜𝚞𝚌𝚌F(𝑓). We refer to [23] for precise definition of all abstract
operations and transfer functions of T𝑇 .

Example 4. Reconsider the variant 𝑃(𝙰=𝟹)∧(𝙱=0)(Loop1a) from Exam-
ple 1 derived from the program family Loop1a in Fig. 7 (see also
Section 2). The backward termination analysis of 𝑃(𝙰=𝟹)∧(𝙱=0)(Loop1a)
infers the ranking function

[[

(𝑥 > 0) ∶ ⟨|3𝑥 + 2|⟩, ⟨|2|⟩
]]

(i.e., 𝚒𝚏 (𝑥 >
0) 𝚝𝚑𝚎𝚗 (3𝑥+2) 𝚎𝚕𝚜𝚎 (2)) at location h⃝ before the while-test. That is,
if (𝑥 ≤ 0) then while is executed zero times so there are 2 execution
steps by analyzing the assertion and while-test; if (𝑥 > 0) then while
is executed 𝑥-times and there are 3 execution steps (two assignments
and while-test) for each while iteration, plus there are additional
2 execution steps obtained by analyzing the assertion and while-test.
Finally, the ranking function 13 is inferred at initial location 1⃝, since
there are 2 execution steps to analyze initial assignments 𝑥 ∶= 𝟹, 𝑦 ∶= 0
and by substituting 3 to 𝑥 we obtain: 3 ⋅ 3 + 2 + 2 = 13.

4.3. Decision tree lifted domains

We now define the decision tree lifted domain T(CD
,A𝑉 𝑎𝑟∪),

written T for short, for representing lifted analysis properties [18]. A
decision tree 𝑡 ∈ T(CD,A) is either a leaf node ⟨|𝑎|⟩ with 𝑎 ∈ A, or
[[𝑐 ∶ 𝑡𝑙, 𝑡𝑟]], where 𝑐, 𝑡𝑙, 𝑡𝑟 are defined as in termination decision trees.
The path along a decision tree establishes the set of configurations
(those that satisfy the encountered constraints), and the leaf nodes
represent the analysis properties for the corresponding configurations.

Operations. The concretization function 𝛾T of a decision tree 𝑡 ∈ T(CD,A)
returns 𝛾A(𝑎) for 𝑘 ∈ K that satisfies the set 𝐶 ⊆ CD of constraints
accumulated along the top-down path to the leaf node 𝑎 ∈ A.

The binary operations rely on the algorithm for tree unification [18,
23], which finds a common labeling of decision nodes of two trees 𝑡1
and 𝑡2. Note that the tree unification does not lose any information. All
binary operations, including ordering ⊑T, join ⊔T, meet ⊓T, widening
∇ , and narrowing ▵ , are performed leaf-wise on the unified decision
T T

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206

1

2

1

2

3

1

2

3

4

5

6

1

2

3

4

5

t
a

a
d

𝑦

f

T
f
a
d
𝑡
a
i
o
t
b
#
a

b

Algorithm 1: ASSIGNT(𝑡,x:=𝑎𝑒, 𝐶) when vars(𝑎𝑒) ⊆ 𝑉 𝑎𝑟

if isLeaf(𝑡) then return ⟨|ASSIGNA(𝑡,x:=𝑎𝑒)|⟩;
else return
[[

𝑡.𝑐 ∶ ASSIGNT(𝑡.𝑙,x:=𝑎𝑒, 𝐶∪{𝑡.𝑐}), 𝙰𝚂𝚂𝙸𝙶𝙽T(𝑡.𝑟,x:=𝑎𝑒, 𝐶∪{¬𝑡.𝑐})
]]

;

Algorithm 2: ASSIGNT(𝑡,x:=𝑎𝑒, 𝐶) when vars(𝑎𝑒) ⊆ 𝑉 𝑎𝑟 ∪ 

if isLeaf(𝑡) then
return ASSIGNA𝑉 𝑎𝑟∪

(𝑡 ⊎𝑉 𝑎𝑟∪ 𝐶,x:=𝑎𝑒);
else return
[[

𝑡.𝑐 ∶ ASSIGNT(𝑡.𝑙,x:=𝑎𝑒, 𝐶∪{𝑡.𝑐}), 𝙰𝚂𝚂𝙸𝙶𝙽T(𝑡.𝑟,x:=𝑎𝑒, 𝐶∪{¬𝑡.𝑐})
]]

;

trees. For example, the ordering 𝑡1 ⊑T 𝑡2 of two unified decision trees
𝑡1 and 𝑡2 is defined recursively as:

⟨|𝑎1|⟩ ⊑T ⟨|𝑎2|⟩ = 𝑎1 ⊑A 𝑎2,
[[

𝑐 ∶ 𝑡𝑙1, 𝑡𝑟1
]]

⊑T
[[

𝑐 ∶ 𝑡𝑙2, 𝑡𝑟2
]]

= (𝑡𝑙1 ⊑T 𝑡𝑙2) ∧ (𝑡𝑟1 ⊑T 𝑡𝑟2)

The top is: ⊤T = ⟨|⊤A|⟩, while the bottom is: ⊥T = ⟨|⊥A|⟩.

Transfer functions. We define lifted transfer functions for analyzing
tests, (forward and backward) assignments (ASSIGNT), and #if-s [18].
We consider two types of tests 𝑏𝑒 ∈ 𝐵𝐸𝑥𝑝 and assignments 𝚡 ∶=𝑎𝑒 ∈
𝑆𝑡𝑚: when 𝑏𝑒 and 𝑎𝑒 contain only program variables; and when 𝑏𝑒 and
𝑎𝑒 contain both feature and program variables.

Transfer function ASSIGNT.4 for handling an assignment 𝚡 ∶=𝑎𝑒 in
the input tree 𝑡, when 𝚡 ∈ 𝑉 𝑎𝑟 and the set of variables in 𝑎𝑒 is
𝑣𝑎𝑟𝑠(𝑎𝑒) ⊆ 𝑉 𝑎𝑟, is implemented by applying the corresponding transfer
function of the leaf domain ASSIGNA leaf-wise, as shown in Algorithm
1. Similarly, transfer function FILTERT for handling tests 𝑏𝑒 ∈ 𝐵𝐸𝑥𝑝,
when 𝑣𝑎𝑟𝑠(𝑏𝑒) ⊆ 𝑉 𝑎𝑟, is implemented by applying FILTERA leaf-wise.

Transfer function ASSIGNT for x∶= 𝑎𝑒, when vars(𝑎𝑒) ⊆ 𝑉 𝑎𝑟 ∪  , is
given in Algorithm 2. It accumulates into the set 𝐶 ⊆ CD (initialized
to K) constraints encountered along the paths of the decision tree 𝑡
(Line 3), up to the leaf nodes in which assignment is performed by
ASSIGNA𝑉 𝑎𝑟∪

. That is, we first merge constraints from the leaf node
𝑡 defined over 𝑉 𝑎𝑟 ∪  and constraints from decision nodes 𝐶 ⊆
CD

defined over  , by using ⊎𝑉 𝑎𝑟∪ operator, and then we apply
ASSIGNA𝑉 𝑎𝑟∪

on the obtained result (Line 2).
Transfer function FILTERT for test 𝑏𝑒, when vars(𝑏𝑒) ⊆ 𝑉 𝑎𝑟 ∪  ,

is described by Algorithm 3. Similarly to ASSIGNT in Algorithm 2,
it accumulates the constraints along the paths in a set 𝐶 ⊆ CD up
to the leaf nodes, and applies FILTERA𝑉 𝑎𝑟∪

on an abstract element
obtained by merging constraints in the leaf node and in 𝐶 (Line 2).
The obtained result 𝑎′ is a new leaf node, and additionally 𝑎′ is
projected on feature variables using ↾ operator to generate a new
set of constraints 𝐽 that is added to the given path to 𝑎′ by using
function call RESTRICT(⟨|𝑎′|⟩, 𝐶, 𝐽∖𝐶) (Lines 3–5). Function isRe-
dundant(𝐽 , 𝐶) checks if the constraints from 𝐽 are redundant with
respect to 𝐶, in which case they are not added to the path to 𝑎′.
Function RESTRICT(⟨|𝑎|⟩, 𝐶, 𝐽), given in Algorithm 4, takes as input a
decision tree in the form of a leaf node ⟨|𝑎|⟩, a set 𝐶 of constraints, and
a set 𝐽 of linear constraints in canonical form that need to be added
to ⟨|𝑎|⟩. At each iteration, the smallest linear constraint 𝑗 with respect
to <CD

is extracted from J (Line 3), and is added to the decision tree
(Line 5) if isRedundant({𝑗}, 𝐶) is false.

After applying transfer functions, the obtained decision trees may
contain some redundancy that can be exploited to further compress
them. We use several optimizations [18]. E.g., if constraints on a path
to some leaf are unsatisfiable, we eliminate that leaf node; if a decision

4 Note that ASSIGN is an abbreviation for both F-ASSIGN and B-ASSIGN
 e

8

Algorithm 3: FILTERT(𝑡, 𝑏𝑒, 𝐶) when vars(𝑏𝑒) ⊆ 𝑉 𝑎𝑟 ∪ 

if isLeaf(𝑡) then
𝑎′ = FILTERA𝑉 𝑎𝑟∪

(𝑡 ⊎𝑉 𝑎𝑟∪ 𝐶, 𝑏𝑒);
𝐽 = 𝑎′ ↾ ;
if isRedundant(𝐽 , 𝐶) then return ⟨|𝑎′|⟩;
else return RESTRICT(⟨|𝑎′|⟩, 𝐶, 𝐽∖𝐶);

else return
[[

𝑡.𝑐 ∶ FILTERT(𝑡.𝑙,x:=𝑒, 𝐶∪{𝑡.𝑐}), 𝙵𝙸𝙻𝚃𝙴𝚁T(𝑡.𝑟,x:=𝑒, 𝐶∪{¬𝑡.𝑐})
]]

;

Algorithm 4: RESTRICT(⟨|𝑎|⟩, 𝐶, 𝐽)

if isEmpty(𝐽) then return ⟨|𝑎|⟩;
else

𝑗 = 𝑚𝑖𝑛<CD
(𝐽);

if isRedundant({𝑗}, 𝐶) then return
RESTRICT(⟨|𝑎|⟩, 𝐶, 𝐽∖{𝑗});
return

[[

𝑗 ∶ RESTRICT(⟨|𝑎|⟩, 𝐶 ∪ {𝑗}, 𝐽∖{𝑗}), ⟨|⊥A|⟩
]]

node contains two same subtrees, then we keep only one subtree and
we also eliminate the decision node, etc.

4.4. Decision tree-based lifted analysis

Operations and transfer functions of T(CD,D) and T(CD,T𝑇) are
used to perform the numerical and termination lifted analysis of pro-
gram families, respectively. The numerical lifted analysis derived from
T(CD,D), written as T𝐹 for short, is a pure forward analysis that infers
numerical invariants in all program locations. We define the analysis
function [[𝑠]]𝐹 𝑡 that takes as input a decision tree 𝑡 corresponding to
he initial location of statement 𝑠, and outputs a decision tree over-
pproximating the numerical invariant in the final location of 𝑠. The

input decision tree 𝑡K𝑖𝑛,𝐹 at the initial location of a program family
has only one leaf node ⊤D𝑉 𝑎𝑟∪

and decision nodes that define the set
K. Lifted invariants (decision trees) are propagated forward from the
initial location towards the final location. The analysis function [[𝑠]]𝐹 ∶
T → T for each statement 𝑠 is given in Fig. 10. For #𝚒𝚏 (𝜃) 𝑠 #𝚎𝚗𝚍𝚒𝚏,
all leaves of the input tree that correspond to configurations that
satisfy 𝜃 are updated by the effect of evaluating statement 𝑠, while all
other leaves are not updated. Note that FILTERT(𝑡, 𝜃,K) is defined by
Algorithm 3 since 𝜃 contains only feature variables, i.e vars(𝜃) ⊆  . For
while loop, lfp𝐹𝜙𝐹 is the limit of the following increasing chain

efined by delayed widening:

0 = ⊥T; 𝑦𝑛+1 = 𝜙𝐹 (𝑦𝑛), if 𝑛 < 𝑁 ; 𝑦𝑛+1 = 𝑦𝑛 ∇T 𝜙𝐹 (𝑦𝑛), if 𝑛 ≥ 𝑁 (1)

or some fixed number 𝑁 denoting the widening delay.
Similarly, we define the termination lifted analysis derived from

(CD,T𝑇), written as T𝐵 for short, which propagates decision trees
rom T(CD,T𝑇) in a backward direction [23,31]. It is a pure backward
nalysis that infers ranking functions in all program locations. We
efine the analysis function [[𝑠]]𝐵 𝑡 that takes as input a decision tree
in the final location of statement 𝑠, and outputs a decision tree over-
pproximating the ranking function in the initial location of 𝑠. The
nput decision tree 𝑡K𝑖𝑛,𝐵 at the final location of a program family has
nly one leaf node 0 (zero function) and decision nodes that define
he set K. Lifted ranking functions (decision trees) are propagated
ackward from the final towards the initial location taking assignments,
if-s, and tests into account with delayed widening and narrowing
round while-s..

We establish correctness of the lifted analysis based on T(CD,A)
y showing that it produces identical results with the brute-force
numeration approach based on the domain A. Let 𝑠 denotes the
[[]]T

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206
Fig. 10. The (forward) numerical lifted analysis function [[𝑠]]𝐹 ∶ T → T.
5

s
t
t

y
a
e
a
f
c
w
s
f
t
w
n
W


transfer function of statement 𝑠 of IMP in T(CD,A), while [[𝑠]]A denotes
the transfer function of statement 𝑠 of IMP in A. Given 𝑡 ∈ T(CD,A),
we denote by 𝜋𝑘(𝑡) ∈ A the leaf node of tree 𝑡 that corresponds to the
variant 𝑘 ∈ K. That is, the constraints along the path to the leaf node
𝜋𝑘(𝑡) are satisfied by 𝑘 ∈ K. We want to show that lifted analysis of 𝑠
on domain T produces the same results as analyzing all variants 𝑃𝑘(𝑠),
for all 𝑘 ∈ K, on domain A.

Theorem 5 (Correctness). 𝜋𝑘([[𝑠]]T (𝑡)) =
[[

𝑃𝑘(𝑠)
]]

A (𝜋𝑘(𝑡)) for all 𝑘 ∈ K.

Proof. The proof is by induction on the structure of 𝑠. We consider the
two most interesting cases of assignments and #if-s. The other cases
are similar.

Case 𝚡 ∶=𝑒. ASSIGNT(𝑡, 𝚡 ∶=𝑎𝑒,K) applies 𝙰𝚂𝚂𝙸𝙶𝙽A(𝑎, 𝚡 ∶=𝑎𝑒) to each
leaf 𝑎 in the tree 𝑡. The proof follows by applying 𝙰𝚂𝚂𝙸𝙶𝙽A to the
leaf node 𝜋𝑘(𝑡) corresponding to the variant 𝑘.

Case #𝚒𝚏 (𝜃) 𝑠 #𝚎𝚗𝚍𝚒𝚏. Assume that 𝑘 ⊧ 𝜃. Then the leaf node 𝜋𝑘(𝑡)
occurs in 𝙵𝙸𝙻𝚃𝙴𝚁T(𝑡, 𝜃,K) but not in 𝙵𝙸𝙻𝚃𝙴𝚁T(𝑡,¬𝜃,K). Thus,
the result of 𝜋𝑘([[#𝚒𝚏 (𝜃) 𝑠 #𝚎𝚗𝚍𝚒𝚏]]T (𝑡)) is [[𝑠]]A (𝜋𝑘(𝑡)). On the
other hand, we have 𝑃𝑘(#𝚒𝚏 (𝜃) 𝑠 #𝚎𝚗𝚍𝚒𝚏) = 𝑠 and the result is
[[𝑠]]A (𝜋𝑘(𝑡)).

Assume that 𝑘 ̸⊧ 𝜃. Then the leaf node 𝜋𝑘(𝑡) occurs in 𝙵𝙸𝙻𝚃𝙴𝚁T(𝑡,
¬𝜃,K) but not in 𝙵𝙸𝙻𝚃𝙴𝚁T(𝑡, 𝜃,K). Thus, the result of
𝜋𝑘([[#𝚒𝚏 (𝜃) 𝑠 #𝚎𝚗𝚍𝚒𝚏]]T (𝑡)) is 𝜋𝑘(𝑡). On the other hand, 𝑃𝑘(#𝚒𝚏 (𝜃)
𝑠 #𝚎𝚗𝚍𝚒𝚏) = 𝚜𝚔𝚒𝚙, thus giving

[[

𝚜𝚔𝚒𝚙
]]

A (𝜋𝑘(𝑡)) = 𝜋𝑘(𝑡). □

Example 6. In Figs. 11 and 12 we depict decision trees at locations 2⃝
and h⃝ inferred by performing (forward) numerical analysis based on
the domain T(C𝑃 , 𝑃) of the Loop1a program family (see Section 2 and
Fig. 7). In order to enforce convergence of the analysis, we apply the
widening operator at the loop head, i.e. at location h⃝. Observe how the
invariant at location 5⃝ shown in Fig. 1 is inferred from the invariant
at location h⃝. Recall that right leaves in both trees correspond to the
case when while is executed one or more times. Thus, the condition
of while-termination (𝚡 = 𝙱) and the right leaf of tree in h⃝ imply the
right leaf of tree in 5⃝.

Subsequently, we perform a (backward) lifted termination analy-
sis based on the domain T(C𝑃 ,T𝑇) of the Loop1a sub-family satis-
fying (𝙰 − 𝙱 ≥ 3). Lifted decision trees inferred at locations h⃝ and
1⃝ are shown in Figs. 2 and 13, respectively. We can see how by

back-propagating the tree at location h⃝, denoted 𝑡 h⃝ (see Fig. 13),
via assignments 𝚢 ∶= 0 and 𝚡 ∶= 𝙰 at location 1⃝, we obtain the
tree at location 1⃝, denoted 𝑡 1⃝ (see Fig. 2). The transfer function
B-ASSIGNT(𝑡 h⃝, 𝚡 ∶= 𝙰) will generate the tree 𝑡 1⃝ where x is replaced
with A. The new decision node (𝙰 ≥ 𝙱 + 𝟷) and the leaf node with
ranking function 2 are eliminated from 𝑡 1⃝ since they are redundant
with respect to the root node (𝙰 − 𝙱 ≥ 3).
9

Fig. 11. Invariant at loc. 2⃝ of Loop1a.

Fig. 12. Invariant at loc. h⃝ of Loop1a.

Fig. 13. Ranking fun. at loc. h⃝ of Loop1a.

. Quantitative cost-sensitive analyses

The quantitative termination analysis [[𝑠]]𝐵 presented in the previous
ection establishes an upper bound on the number of execution steps to
ermination from any location. It uses a default cost model that assigns
he cost of one execution step (unit) for skip, assignments, and tests.

However, for any given language there are many quantitative anal-
ses that make sense. They are relative to the resource we want to track
nd the operational specifics of the architecture on which a program is
xecuted. We can assign different, non-negative costs to each construct
nd operation in the language. We decorate the cost-sensitive analysis
unction [[𝑠]]𝐵 with a cost model  as parameter, which describes the
osts assigned to each construct and operation in the language. Suppose
e want to analyze our programs in an environment in which there is a

ignificant overhead in the assignment and the dereferencing (reading
rom variables) operations due to the memory access. We represent
his by modeling these operations using analysis functions instrumented
ith costs incurred during their execution. That is, we attach some non-
egative costs to an operation in the corresponding analysis function.
e compute the total cost of the above operations using a cost model
as follows:

(𝚡 ∶=𝑎𝑒) = 𝚌𝚘𝚜𝚝𝚊𝚜𝚐 + 𝚌𝚘𝚜𝚝𝚛𝚎𝚊𝚍 ∗ |𝑣𝑎𝑟𝑠(𝑎𝑒)|

(𝑏𝑒) = 𝚌𝚘𝚜𝚝𝚛𝚎𝚊𝚍 ∗ |𝑣𝑎𝑟𝑠(𝑏𝑒)|

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206

𝑠

w

r
a
r
w
l
a

a
d

1

2

3

4

5

6

7

8

d

t
r
s

(
r
s
a
m
m

T
a

P
t
n

where 𝚌𝚘𝚜𝚝𝚊𝚜𝚐 is the cost of executing assignment, 𝚌𝚘𝚜𝚝𝚛𝚎𝚊𝚍 is the
cost of reading from a variable, and |𝑣𝑎𝑟𝑠(𝑎𝑒)| denotes the number of
variables in 𝑎𝑒. We define the function 𝚊𝚍𝚍F ∶ F × Z → F, which
adds the second parameter to the constant of a defined function in the
first parameter. The undefined function in the first parameter is left
unaltered. That is, we have:

𝚊𝚍𝚍F(𝑓, 𝑛) =

{

𝑓 if 𝑓 ∈ {⊥F, ⊤F}
𝜆𝑥1,… , 𝑥𝑛.𝑓 (𝑥1,… , 𝑥𝑛) + 𝑛 otherwise

The cost-sensitive analysis function, denoted [[𝑠]]𝐵 (), is the same
as [[𝑠]]𝐵 in Section 4.4, except that it propagates the parameter 
in transfer functions 𝙰𝚂𝚂𝙸𝙶𝙽T𝑇 (𝑡, 𝚡 ∶=𝑎𝑒,) and 𝙵𝙸𝙻𝚃𝙴𝚁T𝑇 (𝑡, 𝑏𝑒,).
𝙱 − 𝙰𝚂𝚂𝙸𝙶𝙽T𝑇 and 𝙵𝙸𝙻𝚃𝙴𝚁T𝑇 work as described before in Section 4.2.2,
but now they add non-negative constants (costs) (𝚡 ∶=𝑎𝑒) and (𝑏𝑒)
to the defined functions in all leaves of the input decision trees by
calling 𝚊𝚍𝚍F(𝑓,(𝚡 ∶=𝑎𝑒)) and 𝚊𝚍𝚍F(𝑓,(𝑏𝑒)).

6. Synthesis algorithm

We can now solve the quantitative sketching problem using lifted
analysis algorithms. More specifically, we delegate the effort of con-
ducting an effective search of all possible sketch realizations to an
efficient lifted static analyzer, which combines the forward numerical
and the backward quantitative termination analysis. From the numer-
ical invariant inferred using the forward lifted analysis in the final
location, we can find a set of variants for which the given assertions are
valid. They represent the ‘‘correct’’ sketch realizations. Subsequently,
we perform a backward quantitative termination lifted analysis of the
‘‘correct’’ sub-family of variants. From the ranking function inferred
using the backward lifted analysis in the initial location, we can find
a set of variants for which the minimal fully-defined ranking function
is generated. Those variants represent the ‘‘correct & optimal’’ sketch
realizations, and are reported as solutions to the quantitative sketching
problem.

The synthesis algorithm SYNTHESIZE(𝑠̂ ∶ 𝑆𝑡𝑚) for solving a sketch
̂ is given in Algorithm 5. First, we transform the program sketch 𝑠̂
into a program family 𝑠 = 𝚁𝚎𝚠𝚛𝚒𝚝𝚎(𝑠̂) (Line 1). Then, we call function
[[

𝑠
]]𝐹 𝑡K𝑖𝑛,𝐹 to perform the forward numerical lifted analysis of 𝑠. The

inferred decision tree 𝑡𝐹 at the final location of 𝑠 is analyzed by
function FindCorrect (Line 3) to find the sets of variants for which
non-⊥D and non-⊤D leaf nodes are reachable. The set of variants for

hich ⊥D leaf node is reachable are ‘‘incorrect’’ with respect to the
given assertions; whereas the set of variants for which ⊤D leaf node is
eachable are ‘‘I don’t know’’ (inconclusive), which means that the over-
pproximations prevent the analyzer from giving a definite answer with
espect to the given assertions. For each non-⊥D and non-⊤D leaf node,
e generate the set of variants K′ ⊆ K that satisfy the encountered

inear constraints along the top-down path to that leaf node as well
s the given assertions. For each such ‘‘correct’’ set of variants K’,

we perform a backward lifted analysis
[[

𝑠
]]𝐵 𝑡K′

𝑖𝑛,𝐵 whose cost model is
specified by the quantitative objective we want to observe in the final
solution. The inferred decision tree 𝑡𝐵 at the initial location of 𝑠 is
nalyzed by function FindOptimal (Line 6) to find a variant with minimal
efined leaf nodes from F∖{⊥F, ⊤F}. The set of variants for which ⊥F

leaf node is reachable are ‘‘potentially non-terminating’’; whereas the
set of variants for which ⊤F leaf node is reachable are ‘‘I don’t know’’
(inconclusive) due to the over-approximations. FindOptimal calls the Z3
solver [25] to solve the following optimization problem: find a model
that minimizes the value of fully defined ranking functions 𝑡′ ∈ T𝑇 ,
such that the linear constraints along the top-down paths to those leaf
nodes are satisfied. We say that 𝑡′ ∈ T𝑇 is fully defined if all its leaf
nodes are defined from F∖{⊥F, ⊤F}. More formally, given a decision
tree 𝑡 ∈ T(CD,T𝑇), we define the function 𝜙[𝐶]𝑡 that finds a set of pairs
(𝑘, 𝑡′) consisting of valid configurations 𝑘 ∈ K and the corresponding
10
Algorithm 5: SYNTHESIZE(𝑠̂ ∶ 𝑆𝑡𝑚)
𝑠 = Rewrite(𝑠̂);
𝑡𝐹 =

[[

𝑠
]]𝐹 𝑡K𝑖𝑛,𝐹 ;

𝐶 = FindCorrect(𝑡𝐹);
while 𝐶 ≠ ∅ do

K′ = 𝐶.𝑟𝑒𝑚𝑜𝑣𝑒();
𝑡𝐵 =

[[

𝑠
]]𝐵 𝑡K′

𝑖𝑛,𝐵 ;
𝑠𝑜𝑙.𝑖𝑛𝑠𝑒𝑟𝑡(FindOptimal(𝑡𝐵))

return 𝑀𝑖𝑛(𝑠𝑜𝑙)

ranking function 𝑡′ ∈ T𝑇 as follows:

𝜙[𝐶](⟨|𝑡′|⟩) = {(𝑘, 𝑡′) ∣ 𝑘 ∈ K, 𝑘 ⊧ 𝐶, 𝑡′ is fully defined}
𝜙[𝐶]([[𝑐 ∶ 𝑡𝑙, 𝑡𝑟]]) = 𝜙[𝐶 ∪ {𝑐}](𝑡𝑙) ∪ 𝜙[𝐶 ∪ {¬𝑐}](𝑡𝑟)

Given a set of configurations K, the required set of pairs (𝑘, 𝑡′) for a
tree 𝑡 ∈ T is obtained by calculating 𝜙[K]𝑡.

The optimization problem we want to solve is the following. Given a
ecision tree 𝑡𝐵 inferred at the initial location of 𝑠, find a configuration

𝑘 ∈ K such that the corresponding ranking function is minimal. That
is,

𝑚𝑖𝑛𝑘∈K{𝑡′ ∣ (𝑘, 𝑡′) ∈ 𝜙[K]𝑡𝐵}

The configuration 𝑘 ∈ K (i.e., a mapping from a set of features 
o integers Z) with the minimal ranking function found by Z3 solver is
eported as a ‘‘correct and optimal’’ solution to the given quantitative
ketching problem.

As standard in abstract analyses, both
[[

𝑠
]]𝐹 and

[[

𝑠
]]𝐵 are sound

over-approximate) with respect to concrete semantics. Hence, the
eported solution by SYNTHESIZE(𝑠̂) also over-approximates the exact
olution. However, we can prove its correctness modulo the chosen
bstractions in abstract lifted analyses

[[

𝑠
]]𝐹 and

[[

𝑠
]]𝐵 . If we choose

ore expressive abstractions, we obtain more precise solutions but
ore slower analyses times.

heorem 7. SYNTHESIZE (𝑠̂) is correct (modulo chosen abstractions)
nd terminates.

roof. Procedure SYNTHESIZE(𝑠̂) terminates since all steps in it are
erminating. The correctness of SYNTHESIZE(𝑠̂) follows from correct-
ess of Rewrite (see Theorem 3) and correctness of

[[

𝑠
]]𝐹 and

[[

𝑠
]]𝐵

(see Theorem 5). □

Example 8. Reconsider the Loop1a sketch given in Section 2.
The corresponding program family Rewrite(Loop1a) is given
in Fig. 7. The numerical invariant 𝑡𝐹 inferred in the final location
is:

[[

(𝙰 ≤ 𝙱) ∶ 𝚢 = 𝟶 ∧ 𝙰 = 𝚡, 𝙱 = 𝚡 ∧ 𝙰 = 𝙱 + 𝚢
]]

. The sub-family
of ‘‘correct’’ variants found by FindCorrect is (𝙰 − 𝙱 ≥ 3). The
ranking function 𝑡𝐵 inferred in the initial location is: 𝟹𝙰 − 𝟹𝙱 + 𝟺.
Solution of the generated linear optimization problem
𝑚𝑖𝑛𝙰,𝙱{𝟹𝙰 − 𝟹𝙱 + 𝟺 ∣ 𝙰 − 𝙱 ≥ 3 ∧ 𝟹𝙰 − 𝟹𝙱 + 𝟺 > 0} by FindOptimal is: A=3,
B=0 with the minimal objective 13.

7. Evaluation

We evaluate our approach for program sketching by comparing
it with the Brute-Force enumeration approach that analyzes all
variants, one by one, and the most popular sketching tool Sketch that
represents the state-of-the-art in the field. The evaluation aims to show
that we can use our approach to efficiently resolve various program
sketches with numerical data types. To do that, we ask the following
research questions:

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206

R

R

R

i
a
a
s
c
t
t
W
L
N

P
e
o
f
r
S
r
t

l
r
F
f

o
s
2
f
L
S
o
l
t
(

Fig. 14. LoopCondA.

Q1: How efficient is our approach compared to the Sketch tool and
the Brute-Force approach?

Q2: Can our approach turn some previously infeasible sketching tasks
into feasible ones?

Q3: Can our approach be used to synthesize sketches with respect to
various tailor-made quantitative objectives?

Implementation. We have implemented our synthesis algorithm for
quantitative program sketching within the FamilySketcher tool [4]. It
uses the lifted decision tree domain T(CD,A), where A is instantiated
either to a numerical abstract domain D or to the termination decision
tree domain T𝑇 . We use the polyhedra domain for D. The abstract
operations and transfer functions for the numerical polyhedra domain
are provided by the APRON library [24], while for the termination
decision tree domain are provided by the Function tool [22]. The
tool is written in OCaml and consists of around 7 K LOC. The current
front-end of the tool provides a limited support for arrays, pointers,
struct and union types. The only basic data type is mathematical
integers, which is sufficient for our evaluation.

Experiment setup and benchmarks. Experiments are executed on a 64-bit
Intel®Core™ i7-1165G7 CPU@2.80 GHz, VM LUbuntu 20.10, with 8 GB
memory, and we use a timeout value of 300 s. We report times needed
for the actual static analysis task to be performed. The implementation,
benchmarks, and all obtained results are available from: https://github.
com/aleksdimovski/Family_sketcher2. We compare our approach with
the Sketch version 1.7.6 that uses SAT-based counterexample-guided
nductive synthesis [1,2], and with the Brute-Force enumeration
pproach that analyzes all variants, one by one, using a single-program
bstract analysis. The evaluation is performed on several C numerical
ketches collected from the Sketch project [1,2], SV-COMP (https://sv-
omp.sosy-lab.org/), and from the Syntax-Guided Synthesis Competi-
ion (https://sygus.org/) [3]. The chosen benchmarks provide a method
o compare the strengths and weaknesses of the given sketching tools.

e use the following benchmarks: Loop1a and Loop1b (Section 2),
oop2a and Loop2b (Section 2), LoopCondA and LoopCondB (Fig. 14),
estedLoop (Fig. 15), tap2008a (Fig. 16), and vmcai2004 (Fig. 17).

erformance results. We now present the performance results of our
mpirical study and discuss the implications. Table 1 shows the results
f synthesizing our benchmarks. All times are reported as average over
ive independent executions. The standard deviation of reported results
anges from 0.016 to 0.026 for FamilySketcher, from 0.104 to 0.408 for
ketch, and from 0.082 to 0.105 for Brute-Force. Note that Sketch
eports only one ‘‘correct’’ solution for each sketch, which does not have
o be ‘‘optimal’’ with respect to the given quantitative objective.

The Loop1a and Loop1b sketches are analyzed using the extended
ifted analysis, since both holes are handled symbolically by (SR)
ule. Thus, our approach does not depend on sizes of hole domains.
amilySketcher terminates in (around) 0.016 s for Loop1a and in 0.026 s
or Loop1b. In contrast, Brute-Force and Sketch do depend on the
11
Fig. 15. NestedLoop.

Fig. 16. tap2008a.

Fig. 17. vmcai2004.

sizes of holes. Sketch terminates in 37.74 s for 16-bits sizes of holes
for Loop1a and in 2.44 s for 16-bits sizes of holes for Loop1b. It times
ut for bigger sizes of Loop1a. Sketch often reports ‘‘correct & optimal’’
olutions for both sketches. Brute-Force terminates in 21.33 s and
1.38 s for 6-bit sizes of holes for Loop1a and Loop1b, but times out
or bigger sizes of holes. Similarly, our tool can handle symbolically
oop2a and Loop2b in 0.060 s and 0.047 s, respectively. However,
ketch cannot resolve them and fails to report a solution, since it uses
nly 8 unrollments of the loop by default. Note that the number of
oop unrollments is a parameter in SKETCH. If the loop is unrolled 11
imes, Sketch terminates but often reports the empty trivial solution
addresses RQ1 and RQ2).

The LoopCondA sketch contains one hole ?? (represented by feature
A) that can be handled symbolically by (SR) rule, so FamilySketcher has
similar running times for all domain sizes. The invariant inferred before
the assertion is given in Fig. 18(a). The correct sub-family is 𝙰 ≥ 2,
and the obtained ranking function for this sub-family is 𝟺𝚡 + 𝟾. Hence,
the reported ‘‘correct & optimal’’ solution is 𝙰 = 2. In contrast, Sketch

https://github.com/aleksdimovski/Family_sketcher2
https://github.com/aleksdimovski/Family_sketcher2
https://github.com/aleksdimovski/Family_sketcher2
https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://sygus.org/

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206

d

T
𝙰

‘
c

h
(
T
o
r
[
(
(
g
a
o
i
a
n
h

C
w
T
a
a
o
o
t
o

Fig. 18. Inferred decision trees at the locations before final assertions.
T
t
i
r
w
(

resolves this example only if the loop is unrolled as many times as is
the size of the hole and inputs (e.g., 32 times for 5-bits). Hence, Sketch’s
performance declines with the growth of size of the hole, and times out
for 16-bits (addresses RQ1). Consider a variant of LoopCondA sketch,
enoted LoopCondB, where one additional hole exists in while-test

(𝚡 ≥ ??2). The correct sub-family is (𝙰 ≥ 2) ∧ (𝙱 ≥ 𝚡 + 1) (B corresponds
to ??2). The ranking function for this sub-family is 4, so the ‘‘correct
& optimal’’ solution is (𝙰 = 2) ∧ (𝙱 = 𝚡 + 1). Again, our approach
outperforms Sketch and Brute-Force on this example (addresses
RQ1).

The NestedLoop sketch contains two holes that can be handled sym-
bolically by (SR) rule. FamilySketcher terminates in (around) 0.126 s for
all sizes of holes. The ‘‘correct’’ solution is (𝙰 − 𝙱 ≥ 0) ∧ (𝙼𝚒𝚗 ≤ 𝙱 ≤ 1),
while the ‘‘correct & optimal’’ solution is (A=B=0) and ranking function
is 13. On the other hand, Brute-Force takes 65.03 s for 5-bit size
of holes and times out for larger sizes, while Sketch cannot resolve this
benchmark (addresses RQ1 and RQ2).

The sketch tap2008a contains one hole ?? (corresponding feature
A) that can be handled symbolically by (SR) rule. Hence, our decision
tree-based synthesis approach has similar running times for all domain
sizes, reporting as ‘‘correct’’ solutions the constraints: (𝙼𝚒𝚗 ≤ 𝙰 ≤ 𝙼𝚊𝚡).

he backward lifted analysis finds the ranking function 3 when (𝙼𝚒𝚗 ≤
≤ 10), 4𝙰 − 37 when (11 ≤ 𝙰 ≤ 24), and 47 when (31 ≤ 𝙰). Hence, the

‘correct & optimal’’ solution is 𝙰 = 𝙼𝚒𝚗. In this case, Sketch returns a
orrect but not optimal solution (addresses RQ1).

The vmcai2004 sketch contains two holes. The first one ??1 is
andled symbolically by (SR) rule while the second one ??2 explicitly by
ER) rule. The performance of FamilySketcher depends on the size of ??2.
he decision tree inferred in the location before the assertion contains
ne leaf node for each possible value of feature B (features A and B
epresent ??1 and ??2). For example, the decision tree when 𝑑𝑜𝑚(𝙱) =
7, 10] is shown in Fig. 18(b). The sub-family of ‘‘correct’’ solutions is:
1 ≤ 𝙰 ≤ 𝙼𝚊𝚡) ∧ (𝙱 ≥ 10), while the ‘‘correct & optimal’’ solution is
𝙰 =1) ∧ (𝙱 =10) with ranking function 6. We observe the exponential
rowth of running time in this case. Sketch being based on constructing
nd performing SAT queries is much more successful. It outperforms
ur approach, but reports only one ‘‘correct’’ solution. However, Fam-
lySketcher still outperforms the Brute-Force (addresses RQ1). Our
pproach can achieve better performances if some more expressive
umerical abstract domains are employed in the future so that ??2 is
andled symbolically by (SR) rule.

ost-sensitive analysis. Reconsider the LoopCondA sketch in Fig. 14, in
hich the assertion is (𝚢 ≥ 0) and the else branch of if is 𝚢 ∶= 0.
hus, there is no reading of variables in it. Now, the correct sub-families
re 𝙰 ≥ 2 and 𝙰 =1. We can resolve it using different cost-sensitive
nalyses. For example, when the cost of assignment is 2 and the cost
f reading variables is 0 we obtain the ranking function 6𝑥 + 10 and
ptimal solution 𝙰 =2, whereas when the cost of assignment is 1 and
he cost of reading variables is 2 the ranking function is 4𝑥 + 10 and
ptimal solution 𝙰 =1 (addresses RQ3).
12
We have performed a cost-sensitive analysis of all benchmarks in
able 1 using the cost model with 𝚌𝚘𝚜𝚝𝚊𝚜𝚐 = 1 and 𝚌𝚘𝚜𝚝𝚛𝚎𝚊𝚍 = 2. Since
here are two assignments and three (resp., four) reads from variables
n the body of while in Loop1a (resp., Loop2a), the obtained lifted
anking function is 𝟾𝙰 − 𝟾𝙱 + 𝟼 (resp., 5 when (𝚡 > 10); and −𝟽𝚡 + 𝟾𝟸

hen (𝚡 ≤ 10)). Similarly, we infer the lifted ranking function: 5 when
𝙰 ≤ 10); 𝟽𝙰 − 𝟼𝟻 when (11 ≤ 𝙰 ≤ 24); and 83 when (𝙰 > 31) for
tap2008a. Finally, the ‘‘correct & optimal’’ solution to vmcai2004will
have ranking function 12. For all benchmarks, we observe small slow-
downs in running times of this cost-sensitive analysis compared to the
default cost model (see Table 1) that range from < 1% for FamilySketcher
to < 2% for Brute-Force. Recall that Sketch cannot find ‘‘optimal’’
solutions with respect to cost models.

Discussion. In summary, we can see that FamilySketcher often outper-
forms Sketch, especially in case of numerical sketches in which holes
occur in expressions that can be exactly represented in the underlying
numerical domain. But in case of sketches with holes that need to be
handled by (ER) rule the performances of our tool decline, which is
the consequence of the need to explicitly consider all possible values
of those holes. However, even in this case FamilySketcher scales better
than the Brute-Force approach. This is due to the fact that Brute-
Force compiles and executes the fixed-point iterative algorithm once
for each variant, while our approach does it once per whole family plus
there are still possibilities for sharing. Moreover, FamilySketcher reports
the ‘‘correct & optimal’’ solution, whereas Sketch reports the first found
‘‘correct’’ solution.

The performances of FamilySketcher can be improved in several
ways. First, this is only a prototype implementation of our approach.
Many abstract operations and transfer functions of the decision tree
lifted domain can be further optimized. Second, instead of APRON we
can use other efficient libraries that support numerical domains, such
as ELINA [32]. Finally, by using libraries that support more expressive
abstract domains, such as non-linear constraints (e.g., polynomials,
exponentials [33]), our tool will benefit and more sketches will be
handled by (SR) rule.

Threats to validity. The current tool has only limited support for arrays,
pointers, struct and union types. However, the above features are
largely orthogonal to the solution proposed here. In particular, these
features complicate the semantics of single-programs and implementa-
tion of domains for leaf nodes, but have no impact on the semantics
of variability-specific constructs and the decision tree lifted domain we
introduce for resolving sketches. We perform lifted analysis of relatively
small benchmarks. However, the focus of our approach is to combat
the realization search space blow-up of sketches, not their LOC size.
So, we expect to obtain similar or better results for larger benchmarks.
Originally, program sketching [1,2] has been targeting partial programs
that express high-level structure of an implementation but leave holes
in some low-level details. Thus, the benchmarks have usually been
small and accurate, but some algorithmic details are required. The
benchmarks we use here have similar characteristics as well, although

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206

b
q
s
t
i
o
i
a
p
t
g
A
b
t
u
a

a
t
f

Table 1
Performance results of FamilySketchervs. Sketchvs. Brute-Force.

Bench. 5 bits 6 bits 16 bits

Family Sketch Brute Family Sketch Brute Family Sketch Brute
Sketcher Force Sketcher Force Sketcher Force

Loop1a 0.016 0.192 4.66 0.017 0.197 21.33 0.017 37.74 timeout
Loop1b 0.026 0.203 4.77 0.026 0.216 21.38 0.027 2.44 timeout
Loop2a 0.060 0.200 8.66 0.060 0.202 42.81 0.061 0.348 timeout
Loop2b 0.047 0.203 8.45 0.047 0.205 36.04 0.049 0.521 timeout
LoopCondA 0.042 0.207 1.19 0.042 0.209 2.56 0.043 timeout timeout
LoopCondB 0.062 0.205 41.19 0.062 0.223 timeout 0.063 timeout timeout
NestedLoop 0.126 timeout 65.03 0.126 timeout timeout 0.128 timeout timeout
tap2008a 0.027 0.201 0.671 0.027 0.206 1.34 0.027 3.07 timeout
vmcai2004 4.69 0.192 5.12 15.52 0.229 19.12 timeout 0.292 timeout
m
a
b
e
a

p
s
p
i
a
o
h
a
a
p
r
i
a
p
a
u
d
c
i
I
p
s
d
m
p

t
d
s
e
c
a
g
t
f
b
o
b
o
d
i
o
o
i
o

we consider only benchmarks with numerical data types since they are
suitable for our approach based on numerical domains. However, in the
future we can investigate applications to larger benchmarks from other
domains.

8. Related work

The proposed program sketcher uses numerical abstract domains
as parameters, so it can be applied for synthesizing numerical pro-
grams with numerical data types. The existing widely-known sketching
tool Sketch [1,2], which uses SAT-based counterexample-guided induc-
tive synthesis, is more general and especially suited for synthesizing
bit-manipulating programs. However, Sketch reasons about loops by
unrolling them, so is very sensitive to the degree of unrolling. Our
approach being based on abstract interpretation does not have this
constraint, since we use the widening extrapolation operator to handle
unbounded loops and an infinite number of execution paths in a sound
way. This is stronger than fixing a priori a bound on the number
of iterations of loops as in the Sketch tool. Moreover, Sketch works
y iteratively generating a finite set of inputs and performing SAT
ueries to identify values for the holes so that the resulting program
atisfies all assertions for the given inputs. Further SAT queries are
hen used to check if the resulting program is correct on all possible
nputs. Hence, Sketch may need several iterations to converge reporting
nly one solution. On the other hand, our approach needs only one
teration to perform lifted analysis reporting several, and very often
ll, solutions. This is the key for solving the quantitative sketching
roblem. That is, the set of all ‘‘correct’’ sketch realizations found by
he forward lifted analysis can be further refined with respect to a
iven quantitative objective by the subsequent backward lifted analysis.
nother work for solving a quantitative sketching problem is proposed
y Chaudhuri et al. [6]. The quantitative optimum they consider is that
he expected output value on probabilistic inputs is minimal [34]. They
se smoothed proof search and probabilistic analysis to implement this
pproach in the Fermat tool built on top of Sketch. In contrast, in

this work the quantitative optimum we consider is that the number of
execution steps to termination is minimal. Adaptive concretization for
Sketch [35] combines the benefits of symbolic search, which encodes
the search space as a set of SAT queries, and explicit search, which uses
brute force enumeration to synthesize highly-influential unknowns.
This is similar to our synthesis algorithm, where the holes occurring
in linear expressions are handled symbolically using (SR) rules, while
the holes in non-linear expressions are handled explicitly using (ER)
rules.

Recently, there have been proposed several works that solve the
sketching synthesis problem using product line analysis and verifi-
cation algorithms. Ceska et al. [36] use a counterexample guided
abstraction refinement technique for analyzing product lines to resolve
probabilistic PRISM model sketches. It starts from considering an
bstraction of all possible sketch realizations and iteratively refines
he abstraction by splitting the entire family of realizations into sub-
amilies. Similar abstraction-refinement algorithm has been used to
13
resolve reactive Promela model sketches using single-system SPIN
odel checker [37]. The work [4] uses a (forward) numerical lifted

nalysis based on abstract interpretation to resolve numerical sketches
y finding ‘‘correct’’ solutions. We extend here this approach by consid-
ring the more general quantitative sketching problem, where we find
solution that is also optimal to the given quantitative objective.

Several lifted analysis based on abstract interpretation have been
roposed recently [14,17,18] for analyzing program families with #if-
. Midtgaard et al. [14] have proposed the lifted tuple-based analysis
hrased in the abstract interpretation framework, while the work [17]
mproves the tuple representation by using lifted binary decision di-
gram (BDD) domains. They are applied to program families with
nly Boolean features. Subsequently, the lifted decision tree domain
as been proposed to handle program families with both Boolean
nd numerical features [18] and dynamic program families [19]. The
bove lifted analyses are forward and infer numerical invariants in all
rogram locations. Lifted backward termination analysis for inferring
anking functions of numerical program families has been introduced
n [31]. Several other efficient implementations of the lifted dataflow
nalysis from the monotone framework (a-la Kildall) [38] have also been
roposed in the SPL community. Brabrand et al. [39] have introduced
tuple-based lifted dataflow analysis, whereas an approach based on

sing variational data structures (e.g., variational CFGs, variational
ata-flow facts) [16] have been used for achieving efficient dataflow
omputation of some real-world systems. Finally, SPLLIFT [15] is an
mplementation of the lifted dataflow analysis formulated within the
FDS framework, which is a subset of dataflow analyses with certain
roperties, such as distributivity of transfer functions. Many dataflow
tatic analyses, including numerical analyses considered here, are not
istributive and cannot be encoded in IFDS. Specifically designed lifted
odel checking algorithms for verifying game semantics models of
rogram families has been defined in [40–42].
Decision-tree abstract domains have been used in abstract interpreta-

ion community recently [29,43,44]. Segmented decision tree abstract
omains have also been defined to enable path dependent static analy-
is [43,44]. Their elements contain decision nodes that are determined
ither by values of program variables [43] or by the branch (if)
onditions [44], whereas the leaf nodes are numerical properties. Urban
nd Mine [29] use decision tree-based abstract domains to prove pro-
ram termination. Decision nodes are labeled with linear constraints
hat split the memory space and leaf nodes contain affine ranking
unctions for proving program termination. The APRON library has
een developed by Jeannet and Mine [24] to support the application
f numerical abstract domains in static analysis. The BDDAPRON li-
rary [45] is an extension of APRON which adds the power domain
f Boolean formulae and any APRON domain. The lifted decision tree
omains used here can be seen as generalizations of BDDAPRON, where
n decision nodes can be found arbitrary linear constraints instead
f only Boolean variables. The ELINA library [32] represents an an-
ther efficient implementation of numerical abstract domains that uses
mproved algorithms, online decomposition, and other performance
ptimizations.

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206
9. Conclusion

In this work, we proposed a new approach for synthesis of pro-
gram sketches, such that the resulting program satisfies the combined
boolean and quantitative specifications. We have shown that both
reasoning tasks can be accomplished using a combination of forward
and backward lifted analysis. In particular, we use the forward numer-
ical and the backward termination lifted analyses parameterized by
the numerical abstract domains from the APRON library. The quan-
titative objective we consider here is the number of execution steps
to termination, which we want to minimize. Finally, we call the Z3
SMT solver to find a solution to the obtained optimization problem.
We experimentally demonstrate the effectiveness of our approach for
generating ‘‘correct & optimal’’ solutions of a variety of C benchmarks.

CRediT authorship contribution statement

Aleksandar S. Dimovski: Conceptualization, Methodology, Soft-
ware, Writing – original draft, Writing – review & editing, Investigation,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

I have shared the link to my code in the manuscript.

References

[1] A. Solar-Lezama, Program sketching, STTT 15 (5–6) (2013) 475–495, http:
//dx.doi.org/10.1007/s10009-012-0249-7.

[2] A. Solar-Lezama, R.M. Rabbah, R. Bodík, K. Ebcioglu, Programming by sketching
for bit-streaming programs, in: Proceedings of the ACM SIGPLAN 2005 Confer-
ence on Programming Language Design and Implementation, ACM, 2005, pp.
281–294, http://dx.doi.org/10.1145/1065010.1065045.

[3] R. Alur, R. Bodík, G. Juniwal, M.M.K. Martin, M. Raghothaman, S.A. Seshia, R.
Singh, A. Solar-Lezama, E. Torlak, A. Udupa, Syntax-guided synthesis, in: Formal
Methods in Computer-Aided Design, FMCAD 2013, IEEE, 2013, pp. 1–8, URL
http://ieeexplore.ieee.org/document/6679385/.

[4] A.S. Dimovski, S. Apel, A. Legay, Program sketching using lifted analysis for
numerical program families, in: NASA Formal Methods - 13th International
Symposium, NFM 2021, Proceedings, in: LNCS, vol.12673, Springer, 2021, pp.
95–112, http://dx.doi.org/10.1007/978-3-030-76384-8_7.

[5] R. Bloem, K. Chatterjee, T.A. Henzinger, B. Jobstmann, Better quality in
synthesis through quantitative objectives, in: Computer Aided Verification, 21st
International Conference, CAV 2009. Proceedings, in: LNCS, vol.5643, Springer,
2009, pp. 140–156, http://dx.doi.org/10.1007/978-3-642-02658-4_14.

[6] S. Chaudhuri, M. Clochard, A. Solar-Lezama, Bridging boolean and quantitative
synthesis using smoothed proof search, in: The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, ACM,
2014, pp. 207–220, http://dx.doi.org/10.1145/2535838.2535859.

[7] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, 2001.

[8] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints,
in: Conf. Record of the Fourth ACM Symposium on POPL, ACM, 1977, pp.
238–252, http://dx.doi.org/10.1145/512950.512973, URL http://doi.acm.org/
10.1145/512950.512973.

[9] A. Miné, Tutorial on static inference of numeric invariants by abstract interpreta-
tion, Found. Trends Program. Lang. 4 (3–4) (2017) 120–372, http://dx.doi.org/
10.1561/2500000034.

[10] S. Apel, D.S. Batory, C. Kästner, G. Saake, Feature-Oriented Software Product
Lines - Concepts and Implementation, Springer, 2013.

[11] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, 2001.

[12] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner, O. Leßenich, M. Becker, S. Apel,
Preprocessor-based variability in open-source and industrial software systems: An
empirical study, Empir. Softw. Eng. 21 (2) (2016) 449–482, http://dx.doi.org/
10.1007/s10664-015-9360-1.
14
[13] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, D. Beyer, Strategies for product-
line verification: Case studies and experiments, in: 35th Inter. Conference on
Software Engineering, ICSE ’13, 2013, pp. 482–491.

[14] J. Midtgaard, A.S. Dimovski, C. Brabrand, A. Wasowski, Systematic derivation of
correct variability-aware program analyses, Sci. Comput. Program. 105 (2015)
145–170, http://dx.doi.org/10.1016/j.scico.2015.04.005.

[15] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, M. Mezini, SPL𝑙𝑖𝑓 𝑡:
Statically analyzing software product lines in minutes instead of years, in: ACM
SIGPLAN Conference on PLDI ’13, 2013, pp. 355–364.

[16] A. von Rhein, J. Liebig, A. Janker, C. Kästner, S. Apel, Variability-aware static
analysis at scale: An empirical study, ACM Trans. Softw. Eng. Methodol. 27 (4)
(2018) 18:1–18:33, http://dx.doi.org/10.1145/3280986.

[17] A.S. Dimovski, Lifted static analysis using a binary decision diagram abstract
domain, in: Proceedings of the 18th ACM SIGPLAN International Conference
on GPCE 2019, ACM, 2019, pp. 102–114, http://dx.doi.org/10.1145/3357765.
3359518.

[18] A.S. Dimovski, S. Apel, A. Legay, A decision tree lifted domain for analyzing
program families with numerical features, in: Fundamental Approaches to
Software Engineering - 24th International Conference, FASE 2021, Proceedings,
in: LNCS, vol.12649, Springer, 2021, pp. 67–86.

[19] A.S. Dimovski, S. Apel, Lifted static analysis of dynamic program families
by abstract interpretation, in: 35th European Conference on Object-Oriented
Programming, ECOOP 2021, in: LIPIcs, vol.194, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, pp. 14:1–14:28, http://dx.doi.org/10.4230/LIPIcs.
ECOOP.2021.14.

[20] A.S. Dimovski, A binary decision diagram lifted domain for analyzing program
families, J. Comput. Lang. 63 (2021) 101032, http://dx.doi.org/10.1016/j.cola.
2021.101032.

[21] A.S. Dimovski, S. Apel, A. Legay, Several lifted abstract domains for static
analysis of numerical program families, Sci. Comput. Program. 213 (2022)
102725, http://dx.doi.org/10.1016/j.scico.2021.102725.

[22] C. Urban, FuncTion: An abstract domain functor for termination - (competition
contribution), in: Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015. Proceedings, in: LNCS,
vol.9035, Springer, 2015, pp. 464–466, http://dx.doi.org/10.1007/978-3-662-
46681-0_46.

[23] C. Urban, Static Analysis by Abstract Interpretation of Functional Tempo-
ral Properties of Programs. (Analyse Statique par Interprétation Abstraite de
Propriétés Temporelles Fonctionnelles des Programmes) (Ph.D. thesis), École
Normale Supérieure, Paris, France, 2015, URL https://tel.archives-ouvertes.fr/
tel-01176641.

[24] B. Jeannet, A. Miné, Apron: A library of numerical abstract domains for static
analysis, in: Computer Aided Verification, 21st Inter. Conference, CAV 2009.
Proceedings, in: LNCS, vol.5643, Springer, 2009, pp. 661–667, http://dx.doi.org/
10.1007/978-3-642-02658-4_52.

[25] L.M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: C.R. Ramakrishnan, J.
Rehof (Eds.), Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008. Proceedings, in: LNCS, vol.4963,
Springer, 2008, pp. 337–340, http://dx.doi.org/10.1007/978-3-540-78800-3_24.

[26] A.S. Dimovski, Quantitative program sketching using lifted static analysis, in:
Fundamental Approaches to Software Engineering - 25th International Confer-
ence, FASE 2022, Proceedings, in: LNCS, vol.13241, Springer, 2022, pp. 102–122,
http://dx.doi.org/10.1007/978-3-030-99429-7_6.

[27] A.S. Dimovski, C. Brabrand, A. Wasowski, Variability abstractions for lifted
analysis, Sci. Comput. Program. 159 (2018) 1–27.

[28] F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis,
Springer-Verlag, Secaucus, USA, 1999.

[29] C. Urban, A. Miné, A decision tree abstract domain for proving conditional
termination, in: Static Analysis - 21st International Symposium, SAS 2014.
Proceedings, in: LNCS, vol.8723, Springer, 2014, pp. 302–318, http://dx.doi.org/
10.1007/978-3-319-10936-7_19.

[30] P. Cousot, N. Halbwachs, Automatic discovery of linear restraints among vari-
ables of a program, in: Conference Record of the Fifth Annual ACM Symposium
on POPL’78, ACM Press, 1978, pp. 84–96, http://dx.doi.org/10.1145/512760.
512770.

[31] A.S. Dimovski, Lifted termination analysis by abstract interpretation and its
applications, in: GPCE ’21: Concepts and Experiences, Chicago, IL, USA, October
17 - 18, 2021, ACM, 2021, pp. 96–109, http://dx.doi.org/10.1145/3486609.
3487202.

[32] G. Singh, M. Püschel, M.T. Vechev, Making numerical program analysis fast, in:
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2015, ACM, 2015, pp. 303–313, http://dx.doi.org/
10.1145/2737924.2738000.

[33] A.R. Bradley, Z. Manna, H.B. Sipma, The polyranking principle, in: Automata,
Languages and Programming, 32nd International Colloquium, ICALP 2005,
Lisbon, Portugal, July 11-15, 2005, Proceedings, in: LNCS, vol.3580, Springer,
2005, pp. 1349–1361, http://dx.doi.org/10.1007/11523468_109.

[34] K. Chatterjee, T.A. Henzinger, B. Jobstmann, R. Singh, Measuring and synthesiz-
ing systems in probabilistic environments, in: Computer Aided Verification, 22nd
International Conference, CAV 2010. Proceedings, in: LNCS, vol.6174, Springer,
2010, pp. 380–395, http://dx.doi.org/10.1007/978-3-642-14295-6_34.

http://dx.doi.org/10.1007/s10009-012-0249-7
http://dx.doi.org/10.1007/s10009-012-0249-7
http://dx.doi.org/10.1007/s10009-012-0249-7
http://dx.doi.org/10.1145/1065010.1065045
http://ieeexplore.ieee.org/document/6679385/
http://dx.doi.org/10.1007/978-3-030-76384-8_7
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1145/2535838.2535859
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb7
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb7
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb7
http://dx.doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1561/2500000034
http://dx.doi.org/10.1561/2500000034
http://dx.doi.org/10.1561/2500000034
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb10
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb10
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb10
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb11
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb11
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb11
http://dx.doi.org/10.1007/s10664-015-9360-1
http://dx.doi.org/10.1007/s10664-015-9360-1
http://dx.doi.org/10.1007/s10664-015-9360-1
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb13
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb13
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb13
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb13
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb13
http://dx.doi.org/10.1016/j.scico.2015.04.005
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb15
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb15
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb15
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb15
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb15
http://dx.doi.org/10.1145/3280986
http://dx.doi.org/10.1145/3357765.3359518
http://dx.doi.org/10.1145/3357765.3359518
http://dx.doi.org/10.1145/3357765.3359518
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb18
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb18
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb18
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb18
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb18
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb18
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb18
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.14
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.14
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2021.14
http://dx.doi.org/10.1016/j.cola.2021.101032
http://dx.doi.org/10.1016/j.cola.2021.101032
http://dx.doi.org/10.1016/j.cola.2021.101032
http://dx.doi.org/10.1016/j.scico.2021.102725
http://dx.doi.org/10.1007/978-3-662-46681-0_46
http://dx.doi.org/10.1007/978-3-662-46681-0_46
http://dx.doi.org/10.1007/978-3-662-46681-0_46
https://tel.archives-ouvertes.fr/tel-01176641
https://tel.archives-ouvertes.fr/tel-01176641
https://tel.archives-ouvertes.fr/tel-01176641
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-030-99429-7_6
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb27
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb27
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb27
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb28
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb28
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb28
http://dx.doi.org/10.1007/978-3-319-10936-7_19
http://dx.doi.org/10.1007/978-3-319-10936-7_19
http://dx.doi.org/10.1007/978-3-319-10936-7_19
http://dx.doi.org/10.1145/512760.512770
http://dx.doi.org/10.1145/512760.512770
http://dx.doi.org/10.1145/512760.512770
http://dx.doi.org/10.1145/3486609.3487202
http://dx.doi.org/10.1145/3486609.3487202
http://dx.doi.org/10.1145/3486609.3487202
http://dx.doi.org/10.1145/2737924.2738000
http://dx.doi.org/10.1145/2737924.2738000
http://dx.doi.org/10.1145/2737924.2738000
http://dx.doi.org/10.1007/11523468_109
http://dx.doi.org/10.1007/978-3-642-14295-6_34

A.S. Dimovski Journal of Computer Languages 75 (2023) 101206
[35] J. Jeon, X. Qiu, A. Solar-Lezama, J.S. Foster, Adaptive concretization for
parallel program synthesis, in: Computer Aided Verification - 27th International
Conference, CAV 2015, Proceedings, Part II, in: LNCS, vol.9207, Springer, 2015,
pp. 377–394, http://dx.doi.org/10.1007/978-3-319-21668-3_22.

[36] M. Ceska, C. Dehnert, N. Jansen, S. Junges, J. Katoen, Model repair revamped:
On the automated synthesis of Markov chains, in: Essays Dedicated to Scott a.
Smolka on the Occasion of His 65th Birthday, in: LNCS, vol.11500, Springer,
2019, pp. 107–125, http://dx.doi.org/10.1007/978-3-030-31514-6_7.

[37] A.S. Dimovski, Model sketching by abstraction refinement for lifted model
checking, in: SAC ’22: The 37th ACM/SIGAPP Symposium on Applied Computing,
Virtual Event, 2022, ACM, 2022, pp. 1845–1848, http://dx.doi.org/10.1145/
3477314.3507170.

[38] G.A. Kildall, A unified approach to global program optimization, in: Conf. Record
of the ACM Symp. on Principles of Programming Languages, POPL’73, 1973, pp.
194–206, http://dx.doi.org/10.1145/512927.512945.

[39] C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, P. Borba, Intraprocedural
dataflow analysis for software product lines, T. Aspect-Orient. Softw. Dev. 10
(2013) 73–108.

[40] A.S. Dimovski, Program verification using symbolic game semantics, Theoret.
Comput. Sci. 560 (2014) 364–379, http://dx.doi.org/10.1016/j.tcs.2014.01.016.
15
[41] A.S. Dimovski, Probabilistic analysis based on symbolic game semantics and
model counting, in: Proceedings Eighth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2017, in: EPTCS, vol.256,
2017, pp. 1–15, http://dx.doi.org/10.4204/EPTCS.256.1.

[42] A.S. Dimovski, Verifying annotated program families using symbolic game
semantics, Theoret. Comput. Sci. 706 (2018) 35–53, http://dx.doi.org/10.1016/
j.tcs.2017.09.029.

[43] P. Cousot, R. Cousot, L. Mauborgne, A scalable segmented decision tree abstract
domain, in: Time for Verification, Essays in Memory of Amir Pnueli, in:
LNCS, vol.6200, Springer, 2010, pp. 72–95, http://dx.doi.org/10.1007/978-3-
642-13754-9_5.

[44] J. Chen, P. Cousot, A binary decision tree abstract domain functor, in: Static
Analysis - 22nd International Symposium, SAS 2015, Proceedings, in: LNCS,
vol.9291, Springer, 2015, pp. 36–53, http://dx.doi.org/10.1007/978-3-662-
48288-9_3.

[45] B. Jeannet, Relational interprocedural verification of concurrent programs,
in: Seventh IEEE Inter. Conf. on Software Engineering and Formal Methods,
SEFM’09, IEEE Computer Society, 2009, pp. 83–92, http://dx.doi.org/10.1109/
SEFM.2009.29.

http://dx.doi.org/10.1007/978-3-319-21668-3_22
http://dx.doi.org/10.1007/978-3-030-31514-6_7
http://dx.doi.org/10.1145/3477314.3507170
http://dx.doi.org/10.1145/3477314.3507170
http://dx.doi.org/10.1145/3477314.3507170
http://dx.doi.org/10.1145/512927.512945
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb39
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb39
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb39
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb39
http://refhub.elsevier.com/S2590-1184(23)00016-3/sb39
http://dx.doi.org/10.1016/j.tcs.2014.01.016
http://dx.doi.org/10.4204/EPTCS.256.1
http://dx.doi.org/10.1016/j.tcs.2017.09.029
http://dx.doi.org/10.1016/j.tcs.2017.09.029
http://dx.doi.org/10.1016/j.tcs.2017.09.029
http://dx.doi.org/10.1007/978-3-642-13754-9_5
http://dx.doi.org/10.1007/978-3-642-13754-9_5
http://dx.doi.org/10.1007/978-3-642-13754-9_5
http://dx.doi.org/10.1007/978-3-662-48288-9_3
http://dx.doi.org/10.1007/978-3-662-48288-9_3
http://dx.doi.org/10.1007/978-3-662-48288-9_3
http://dx.doi.org/10.1109/SEFM.2009.29
http://dx.doi.org/10.1109/SEFM.2009.29
http://dx.doi.org/10.1109/SEFM.2009.29

	Quantitative program sketching using decision tree-based lifted analysis
	Introduction
	Motivating Examples
	Transforming Sketches to Program Families
	IMP
	IMP??
	IMP
	Transformation

	Decision Tree-based Lifted Analyses
	Abstract domain for decision nodes
	Abstract domain for leaf nodes
	Numerical domains
	Termination domain

	Decision tree lifted domains
	Decision tree-based lifted analysis

	Quantitative Cost-sensitive Analyses
	Synthesis Algorithm
	Evaluation
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

