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Abstract7

Program families (software product lines) are increasingly adopted by industry for building families8

of related software systems. A program family offers a set of features (configured options) to control9

the presence and absence of software functionality. Features in program families are often assigned at10

compile-time, so their values can only be read at run-time. However, today many program families11

and application domains demand run-time adaptation, reconfiguration, and post-deployment tuning.12

Dynamic program families (dynamic software product lines) have emerged as an attempt to handle13

variability at run-time. Features in dynamic program families can be controlled by ordinary program14

variables, so reads and writes to them may happen at run-time.15

Recently, a decision tree lifted domain for analyzing traditional program families with numerical16

features has been proposed, in which decision nodes contain linear constraints defined over numerical17

features and leaf nodes contain analysis properties defined over program variables. Decision nodes18

partition the configuration space of possible feature values, while leaf nodes provide analysis19

information corresponding to each partition of the configuration space. As features are statically20

assigned at compile-time, decision nodes can be added, modified, and deleted only when analyzing21

read accesses of features. In this work, we extend the decision tree lifted domain so that it can be used22

to efficiently analyze dynamic program families with numerical features. Since features can now be23

changed at run-time, decision nodes can be modified when handling read and write accesses of feature24

variables. For this purpose, we define extended transfer functions for assignments and tests as well25

as a special widening operator to ensure termination of the lifted analysis. To illustrate the potential26

of this approach, we have implemented a lifted static analyzer, called DSPLNum2Analyzer, for27

inferring numerical invariants of dynamic program families written in C. An empirical evaluation28

on benchmarks from SV-COMP indicates that our tool is effective and provides a flexible way of29

adjusting the precision/cost ratio in static analysis of dynamic program families.30

2012 ACM Subject Classification Software and its engineering → Software functional properties;31

Software and its engineering → Software creation and management; Theory of computation → Logic32

Keywords and phrases Dynamic program families, Static analysis, Abstract interpretation, Decision33

tree lifted domain34

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.1435

1 Introduction36

A program family (software product line) is a set of similar programs, called variants, that is37

built from a common code base [39]. The variants of a program family can be distinguished38

in terms of features, which describe the commonalities and variability between the variants.39

Program families are commonly seen in the development of commercial embedded and critical40

system domains, such as cars, phones, avionics, medicine, robotics, etc. [1]. There are41

several techniques for implementing program families. Often traditional program families42

[11] support static feature binding and require to know the values of features at compile-43

time. For example, #if directives from the C preprocessor CPP represent the most common44

implementation mechanism in practice [34]. At compile-time, a variant is derived by assigning45
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14:2 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

concrete values to a set of features relevant for it, and only then is this variant compiled or46

interpreted. However, in an increasingly dynamic world, the increasing need for adaptive47

software demands highly configurable and adaptive variability mechanisms, many of them48

managed at run-time. Recent development approaches such as dynamic program families49

(dynamic software product lines) [29, 28, 41, 7] support dynamic feature binding, and so50

features can be assigned at run-time. This provides high flexibility to tailor a variant with51

respect to available resources and user preferences on demand. Dynamic binding is often52

necessary in long-running systems that cannot be stopped but have to adapt to changing53

requirements [27]. For example, for a mobile device, we can decide at run-time which values54

of features are actually required according to the location of the device. Hence, a dynamic55

program family adapts to dynamically changing requirements by reconfiguring itself, which56

may result in an infinite configuration process [10].57

In this paper, we devise an approach to perform static analysis by abstract interpretation58

of dynamic program families. Abstract interpretation [12, 38] is a powerful framework for59

approximating the semantics of programs. It provides static analysis techniques that analyze60

the program’s source code directly and without intervention at some level of abstraction.61

The obtained static analyses are sound (all reported correct programs are indeed correct)62

and efficient (with a good trade-off between precision and cost). However, static analysis63

of program families is harder than static analysis of single programs, because the number64

of possible variants can be very large (often huge) in practice. Recently, researchers have65

addressed this problem by designing aggregate lifted (family-based) static analyses [5, 36, 47],66

which analyze all variants of the family simultaneously in a single run. These techniques take67

as input the common code base, which encodes all variants of a program family, and produce68

precise analysis results for all variants. Lifted static analysis by abstract interpretation of69

traditional (static) program families with numerical features has been introduced recently70

[21]. The elements of the lifted abstract domain are decision trees, in which the decision71

nodes are labelled with linear constraints over numerical features, whereas the leaf nodes72

belong to a single-program analysis domain. The decision trees recursively partition the73

space of configurations (i.e., the space of possible combinations of feature values), whereas74

the program properties at the leaves provide analysis information corresponding to each75

partition, i.e. to the variants (configurations) that satisfy the constraints along the path to76

the given leaf node. Since features are statically bound at compile-time and only appear in77

presence conditions of #if directives, new decision nodes can only be added by feature-based78

presence conditions (at #if directives), and existing decision nodes can be removed when79

merging the corresponding control flows again. The fundamental limitation of this decision80

tree lifted domain [21] (as well as other lifted domains [4, 36, 47]) is that it cannot handle81

dynamically bound features that can be changed at run-time.82

To improve over the state-of-the-art, we devise a novel decision tree lifted domain for83

analyzing dynamic program families with numerical features. Since features can now be84

dynamically reconfigured and bound at run-time, linear constraints over features that occur85

in decision nodes can be dynamically changed during the analysis. This requires extended86

transfer functions for assignments and tests that can freely modify decision nodes and leafs.87

Moreover, we need a special widening operator applied on linear constraints in decision nodes88

as well as on analysis properties in leaf nodes to ensure that we obtain finite decision trees.89

This way, we minimize the cost of the lifted analysis and ensure its termination.90

The resulting decision tree lifted domain is parametric in the choice of the numerical91

domain that underlies the linear constraints over numerical features labelling decision nodes,92

and the choice of the single-program analysis domain for leaf nodes. In our implementation,93
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we also use numerical domains for leaf nodes, which encode linear constraints over both94

program and feature variables. We use well-known numerical domains, including intervals [12],95

octagons [37], polyhedra [16], from the APRON library [33], to obtain a concrete decision96

tree-based implementation of the lifted abstract domain. To demonstrate the feasibility of our97

approach, we have implemented a lifted analysis of dynamic program families written in C for98

the automatic inference of numerical invariants. Our tool, called DSPLNum2Analyzer1,99

computes a set of possible numerical invariants, which represent linear constraints over100

program and feature variables. We can use the implemented lifted static analyzer to check101

invariance properties of dynamic program families in C, such as assertions, buffer overflows,102

null pointer references, division by zero, etc. [14].103

Since features behave as ordinary program variables in dynamic program families, they104

can be also analyzed using off-the-shelf single-program analyzers. For example, we can use105

numerical abstract domains from the APRON library [33] for analyzing dynamic program106

families. However, these domains infer a conjunction of linear constraints over variables to107

record the information of all possible values of variables and relationships between them.108

The absence of disjunctions may result in rough approximations and very weak analysis109

results, which may lead to imprecisions and the failure of showing the required program110

properties. The decision tree lifted domain proposed here overcomes these limitations of111

standard single-program analysis domains by adding weak forms of disjunctions arising from112

feature-based program constructs. The elements of the decision tree lifted domain partition113

the space of possible values of features inducing disjunctions into the leaf domain.114

In summary, we make several contributions:115

We propose a new parameterized decision tree lifted domain suited for handling program116

families with dynamically bound features.117

We develop a lifted static analyzer, DSPLNum2Analyzer, in which the lifted domain is118

instantiated to numerical domains from the APRON library.119

We evaluate our approach for lifted static analysis of dynamic program families written120

in C. We compare (precision and time) performances of our decision tree-based approach121

with the single-program analysis approach; and we show their concrete application in122

assertion checking. Our lifted analysis provides an acceptable precision/cost tradeoff: we123

obtain invariants with a higher degree of precision within a reasonable amount of time124

than when using single-program analysis.125

2 Motivating Example126

We now illustrate the decision tree lifted domain through several motivating examples. The127

code base of the program family sFAMILY is given in Fig. 1. sFAMILY contains one128

numerical feature A whose domain is [0, 99] = {0, 1, . . . , 99}. Thus, there are a hundred129

valid configurations K = {(A = 0), (A = 1), . . . , (A = 99)}. The code of sFAMILY contains130

one #if directive that changes the current value of program variable y depending on how131

feature A is set at compile-time. For each configuration from K, a variant (single program)132

can be generated by appropriately resolving the #if directive. For example, the variant133

corresponding to configuration (A=0) will have the assignment y := y+1 included in location134

3⃝, whereas the variant corresponding to configuration (A = 10) will have the assignment135

y := y-1 included in location 3⃝.136

1 Num2 in the name of the tool refers to its ability to both handle Numerical features and to perform
Numerical client analysis of dynamic program families (DSPLs).
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14:4 Lifted Static Analysis of Dynamic Program Families by Abstract Interpretation

1⃝ int x := 10, y := 5;
2⃝ while (x ≥ 0) {
3⃝ #if (A ≤ 5) y := y+1;
4⃝ #else y := y-1; #endif
5⃝ x := x-1;
6⃝ }

Figure 1 Program family sFAMILY.

1⃝ int x := 10, y := 5;
2⃝ A := [0, 9];
3⃝ while (x ≥ 0) {
4⃝ if (A ≤ 5) then y := y+A;
5⃝ else y := y-A;
6⃝ x := x-1; }
7⃝ if (A ≤ 5) then assert (y ≥ 5);
8⃝ else assert (y≤−60);

Figure 2 Dynamic program family dFAM-
ILY.

A ≤ 5

y = 16 ∧ x = −1 y=−6 ∧ x=−1
(a) sFAMILY.

A ≤ 5

5≤y-A≤55 ∧ x=−1 6 ≤

A≤ 9

−85≤y+A≤−55 ∧ x=−1 ⊥
(b) dFAMILY.

Figure 3 Inferred decision trees at final program locations (solid edges = true, dashed edges =
false).

Assume that we want to perform lifted polyhedra analysis of sFAMILY using the decision137

tree lifted domain introduced in [21]. The decision tree inferred at the final location of138

sFAMILY is shown in Fig. 3a. Notice that inner decision nodes (resp., leaves) of the decision139

tree in Fig. 3a are labeled with Polyhedra linear constraints over feature A (resp., over140

program variables x and y). The edges of decision trees are labeled with the truth value of141

the decision on the parent node; we use solid edges for true (i.e. the constraint in the parent142

node is satisfied) and dashed edges for false (i.e. the negation of the constraint in the parent143

node is satisfied). We observe that decision trees offer good possibilities for sharing and144

interaction between analysis properties corresponding to different configurations, and so they145

provide compact representation of lifted analysis elements. For example, the decision tree in146

Fig. 3a shows that when (A≤5) the shared property in the final location is (y=16, x=−1),147

whereas when (A>5) the shared property is (y=−6, x=−1). Hence, the decision tree-based148

approach uses only two leaves (program properties), whereas the brute force enumeration149

approach that analyzes all variants one by one will use a hundred program properties. This150

ability for sharing is the key motivation behind the usage of decision trees in lifted analysis.151

Consider the code base of the dynamic program family dFAMILY in Fig. 2. Similarly152

to sFAMILY, dFAMILY contains one feature A with domain [0, 99]. However, feature A in153

sFAMILY can only be read and occurs only in presence conditions of #if-s. In contrast,154

feature A in dFAMILY can also be assigned and occurs freely in the code as any other155

program variable (see locations 2⃝, 4⃝, 5⃝, and 7⃝). To perform lifted polyhedra analysis156

of dFAMILY, we need to extend the decision tree lifted domain for traditional program157

families [21], so that it takes into account the new possibilities of features in dynamic program158

families. The decision tree inferred in program location 7⃝ of dFAMILY is depicted in159
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Fig. 3b. It can be written as the following disjunctive property in first order logic:160 (
0≤A≤5∧ 5≤y-A≤55∧ x=−1

)
∨

(
6≤A≤9∧−85≤y+A≤−55∧ x=−1

)
∨

(
9<A≤99∧⊥

)
161

This invariant successfully confirms the validity of the given assertion. Note that, the162

leaf node ⊥ abstracts only the empty set of (concrete) program states and so it describes163

unreachable program locations. Hence, ⊥ in Fig. 3b means that the assertion at location 7⃝ is164

unreachable when (A > 9). Also, as decision nodes partition the space of valid configurations165

K, we implicitly assume the correctness of linear constraints that take into account domains166

of features. For example, the decision node (A≤5) is satisfied when (A ≤ 5) ∧ (0≤A≤99),167

whereas its negation is satisfied when (A > 5) ∧ (0≤ A≤ 99). The constraint (0≤ A≤ 99)168

represents the domain of A.169

Alternatively, dynamic program family dFAMILY can be analyzed using the off-the-shelf170

(single-program) APRON polyhedra domain [33], such that feature A is considered as an171

ordinary program variable. In this case, we obtain the invariant: A+y≤66 ∧ A-y≥−54 at172

location 7⃝. However, this invariant is not strong enough to establish the validity of the173

given assertion. This is because the different partitions of the set of valid configurations174

have different behaviours and this single-program domain do not consider them separately.175

Therefore, this domain is less precise than the decision tree lifted domain that takes those176

differences into account.177

3 A Language for Dynamic Program Families178

Let F = {A1, . . . , An} be a finite and totaly ordered set of numerical features available in a179

dynamic program family. For each feature A ∈ F, dom(A) ⊆ Z denotes the set of possible180

values that can be assigned to A. Note that any Boolean feature can be represented as181

a numerical feature B ∈ F with dom(B) = {0, 1}, such that 0 means that feature B is182

disabled while 1 means that B is enabled. An assignment of values to all features represents183

a configuration k, which specifies one variant of a program family. It is given as a valuation184

function k : K = F → Z, which is a mapping that assigns a value from dom(A) to each185

feature A, i.e. k(A) ∈ dom(A) for any A ∈ F. We assume that only a subset K of all186

possible configurations are valid. An alternative representation of configurations is based187

upon propositional formulae. Each configuration k ∈ K can be represented by a formula:188

(A1 = k(A1)) ∧ . . . ∧ (An = k(An)). Given a Boolean feature B ∈ F, we often abbreviate189

(B = 1) with formula B and (B = 0) with formula ¬B. The set of valid configurations K190

can be also represented as a formula: ∨k∈Kk.191

We consider a simple sequential non-deterministic programming language, which will be192

used to exemplify our work. The program variables Var are statically allocated and the193

only data type is the set Z of mathematical integers. To introduce dynamic variability into194

the language, apart from reading the current values of features, it is possible to write into195

features. The new statement “A:=ae” has a possibility to update the current configuration196

(variant) k ∈ K by assigning a new arithmetic expression ae to feature A. This is known197

as run-time reconfiguration [7]. We write k[A 7→ n] for the updated configuration that is198

identical to k but feature A is mapped to value n. The syntax of the language is:199

s ::= skip | x:=ae | s; s | if (be) then s else s | while (be) do s | A:=ae,

ae ::= n | [n, n′] | x ∈ Var | A ∈ F | ae⊕ae,

be ::= ae▷◁ae | ¬be | be ∧ be | be ∨ be

200

where n ranges over integers Z, [n, n′] over integer intervals, x over program variables Var, A201

over numerical features F, and ⊕ ∈ {+,−, ∗, /}, ▷◁∈ {<,≤, =, ̸=}. Integer intervals [n, n′]202
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denote a random choice of an integer in the interval. The set of all statements s is denoted203

by Stm; the set of all arithmetic expressions ae is denoted by AExp; the set of all boolean204

expressions be is denoted by BExp.205

Semantics.206

We now define the semantics of a dynamic program family. A store σ : Σ = Var → Z207

is a mapping from program variables to values, whereas a configuration k : K = F → Z208

is a mapping from numerical features to values. A program state s = ⟨σ, k⟩ : Σ × K is a209

pair consisting of a store σ ∈ Σ and a configuration k ∈ K. The semantics of arithmetic210

expressions [[ae]] : Σ × K → P(Z) is the set of possible values for expression ae in a given211

state. It is defined by induction on ae as a function from a store and a configuration to a set212

of values:213

[[n]]⟨σ, k⟩ = {n}, [[[n, n′]]]⟨σ, k⟩ = {n, . . . , n′}, [[x]]⟨σ, k⟩ = {σ(x)},
[[A]]⟨σ, k⟩ = {k(A)}, [[ae0⊕ae1]]⟨σ, k⟩ = {n0 ⊕ n1 | n0 ∈ [[ae0]]⟨σ, k⟩, n1 ∈ [[ae1]]⟨σ, k⟩}214

Similarly, the semantics of boolean expressions [[be]] : Σ×K→ P({true, false}) is the set of215

possible truth values for expression be in a given state.216

[[ae0▷◁ae1]]⟨σ, k⟩ = {n0 ▷◁ n1 | n0 ∈ [[ae0]]⟨σ, k⟩, n1 ∈ [[ae1]]⟨σ, k⟩}
[[¬be]]⟨σ, k⟩ = {¬t | t ∈ [[be]]⟨σ, k⟩},
[[be0 ∧ be1]]⟨σ, k⟩ = {t0 ∧ t1 | t0 ∈ [[be0]]⟨σ, k⟩, t1 ∈ [[be1]]⟨σ, k⟩}
[[be0 ∨ be1]]⟨σ, k⟩ = {t0 ∨ t1 | t0 ∈ [[be0]]⟨σ, k⟩, t1 ∈ [[be1]]⟨σ, k⟩}

217

We define an invariance semantics [12, 38] on the complete lattice ⟨P(Σ×K),⊆,∪,∩, ∅, Σ×218

K⟩ by induction on the syntax of programs. It works on sets of states, so the property of219

interest is the possible sets of stores and configurations that may arise at each program220

location. In Fig. 4, we define the invariance semantics [[s]] : P(Σ×K)→ P(Σ×K) of each221

program statement. The states resulting from the invariance semantics are built forward:222

each function [[s]] takes as input a set of states (i.e. pairs of stores and configurations)223

S ∈ P(Σ×K) and outputs the set of possible states at the final location of the statement.224

The operation k[A 7→n] (resp., σ[x 7→ n]) is used to update a configuration from K (resp., a225

store from Σ). Note that a while statement is given in a standard fixed-point formulation226

[12], where the fixed-point functional ϕ : P(Σ×K)→ P(Σ×K) accumulates the possible227

states after another while iteration from a given set of states X.228

However, the invariance semantics [[s]] is not computable since our language is Turing229

complete. In the following, we present sound decidable abstractions of [[s]] by means of230

decision tree-based abstract domains.231

4 Decision Trees Lifted Domain232

Lifted analyses are designed by lifting existing single-program analyses to work on program233

families, rather than on individual programs. Lifted analysis for traditional program families234

introduced in [21] relies on a decision tree lifted domain. The leaf nodes of decision trees235

belong to an existing single-program analysis domain, and are separated by linear constraints236

over numerical features, organized in decision nodes. In Section 4.1, we first recall basic237

elements of the decision tree lifted domain [21] that can be reused for dynamic program238

families. Then, in Section 4.2 we consider extended transfer functions for assignments239

and tests when features can freely occur in them, whereas in Section 4.3 we define the240

extrapolation widening operator for this lifted domain. Finally, we define the abstract241

invariance semantics based on this domain and show its soundness in Section 4.4.242
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[[skip]]S = S

[[x := ae]]S = {⟨σ[x 7→ n], k⟩ | ⟨σ, k⟩ ∈ S, n ∈ [[ae]]⟨σ, k⟩}
[[s1 ; s2]]S = [[s2]]([[s1]]S)

[[if be then s1 else s2]]S = [[s1]]{⟨σ, k⟩ ∈ S | true ∈ [[be]]⟨σ, k⟩}∪
[[s2]]{⟨σ, k⟩ ∈ S | false ∈ [[be]]⟨σ, k⟩}

[[while be do s]]S = {⟨σ, k⟩ ∈ lfp ϕ | false ∈ [[be]]⟨σ, k⟩}
ϕ(X) = S ∪ [[s]]{⟨σ, k⟩ ∈ X | true ∈ [[be]]⟨σ, k⟩}

[[A := ae]]S = {⟨σ, k[A 7→n]⟩ | ⟨σ, k⟩∈S, n∈ [[ae]]⟨σ, k⟩, k[A 7→n]∈K}

Figure 4 Invariance semantics [[s]] : P(Σ × K) → P(Σ × K).

4.1 Basic elements243

Abstract domain for leaf nodes.244

We assume that a single-program numerical domain D defined over a set of variables V is245

equipped with sound operators for concretization γD, ordering ⊑D, join ⊔D, meet ⊓D, the246

least element (called bottom) ⊥D, the greatest element (called top) ⊤D, widening ∇D, and247

narrowing △D, as well as sound transfer functions for tests (boolean expressions) FILTERD248

and forward assignments ASSIGND. The domain D employs data structures and algorithms249

specific to the shape of invariants (analysis properties) it represents and manipulates. More250

specifically, the concretization function γD assigns a concrete meaning to each element in D,251

ordering ⊑D conveys the idea of approximation since some analysis results may be coarser252

than some other results, whereas join ⊔D and meet ⊓D convey the idea of convergence since253

a new abstract element is computed when merging control flows. To analyze loops effectively254

and efficiently, the convergence acceleration operators such as widening ∇D and narrowing△D255

are used. Transfer functions give abstract semantics of expressions and statements. Hence,256

ASSIGND(d : D, x:=ae : Stm) returns an updated version of d by abstractly evaluating x:=ae257

in it, whereas FILTERD(d : D, be : BExp) returns an abstract element from D obtained258

by restricting d to satisfy test be. In practice, the domain D will be instantiated with259

some of the known numerical domains, such as Intervals ⟨I,⊑I⟩ [12], Octagons ⟨O,⊑O⟩260

[46], and Polyhedra ⟨P,⊑P ⟩ [16]. The elements of I are intervals of the form: ±x ≥ β,261

where x ∈ V, β ∈ Z; the elements of O are conjunctions of octagonal constraints of the form262

±x1±x2 ≥ β, where x1, x2 ∈ V, β ∈ Z; while the elements of P are conjunctions of polyhedral263

constraints of the form α1x1 + . . . + αkxk + β ≥ 0, where x1, . . . xk ∈ V, α1, . . . , αk, β ∈ Z.264

We will sometimes write DV to explicitly denote the set of variables V over which domain D265

is defined. In this work, we use domains DVar∪F for leaf nodes of decision trees that are defined266

over both program and feature variables. The abstraction for numerical domains ⟨DVar∪F,⊑D⟩267

is formally defined by the concretization-based abstraction ⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩.268

We refer to [38] for a more detailed discussion of the definition of γD as well as other abstract269

operations and transfer functions for Intervals, Octagons, and Polyhedra.270

Abstract domain for decision nodes.271

We introduce a family of abstract domains for linear constraints CD defined over features272

F, which are parameterized by any of the numerical domains D (intervals I, octagons O,273

polyhedra P). For example, the finite set of polyhedral constraints is CP = {α1A1 + . . . +274

ECOOP 2021
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αkAk + β ≥ 0 | A1, . . . Ak ∈ F, α1, . . . , αk, β ∈ Z, gcd(|α1|, . . . , |αk|, |β|) = 1}. The finite set275

CD of linear constraints over features F is constructed by the underlying numerical domain276

⟨D,⊑D⟩ using the Galois connection ⟨P(CD),⊑D⟩ −−−−→←−−−−
αCD

γCD ⟨D,⊑D⟩, where P(CD) is the power277

set of CD. The concretization function γCD : D→ P(CD) maps a conjunction of constraints278

from D to a finite set of constraints in P(CD).279

The domain of decision nodes is CD. We assume the set of features F = {A1, . . . , An} to280

be totally ordered, such that the ordering is A1 > . . . > An. We impose a total order <CD281

on CD to be the lexicographic order on the coefficients α1, . . . , αn and constant αn+1 of the282

linear constraints, such that:283

(α1 ·A1 + . . . + αn ·An + αn+1≥0) <CD (α′
1 ·A1 + . . . + α′

n ·An + α′
n+1≥0)

⇐⇒ ∃j > 0.∀i < j.(αi = α′
i) ∧ (αj < α′

j)284

The negation of linear constraints is formed as: ¬(α1A1+. . . αnAn+β≥0) = −α1A1 −285

. . .− αnAn − β − 1 ≥ 0. For example, the negation of A− 3 ≥ 0 is −A + 2 ≥ 0. To ensure286

canonical representation of decision trees, a linear constraint c and its negation ¬c cannot287

both appear as decision nodes. Thus, we only keep the largest constraint with respect to288

<CD between c and ¬c.289

Abstract domain for decision trees.290

A decision tree t ∈ T(CDF ,DVar∪F) over the sets CDF of linear constraints defined over F291

and the leaf abstract domain DVar∪F defined over Var ∪ F is: either a leaf node ≪d≫292

with d ∈ DVar∪F, or [[c : tl, tr]], where c ∈ CDF (denoted by t.c) is the smallest constraint293

with respect to <CD appearing in the tree t, tl (denoted by t.l) is the left subtree of t294

representing its true branch, and tr (denoted by t.r) is the right subtree of t representing its295

false branch. The path along a decision tree establishes the set of configurations (those that296

satisfy the encountered constraints), and the leaf nodes represent the analysis properties for297

the corresponding configurations.298

▶ Example 1. The following two decision trees t1 and t2 have decision and leaf nodes labelled299

with polyhedral linear constraints defined over numerical feature A with domain Z and over300

integer program variable y, respectively:301

t1 = [[A≥4 :≪[y≥2]≫,≪[y =0]≫]], t2 = [[A≥2 :≪[y≥0]≫,≪[y≤0]≫]] ◀302

Abstract Operations.303

We define the following concretization-based abstraction ⟨P(Σ×K),⊆⟩ γT←− ⟨T(CD,D),⊑T⟩.304

The concretization function γT of a decision tree t ∈ T(CD,D) returns a set of pairs ⟨σ, k⟩,305

such that ⟨σ, k⟩ ∈ γD(d) and k satisfies the set C ∈ P(CD) of constraints accumulated along306

the top-down path to the leaf node d ∈ D. More formally, the concretization function307

γT(t) : T(CD,D)→ P(Σ×K) is defined as:308

γT(t) = γT[K](t)309

where K ∈ P(CD) is the set of configurations, i.e. the set of constraints over F taking into310

account the domains of features. Function γT : P(CD)→ T(CD,D)→ P(Σ×K) is defined as:311

γT[C](≪d≫)={⟨σ, k⟩ | ⟨σ, k⟩ ∈ γD(d), k |= C},
γT[C]([[c : tl, tr]])=γT[C ∪ {c}](tl) ∪ γT[C ∪ {¬c}](tr)312
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Algorithm 1 UNIFICATION(t1, t2, C)

1 if isLeaf(t1) ∧ isLeaf(t2) then return (t1, t2);
2 if isLeaf(t1) ∨ (isNode(t1) ∧ isNode(t2) ∧ t2.c <CD t1.c) then
3 if isRedundant(t2.c, C) then return UNIFICATION(t1, t2.l, C);
4 if isRedundant(¬t2.c, C) then return UNIFICATION(t1, t2.r, C);
5 (l1, l2) = UNIFICATION(t1, t2.l, C ∪ {t2.c});
6 (r1, r2) = UNIFICATION(t1, t2.r, C ∪ {¬t2.c});
7 return ([[t2.c : l1, r1]], [[t2.c : l2, r2]]);
8 if isLeaf(t2) ∨ (isNode(t1) ∧ isNode(t2) ∧ t1.c <CD t2.c) then
9 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2, C);

10 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2, C);
11 (l1, l2) = UNIFICATION(t1.l, t2, C ∪ {t1.c});
12 (r1, r2) = UNIFICATION(t1.r, t2, C ∪ {¬t1.c});
13 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);
14 else
15 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2.l, C);
16 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2.r, C);
17 (l1, l2) = UNIFICATION(t1.l, t2.l, C ∪ {t1.c});
18 (r1, r2) = UNIFICATION(t1.r, t2.r, C ∪ {¬t1.c});
19 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]]);

Note that k |= C is equivalent with αCD({k}) ⊑D αCD(C), thus we can check k |= C using313

the abstract operation ⊑D of the numerical domain D.314

Other binary operations rely on the algorithm for tree unification [45] given in Algorithm 1,315

which finds a common labelling of two trees t1 and t2 by forcing them to have the same316

structure. It accumulates into the set C ∈ P(CD) (initially equal to K) the linear constraints317

encountered along the paths of the decision trees possibly adding new constraints as decision318

nodes (Lines 5–7, Lines 11–13) or removing constraints that are redundant with respect319

to C (Lines 3,4,9,10,15,16). This is done by using the function isRedundant(c, C), which320

checks whether the linear constraint c ∈ CD is redundant with respect to the set C by testing321

αCD(C) ⊑D αCD({c}). Note that the tree unification does not lose any information.322

▶ Example 2. After tree unification of t1 and t2 from Example 1, we obtain:323

t1 = [[A ≥ 4 :≪[y ≥ 2]≫, [[A ≥ 2 :≪[y = 0]≫,≪[y = 0]≫]]]],
t2 = [[A ≥ 4 :≪[y ≥ 0]≫, [[A ≥ 2 :≪[y ≥ 0]≫,≪[y ≤ 0]≫]]]]324

Note that the tree unification adds a decision node for A ≥ 2 to the right subtree of t1,325

whereas it adds a decision node for A ≥ 4 to t2 and removes the redundant constraint A ≥ 2326

from the resulting left subtree of t2. ◀327

Some binary operations are performed leaf-wise on the unified decision trees. Given two328

unified decision trees t1 and t2, their ordering t1 ⊑T t2, join t1 ⊔T t2, and meet t1 ⊓T t2 are329

defined recursively:330

≪d1≫⊑T≪d2≫= d1⊑D d2, [[c : tl1, tr1]]⊑T [[c : tl2, tr2]]=(tl1⊑T tl2) ∧ (tr1⊑T tr2)
≪d1≫⊔T≪d2≫=≪d1⊔Dd2≫, [[c : tl1, tr1]]⊔T [[c : tl2, tr2]]=[[c : tl1⊔Ttl2, tr1⊔Ttr2]]
≪d1≫⊓T≪d2≫=≪d1⊓Dd2≫, [[c : tl1, tr1]]⊓T [[c : tl2, tr2]]=[[c : tl1⊓Ttl2, tr1⊓Ttr2]]

331
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The top is a tree with a single ⊤D leaf: ⊤T =≪⊤D≫, while the bottom is a tree with a single332

⊥D leaf: ⊥T =≪⊥D≫.333

▶ Example 3. Consider the unified trees t1 and t2 from Example 2. We have that t1⊑T t2334

holds, t1⊔Tt2 =[[A≥4:≪[y≥0]≫, [[A≥2:≪[y≥0]≫,≪[y≤0]≫]]]], and t1⊓Tt2 =[[A≥4:≪[y≥2]≫335

, [[A≥2:≪[y =0]≫,≪[y =0]≫]]]]. ◀336

The concretization function γT is monotonic with respect to the ordering ⊑T.337

▶ Lemma 4. ∀t1, t2 ∈ T(CD,D): t1 ⊑T t2 =⇒ γT(t1) ⊆ γT(t2).338

Proof. Let t1, t2 ∈ T such that t1 ⊑T t2. The ordering ⊑T between decision trees is339

implemented by first calling the tree unification algorithm, and then by comparing the340

decision trees “leaf-wise”. Tree unification forces the same structure on decision trees, so341

all paths to the leaf nodes coincide between the unified decision trees. Let C ∈ P(CD)342

denote the set of linear constraints satisfied along a path of the unified decision trees, and let343

d1, d2 ∈ DVar∪F denote the leaf nodes reached following the path C within the first and the344

second decision tree. Since t1 ⊑T t2, we have that d1 ⊑D d2 and so γD(d1) ⊆ γD(d2). The345

proof follows from: {⟨σ, k⟩ | ⟨σ, k⟩ ∈ γD(d1), k |= C} ⊆ {⟨σ, k⟩ | ⟨σ, k⟩ ∈ γD(d2), k |= C}. ◀346

Basic Transfer functions.347

We define basic lifted transfer functions for forward assignments (ASSIGNT) and tests348

(FILTERT), when only program variables occur in given assignments and tests (boolean349

expressions). Those basic transfer functions ASSIGNT and FILTERT modify only leaf nodes350

since the analysis information about program variables is located in leaf nodes while the351

information about features is located in both decision nodes and leaf nodes.352

Algorithm 2 ASSIGNT(t, x:=ae, C) when vars(ae) ⊆ Var

1 if isLeaf(t) then return ≪ASSIGNDVar∪F(t, x:=ae)≫;
2 if isNode(t) then
3 l = ASSIGNT(t.l, x:=ae, C ∪ {t.c});
4 r = ASSIGNT(t.r, x:=ae, C ∪ {¬t.c});
5 return [[t.c : l, r]]

Algorithm 3 FILTERT(t, be, C) when vars(be) ⊆ Var

1 if isLeaf(t) then return ≪FILTERDVar∪F(t, be)≫;
2 if isNode(t) then
3 l = FILTERT(t.l, be, C ∪ {t.c});
4 r = FILTERT(t.r, be, C ∪ {¬t.c});
5 return [[t.c : l, r]]

Basic transfer function ASSIGNT for handling an assignment x:=ae is described by353

Algorithm 2. Note that x ∈ Var is a program variable, and ae ∈ AExp may contain only354

program variables, i.e. the set of variables that occur in ae is vars(ae) ⊆ Var. ASSIGNT355

descends along the paths of the decision tree t up to a leaf node d, where ASSIGNDVar∪F is356

invoked to substitute expression ae for variable x in d. Similarly, basic transfer function357



A. S. Dimovski and S. Apel 14:11

Algorithm 4 FILTERT(t, be, C) when vars(be) ⊆ F

1 switch be do
2 case (ae0 ▷◁ ae1) || (¬(ae0 ▷◁ ae1)) do
3 J = FILTERDF(⊤DF , be); return RESTRICT(t, C, J)
4 case be1 ∧ be2 do
5 return FILTERT(t, be1, C) ⊓T FILTERT(t, be2, C)
6 case be1 ∨ be2 do
7 return FILTERT(t, be1, C) ⊔T FILTERT(t, be2, C)

FILTERT for handling tests be ∈ BExp when vars(be) ⊆ Var, given in Algorithm 3, is358

implemented by applying FILTERDVar∪F leaf-wise, so that be is satisfied by all leaves.359

Note that, in program families with static feature binding, features occur only in presence360

conditions (tests) of #if directives. Thus, special transfer functions FEAT-FILTERT for361

feature-based tests and IFDEFT for #if directives are defined in [21], which can add, modify,362

or delete decision nodes of a decision tree. Therefore, the basic transfer function FILTERT363

for handling tests be ∈ BExp when vars(be) ⊆ F coincides with FEAT-FILTERT in [21],364

and is given in Algorithm 4. It reasons by induction on the structure of be. When be is a365

comparison of arithmetic expressions (Lines 2,3), we use FILTERDF to approximate be, thus366

producing a set of constraints J , which are then added to the tree t, possibly discarding367

all paths of t that do not satisfy be. This is done by calling function RESTRICT(t, C, J),368

which adds linear constraints from J to t in ascending order with respect to <CD as shown369

in Algorithm 5. Note that be may not be representable exactly in CD (e.g., in the case of370

non-linear constraints over F), so FILTERDF may produce a set of constraints approximating371

it. When be is a conjunction (resp., disjunction) of two feature expressions (Lines 4,5) (resp.,372

(Lines 6,7)), the resulting decision trees are merged by operation meet ⊓T (resp., join ⊔T).373

The above transfer function and some of the remaining operations rely on function374

RESTRICT given in Algorithm 5 for constraining a decision tree t with respect to a given set J375

of linear constraints over F. The subtrees whose paths from the root satisfy these constraints376

are preserved, while leafs of the other subtrees are replaced with bottom ⊥D. Function377

RESTRICT(t, C, J) takes as input a decision tree t, a set C of constraints accumulated along378

paths up to a node, a set J of linear constraints in canonical form that need to be added to379

t. For each constraint j ∈ J , there exists a boolean bj that shows whether the tree should be380

constrained with respect to j (bj is set to true) or with respect to ¬j (bj is set to false). At381

each iteration, the smallest linear constraint j is extracted from J (Line 9), and is handled382

appropriately based on whether j is smaller or equal (Line 11–15), or greater (Line 17–21) to383

the constraint at the node of t we currently consider.384

4.2 Extended transfer functions385

We now define extended transfer functions ASSIGNT and FILTERT where assignments and386

tests may contain both feature and program variables.387

Assignments.388

Transfer function ASSIGNT(t, x:=ae, C), when vars(ae) ⊆ Var ∪ F, is given in Algorithm 6.389

It accumulates the constraints along the paths in the decision tree t in a set of constraints390
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Algorithm 5 RESTRICT(t, C, J)

1 if isEmpty(J) then
2 if isLeaf(t) then return t;
3 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
4 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
5 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
6 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
7 return ([[t.c : l, r]]);
8 else
9 j = min<CD

(J) ;
10 if isLeaf(t) ∨ (isNode(t) ∧ j ≤CD t.c) then
11 if isRedundant(j, C) then return RESTRICT(t, C, J\{j});
12 if isRedundant(¬j, C) then return ≪⊥A≫;
13 if j =CD t.c then (if bj then t = t.l else t = t.r) ;
14 if bj then return ([[j : RESTRICT(t, C ∪ {j}, J\{j}),≪⊥A≫]]) ;
15 else return ([[j :≪⊥A≫, RESTRICT(t, C ∪ {¬j}, J\{j})]]) ;
16 else
17 if isRedundant(t.c, C) then return RESTRICT(t.l, C, J);
18 if isRedundant(¬t.c, C) then return RESTRICT(t.r, C, J);
19 l = RESTRICT(t.l, C ∪ {t.c}, J) ;
20 r = RESTRICT(t.r, C ∪ {¬t.c}, J) ;
21 return ([[t.c : l, r]]);

C ∈ P(CD) (Lines 8–10), which is initialized to K, up to the leaf nodes in which assignment391

is performed by ASSIGNDVar∪F . That is, we first merge constraints from the leaf node t392

defined over Var∪F and constraints from decision nodes C ∈ P(CDF) defined over F, by using393

⊎Var∪F operator. Thus, we obtain an abstract element from DVar∪F on which the assignment394

operator of the domain DVar∪F is applied (Line 2).395

Transfer function ASSIGNT(t, A:=ae, C), when vars(ae) ⊆ Var ∪ F, is implemented by396

Algorithm 7. It calls the auxiliary function ASSIGN-AUXT(t, A:=ae, C), which performs the397

assignment on each leaf node t merged with the set of linear constraints C collected along the398

path to the leaf (Line 6). The obtained result d′ is a new leaf node (Line 7), and furthermore399

it is projected on feature variables using ↾F operator to generate a new set of constraints400

J = γCD(d′ ↾F) that needs to be substituted to C in the decision tree (Lines 8–13). The401

substitution is done at each decision node, such that new sets of constraints J1 and J2 are402

collected from its left and right subtrees, and then they are used as constraints in the given403

decision node instead of t.c and ¬t.c. Let J = J1 ∩ J2 be the common (overlapping) set of404

constraints that arise due to non-determinism (Line 11). When both J1\J and J2\J are405

empty, the left and the right subtrees are joined (Line 12). Otherwise, the corresponding406

tree is constructed using sets J1\J and J2\J and together with the set J are propagated to407

the parent node (Line 13). Note that, if some of the sets of constraints J , J1\J , and J2\J is408

empty in the returned trees in Lines 12-13, then it is considered as a true constraint so that409

its true branch is always taken.410
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Algorithm 6 ASSIGNT(t, x:=ae, C) when vars(ae) ⊆ Var ∪ F

1 if isLeaf(t) then
2 d′ = ASSIGNDVar∪F(t ⊎Var∪F αCD(C), x:=ae);
3 return ≪d′≫
4 if isNode(t) then
5 l = ASSIGNT(t.l, x:=ae, C ∪ {t.c});
6 r = ASSIGNT(t.r, x:=ae, C ∪ {¬t.c});
7 return [[t.c : l, r]]

Algorithm 7 ASSIGNT(t, A:=ae, C) when vars(ae) ⊆ Var ∪ F

1 (t,d) = ASSIGN-AUXT(t, A:=ae, C)
2 return t

3

4 Function ASSIGN-AUXT(t, A:=ae, C):
5 if isLeaf(t) then
6 d′ = ASSIGNDVar∪F(t ⊎Var∪F αCD(C), A:=ae)
7 return (≪d′≫, γCD(d′ ↾F))
8 if isNode(t) then
9 (t1, J1) = ASSIGN-AUXT(t.l, A:=ae, C ∪ {t.c})

10 (t2, J2) = ASSIGN-AUXT(t.r, A:=ae, C ∪ {¬t.c})
11 J = J1 ∩ J2
12 if isEmpty(J1\J) ∧ isEmpty(J2\J) then return

(
[[J, t1 ⊔T t2,⊥T]], ∅

)
13 else return

(
[[J1\J, t1, [[J2\J, t2,⊥T]]]], J

)

Tests.411

Transfer function FILTERT(t, be, C), when vars(be) ⊆ Var ∪ F, is described by Algorithm 8.412

Similarly to ASSIGNT(t, x:=ae, C) in Algorithm 6, it accumulates the constraints along the413

paths in the decision tree t in a set of constraints C ∈ P(CD) up to the leaf nodes (Lines414

6–9). When t is a leaf node, test be is handled using FILTERDVar∪F applied on an abstract415

element from DVar∪F obtained by merging constraints in the leaf node and decision nodes416

along the path to the leaf (Lines 2). The obtained result d′ represents a new leaf node, and417

furthermore d′ is projected on feature variables using ↾F operator to generate a new set of418

constraints J that is added to the given path to d′ (Lines 3–5).419

Note that the trees returned by ASSIGNT(t, x:=ae, C), ASSIGNT(t, A:=ae, C), and420

FILTERT(t, be, C) are sorted (normalized) to remove possible multiple occurrences of a421

constraint c, possible occurrences of both c and ¬c, and possible ordering inconsistences.422

Moreover, the obtained decision trees may contain some redundancy that can be exploited to423

further compress them. We use several optimizations [21, 45]. E.g., if constraints on a path424

to some leaf are unsatisfiable, we eliminate that leaf node; if a decision node contains two425

same subtrees, then we keep only one subtree and we also eliminate the decision node, etc.426
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Algorithm 8 FILTERT(t, be, C) when vars(be) ⊆ Var ∪ F

1 if isLeaf(t) then
2 d′ = FILTERDVar∪F(t ⊎Var∪F αCD(C), be);
3 J = γCD(d′ ↾F);
4 if isRedundant(J, C) then return ≪d′≫;
5 else return RESTRICT(≪d′≫, C, J\C);
6 if isNode(t) then
7 l = FILTERT(t.l, be, C ∪ {t.c});
8 r = FILTERT(t.r, be, C ∪ {¬t.c});
9 return [[t.c : l, r]]

▶ Example 5. Let us consider the following dynamic program family P ′:427

1⃝ int y := [0, 4];
2⃝ if (A < 2) y := y+1; else y := y-1;
3⃝ A := y+1;
4⃝ y := A+1;
5⃝ A := 5; 6⃝

428

The code base of P ′ contains only one program variable Var = {y} and one numerical feature429

F = {A} with domain dom(A) = [0, 99]. In Fig. 5 we depict decision trees inferred by430

performing polyhedral lifted analysis using the lifted domain T(CP, P). We use FILTERT431

from Algorithm 4 to analyze statement at location 2⃝ and infer the decision tree at location432

3⃝. Then, we use ASSIGNT from Algorithm 7 to analyze the statement A := y+1 at 3⃝ and433

infer the tree at location 4⃝. Note that, by using the left and right leafs in the input tree at434

3⃝, we generate constraint sets J1 = (2 ≤ A ≤ 6) and J2 = (0 ≤ A ≤ 4) with the same leaf435

nodes [y=A-1]. After applying reductions, we obtain the tree at location 4⃝. Recall that we436

implicitly assume the correctness of linear constraints K that take into account domains of437

features. Hence, node (A ≤ 6) is satisfied when (A ≤ 6) ∧ (0 ≤ A ≤ 99), where constraint438

(0 ≤ A ≤ 99) represents the domains of A. Finally, statement y := A+1 at location 4⃝ is439

analyzed using Algorithm 6 such that all leafs in the input tree are updated accordingly,440

whereas statement A := 5 at location 5⃝ is analyzed using Algorithm 7 such that all leafs in441

the input tree along the paths to them are joined to create new leaf that satisfies (A = 5).442

4.3 Widening443

The widening operator ∇T is necessary in order to extrapolate an analysis property over444

configurations (values of features) and stores (values of program variables) on which it is not445

yet defined. Hence, it provides a way to handle (potentially) infinite reconfiguration of features446

inside loops. The widening t1∇T t2 is implemented by calling function WIDENT(t1, t2,K),447

where t1 and t2 are two decision trees and K is the set of valid configurations. Function448

WIDENT, given in Algorithm 9, first calls function LEFT_UNIFICATION (Line 1) that performs449

widening of the configuration space (i.e., decision nodes), and then extrapolates the value450

of leafs by calling function WIDEN_LEAF (Line 2). Function LEFT_UNIFICATION (Lines 4–17)451

limits the size of decision trees, and thus avoids infinite sequences of partition refinements.452

It forces the structure of t1 on t2. This way, there may be information loss by applying453

this function. LEFT_UNIFICATION accumulates into a set C (initially equal to K) the linear454

constraints along the paths in the first decision tree, possibly adding nodes to the second455
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[y = ⊤I]
(a) Loc. 1⃝

[0 ≤ y ≤ 4]
(b) Loc. 2⃝

A ≤ 1

[1 ≤ y≤5] [−1 ≤ y≤3]
(c) Loc. 3⃝

A ≤ 6

[y=A-1] ⊥I

(d) Loc. 4⃝

A ≤ 6

[y=A+1] ⊥I

(e) Loc. 5⃝

A = 5

[1 ≤ y≤7] ⊥I

(f) Loc. 6⃝
Figure 5 Decision tree-based (polyhedral) invariants at program locations from 1⃝ to 6⃝ of P ′.

tree (Lines 10–17), or removing decision nodes from the second tree in which case the left456

and the right subtree are joined (Lines 6–9), or removing constraints that are redundant457

(Lines 7,8 and 11,12). Finally, function WIDEN_LEAF (Line 18–23) applies the widening ∇D458

leaf-wise on the left unified decision trees.459

▶ Example 6. Consider the following two decision trees t1 and t2:460

t1 = [[A>1 : [[A>5 :≪[y≥0]≫,≪[y≤0]≫]],≪[y =0]≫]]
t2 = [[A>2 :≪[y =1]≫,≪[y >1]≫]]461

After applying the left unification of t1 and t2, the tree t2 becomes:462

t2 = [[A>1 : [[A>5 :≪[y =1]≫,≪[y≥1]≫]],≪[y >1]≫]]463

Note that when (A>1) and ¬(A>5), the left and right leafs of the input t2 are joined, thus464

yielding the leaf [y≥1] in the left-unified t2. This represents an example of information-loss465

in a left-unified tree. After applying the leaf-wise widening of t1 and left-unified t2, we obtain:466

t = [[A>1 : [[A>5 :≪[y≥0]≫,≪⊤≫]],≪[y≥0]≫]] ◀467

4.4 Soundness468

The operations and transfer functions of the decision tree lifted domain T(CD,D) can now be469

used to define the abstract invariance semantics. In Fig. 6, we define the abstract invariance470

semantics [[s]]♮ : T → T for each statement s. Function [[s]]♮ takes as input a decision tree471

over-approximating the set of reachable states at the initial location of statement s, and472

outputs a decision tree that over-approximates the set of reachable states at the final location473

od s. For a while loop, lfp♮ ϕ♮ is the limit of the following increasing chain defined by the474

widening operator ∇T (note that, t1∇T t2 = WIDENT(t1, t2,K)):475

y0 = ⊥T, yn+1 = yn∇T ϕ♮(yn)476

The lifted analysis (abstract invariance semantics) of a dynamic program family s is defined477

as [[s]]♮tin, where the input tree tin at the initial location has only one leaf node ⊤D and478

decision nodes define the set K. Note that tin =≪⊤D≫ if there are no constraints in K. This479

way, by calculating [[s]]♮tin we collect the possible invariants in the form of decision trees at480

all program locations.481
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Algorithm 9 WIDENT(t1, t2, C)

1 (t1, t2) =LEFT_UNIFICATION(t1, t2, C)
2 return WIDEN_LEAF(t1, t2, C)
3

4 Function LEFT_UNIFICATION(t1, t2, C):
5 if isLeaf(t1) ∧ isLeaf(t2) then return (t1, t2)
6 if isLeaf(t1) ∨ (isNode(t1) ∧ isNode(t2) ∧ t2.c <CD t1.c) then
7 if isRedundant(t2.c, C) then return LEFT_UNIFICATION(t1, t2.l, C)
8 if isRedundant(¬t2.c, C) then return LEFT_UNIFICATION(t1, t2.r, C)
9 return LEFT_UNIFICATION(t1, t2.l ⊔T t2.r, C)

10 if isLeaf(t2) ∨ (isNode(t1) ∧ isNode(t2) ∧ t1.c ≤CD t2.c) then
11 if isRedundant(t1.c, C) then return UNIFICATION(t1.l, t2, C)
12 if isRedundant(¬t1.c, C) then return UNIFICATION(t1.r, t2, C)
13 if t1.c <CD t2.c then t21 = t2; t22 = t2;
14 else t21 = t2.l; t22 = t2.r;
15 (l1, l2) = UNIFICATION(t1.l, t21, C ∪ {t1.c})
16 (r1, r2) = UNIFICATION(t1.r, t22, C ∪ {¬t1.c})
17 return ([[t1.c : l1, r1]], [[t1.c : l2, r2]])

18 Function WIDEN_LEAF(t1, t2, C):
19 if isLeaf(t1) ∧ isLeaf(t2) then return (≪t1∇Dt2≫)
20 if isNode(t1) ∧ isNode(t2) then
21 l = WIDEN_LEAF(t1.l, t2.l, C ∪ {t1.c})
22 r = WIDEN_LEAF(t1.r, t2.r, C ∪ {¬t1.c})
23 return ([[t1.c : l, r]])
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[[skip]]♮t = t

[[x := ae]]♮t = ASSIGNT(t, x:=ae,K)
[[s1 ; s2]]♮t = [[s2]]♮([[s1]]♮t)

[[if be then s1 else s2]]♮t = [[s1]]♮(FILTERT(t, be,K)) ⊔T [[s2]]♮(FILTERT(t,¬be,K))
[[while be do s]]♮t = FILTERT(lfp♮ ϕ♮,¬be,K)

ϕ♮(x) = t ⊔T [[s]]♮(FILTERT(x, be,K))
[[A := ae]]♮t = ASSIGNT(t, A:=ae,K)

Figure 6 Abstract invariance semantics [[s]]♮ : T → T.

We can establish soundness of the abstract invariant semantics [[s]]♮tin ∈ T(CD,D) with482

respect to the invariance semantics [[s]]⟨Σ,K⟩ ∈ P(Σ×K), where ⟨Σ,K⟩ = {⟨σ, k⟩ | σ ∈ Σ, k ∈483

K}, by showing that [[s]]⟨Σ,K⟩ ⊆ γT
(
[[s]]♮tin

)
. This is done by proving the following result. 2

484

▶ Theorem 7 (Soundness). ∀t ∈ T(CD,D) : [[s]]γT(t) ⊆ γT
(
[[s]]♮t

)
.485

Proof. The proof is by structural induction on s. We consider the most interesting cases.486

Case skip. [[skip]]γT(t) = γT(t) = γT([[skip]]♮t).487

Case x:=ae. Let ⟨σ, k⟩ ∈ γT(t). By definition of [[x := ae]] in Fig. 4, it holds that488

⟨σ[x 7→ n], k⟩ ∈ [[x := ae]]γT(t) for all n ∈ [[ae]]⟨σ, k⟩. Since ⟨σ, k⟩ ∈ γT(t), there must be489

a leaf node d of t and a set of constraints C collected along the path to d, such that490

⟨σ, k⟩ ∈ γD(d)∧ k |= C. By definition of the abstraction ⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩,491

the soundness of ASSIGNDVar∪F , and by definition of ASSIGNT (cf. Algorithms 2 and 6), it492

must hold ⟨σ[x 7→ n], k⟩ ∈ γT(ASSIGNT(t, x := ae,K)) due to the fact that Algorithms 2493

and 6 invoke ASSIGNDVar∪F for every leaf node of t that may be merged with linear con-494

straints from decision nodes found on the path from the root to that leaf. Thus, we495

conclude [[x := ae]]γT(t) ⊆ γT(ASSIGNT(t, x:=ae,K)) = γT([[x := ae]]♮t).496

Case if be then s1 else s2. Let ⟨σ, k⟩∈γT(t) and ⟨σ′, k′⟩∈ [[if be then s1 else s2]]{⟨σ, k⟩}.497

By structural induction, we have that [[s1]]γT(t′) ⊆ γT([[s1]]♮t′) and [[s2]]γT(t′) ⊆ γT([[s2]]♮t′)498

for any t′. By definition of [[if be then s1 else s2]] in Fig. 4, we have that ⟨σ′, k′⟩ ∈499

[[s1]]{⟨σ, k⟩} if true ∈ [[be]]⟨σ, k⟩ or ⟨σ′, k′⟩ ∈ [[s2]]{⟨σ, k⟩} if false ∈ [[be]]⟨σ, k⟩. Since500

⟨σ, k⟩ ∈ γT(t), there must be a leaf node d of t and a set of constraints C collected501

along the path to d, such that ⟨σ, k⟩ ∈ γD(d) ∧ k |= C. By definition of the abstraction502

⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩, the soundness of FILTERDVar∪F , and by definition of503

FILTERT (cf. Algorithms 2, 4, and 8), it must hold that ⟨σ, k⟩ ∈ γT(FILTERT(t, be,K)) or504

⟨σ, k⟩ ∈ γT(FILTERT(t,¬be,K)) due to the fact that these Algorithms invoke FILTERDVar∪F505

for every leaf node of t that may be merged with linear constraints from decision nodes506

found on the path from the root to that leaf. Thus, by structural induction, we have507

⟨σ′, k′⟩ ∈ γT([[s1]]♮FILTERT(t, be,K)) or ⟨σ′, k′⟩ ∈ γT([[s2]]♮FILTERT(t,¬be,K)), and so508

⟨σ′, k′⟩ ∈ γT([[s1]]♮FILTERT(t, be,K) ⊔T [[s2]]♮FILTERT(t,¬be,K)). Thus, we conclude that509

[[if be then s1 else s2]]γT(t) ⊆ γT([[s1]]♮FILTERT(t, be,K) ⊔T [[s2]]♮FILTERT(t,¬be,K)) =510

γT([[if be then s1 else s2]]♮t).511

Case while e do s. We show that, given a t ∈ T, for all x ∈ T, we have: ϕ(γT(x)) ⊆512

γT(ϕ♮(x)). By structural induction, we have [[s]]γT(x) ⊆ γT([[s]]♮x).513

2 Note that γT(tin) = ⟨Σ,K⟩.
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13 ≤

A ≤ 25

[13 ≤ A+x≤25 ∧ 0 ≤ x≤10 ∧ y=1] 0 ≤

A ≤ 12

[0 ≤ A-x≤2 ∧ 0 ≤ x≤10 ∧ y=− 1] ⊥I

Figure 7 Invariant at loc. 5⃝ of P ′′.

23 ≤

A ≤ 25

[x=0 ∧ y=1] 0 ≤

A ≤ 2

[x=0 ∧ y=− 1] ⊥I

Figure 8 Invariant at loc. 9⃝ of P ′′.

Let ⟨σ, k⟩ ∈ γT(x) and ⟨σ′, k′⟩ ∈ ϕ(γT(x)). By definition of ϕ(x) in Fig. 4, we have514

that ⟨σ′, k′⟩ ∈ [[s]]{⟨σ, k⟩} and true ∈ [[be]]⟨σ, k⟩. By definition of the abstraction515

⟨P(Σ×K),⊆⟩ γD←− ⟨DVar∪F,⊑D⟩, the soundness of FILTERDVar∪F , and by definition of516

FILTERT (cf. Algorithms 2, 4, and 8), it must hold that ⟨σ, k⟩ ∈ γT(FILTERT(x, be,K))517

by using similar arguments to ‘if’ case. Thus, by structural induction, we have ⟨σ′, k′⟩ ∈518

γT([[s]]♮FILTERT(x, be,K)), and so ⟨σ′, k′⟩ ∈ γT(ϕ♮(x)). We conclude ϕ(γT(x)) ⊆ γT(ϕ♮(x)).519

The proof that [[while e do s]]γT(t) ⊆ γT([[while e do s]]♮(t)) follows from the definition520

of ∇T (cf. Algorithm 9) that invokes the sound ∇DVar∪F operator on leaf nodes.521

◀522

▶ Example 8. Let us consider the following dynamic program family P ′′:523

1⃝ A := [10, 15];
2⃝ int x := 10, y;
3⃝ if (A>12) then y := 1 else y := −1;
4⃝ while 5⃝ (x > 0) {
6⃝ A := A+y;
7⃝ x := x-1;
8⃝ } 9⃝

524

which contains one feature A with domain [0,99]. Initially, A can have a value from [10,15].525

We can calculate the abstract invariant semantics [[P ′′]]♮, thus obtaining invariants from526

T in all locations. We show the inferred invariants in locations 5⃝ and 9⃝ in Figs. 7 and527

8, respectively. The decision tree at the final location 9⃝ shows that we have x=0 ∧ y=1528

when 23 ≤A≤ 25 and x=0 ∧ y=-1 when 0 ≤A≤ 2 on program exit. On the other hand,529

if we analyze P ′′ using single-program polyhedra analysis, where A is considered as an530

ordinary program variable, we obtain the following less precise invariant on program exit:531

x=0 ∧ −1≤y≤1 ∧ 5≤2A− 5y≤45. ◀532

5 Evaluation533

We evaluate our decision tree-based approach for analyzing dynamic program families by534

comparing it with the single-program analysis approach, in which dynamic program families535

are considered as single programs and features as ordinary program variables. The evaluation536

aims to show that our decision tree-based approach can effectively analyze dynamic program537

families and that it achieves a good precision/cost tradeoff with respect to the single-program538

analysis. Specifically, we ask the following research questions:539
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RQ1: How precise are inferred invariants of our decision tree-based approach compared to540

single-program analysis?541

RQ2: How time efficient is our decision tree-based approach compared to single-program542

analysis?543

RQ3: Can we find practical application scenarios of using our approach to effectively analyze544

dynamic program families?545

Implementation546

We have developed a prototype lifted static analyzer, called DSPLNum2Analyzer, which547

uses the lifted domain of decision trees T(CD,D). The abstract operations and transfer548

functions of the numerical domain D (e.g., intervals, octagons, and polyhedra) are provided549

by the APRON library [33]. Our proof-of-concept implementation is written in OCaml550

and consists of around 8K lines of code. The current front-end of the tool provides only a551

limited support for arrays, pointers, recursion, struct and union types, though an extension552

is possible. The only basic data type is mathematical integers, which is sufficient for our553

purposes. DSPLNum2Analyzer automatically computes a decision tree from the lifted554

domain in every program location. The analysis proceeds by structural induction on the555

program syntax, iterating while-s until a fixed point is reached. We apply delayed widening556

[13], which means that we start extrapolating by widening only after some fixed number of557

iterations we explicitly analyze the loop’s body. The precision of the obtained invariants558

for while-s is further improved by applying the narrowing operator [13]. We can tune the559

precision and time efficiency of the analysis by choosing the underlying numerical abstract560

domain (intervals, octagons, polyhedra), and by adjusting the widening delay. The precision561

of domains increases from intervals to polyhedra, but so does the computational complexity.562

Experimental setup and Benchmarks563

All experiments are executed on a 64-bit Intel®CoreT M i7-8700 CPU@3.20GHz × 12, Ubuntu564

18.04.5 LTS, with 8 GB memory. All times are reported as averages over five independent565

executions. The implementation, benchmarks, and all results obtained from our experiments566

are available from [20]: https://zenodo.org/record/4718697#.YJrDzagzbIU. We use567

three instances of our lifted analyses via decision trees: AT(I), AT(O), and AT(P ), which568

use intervals, octagons, and polyhedra domains as parameters. We compare our approach569

with three instances of the single-program analysis based on numerical domains from the570

APRON library [33]: A(I), A(O), and A(P ), which use intervals, octagons, and polyhedra571

domains, respectively. The default widening delay is 2.572

The evaluation is performed on a dozen of C numerical programs collected from several573

categories of the 9th International Competition on Software Verification (SV-COMP 2020)574

3: product lines, loops, loop-invgen (invgen for short), loop-lit (lit for short), and575

termination-crafted (crafted for short). In the case of product lines, we selected576

the e-mail system [26], which has been used before to assess product-line verification in577

the product-line community [2, 3, 48]. The e-mail system has eight features: encryption,578

decryption, automatic forwarding, e-mail signatures, auto responder, keys, verify, and address579

book, which can be activated or deactivated at run-time. There are forty valid configurations580

that can be derived. For the other categories, we have first selected some numerical programs,581

and then we have considered some of their integer variables as features. Basically, we selected582

3 https://sv-comp.sosy-lab.org/2020/
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Table 1 Performance results for single analysis A(I) vs. lifted analysis AT(I) with one and two
features on selected e-mail variant simulators. All times are in seconds.

Benchmark LOC
A(I), 0 feature AT(I), 1 feature AT(I), 2 features

Time Unrea. Rea. Time Unrea. Mix Time Unrea. Mix

e-mail_spec0 2645 16.2 80 48 29.3 80 48(1:1) 50.7 80 48(3:1)

e-mail_spec6 2660 18.8 6 26 23.6 16 16(1:1) 24.2 16 16(3:1)

e-mail_spec8 2665 14.6 12 20 19.1 12 20(1:1) 27.7 12 20(2:2)

e-mail_spec11 2660 15.2 160 96 24.7 160 96(1:1) 32.1 160 96(3:1)

e-mail_spec27 2630 14.5 384 128 28.4 384 128(1:1) 38.4 384 128(3:1)

those program variables as features that control configuration decisions and can influence583

the outcome of the given assertions. Tables 1 and 2 present characteristics of the selected584

benchmarks in our empirical study, such as: the file name (Benchmark), the category where585

it is located (folder), number of features (|F|), total number of lines of code (LOC).586

We use the analyses A(D) and AT(D) to evaluate the validity of assertions in the selected587

benchmarks. Let d ∈ D be a numerical invariant found before the assertion assert(be). An588

analysis can establish that the assertion is: (1) ‘unreachable’, if d = ⊥D; (2) ‘correct’ (valid), if589

d⊑D FILTERD(d, be), meaning that the assertion is indeed valid regardless of approximations;590

(3) ‘erroneous’ (invalid), if d ⊑D FILTERD(d,¬be), meaning that the assertion is indeed591

invalid; and (4) ‘I don’t know’, otherwise, meaning that the approximations introduced due592

to abstraction prevent the analyzer from giving a definite answer. We say that an assertion593

is reachable if one of the answers (2), (3), or (4) is obtained. In the case of the lifted analysis594

AT(D), we may also obtain mixed assertions when different leaf nodes of the resulting decision595

trees yield different answers.596

Results597

E-mail system. We use a variant simulator that has been generated with variability encoding598

from the e-mail configurable system [26]. Variability encoding is a process of encoding599

compile-time (static) variability of a configurable system as run-time (dynamic) variability600

in the variant simulator [48, 32]. In this setting, compile-time features are encoded with601

global program variables, and static configuration choices (e.g., #if-s) are encoded with602

conditional statements in the target language (if statements). We consider five specifications603

of the e-mail system encoded as assertions in SV-COMP. As variant simulators use standard604

language constructs to express variability (if statements), they can be analyzed by standard605

single-program analyzers A(D). We also analyze the variant simulators using our lifted606

analysis AT(D), where some of the feature variables are considered as real features. This607

way, our aim is to obtain more precise analysis results. For effectiveness, we consider only608

those feature variables that influence directly the specification as real features. Specifically,609

we consider variant simulators with one and two separate features, and five specifications:610

spec0, spec6, spec8, spec11, and spec27. For example, spec0 checks whether a message611

to be forwarded is readable, while spec27 checks whether the public key of a person who sent612

a message is available. For each specification, many assertions appear in the main function613

after inlining.614

Table 1 shows the results of analyzing the selected e-mail simulators using A(I) and615

AT(I) with one and two features. In the case of A(I), we report the number of assertions616
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that are found ‘unreachable’, denoted by Unrea., and reachable (‘correct’/‘erroneous’/‘I617

don’t know’), denoted by Rea.. In the case of AT(I), we report the number of ‘unreachable’618

assertions, denoted by Unrea., and mixed assertions, denoted by Mix. When a reachable619

(‘correct’/‘erroneous’/‘I don’t know’) assertion is reported by A(I), the lifted analysis AT(I)620

may give more precise answer by providing the information for which variants that assertion621

is reachable and for which is unreachable. We denote by (n : m) the fact that one assertion is622

unreachable in n variants and reachable in m variants. Note that feature variables in variant623

simulators are non-deterministically initialized at the beginning of the program and then624

can be only read in guards of if statements, thus AT(I) may only find more precise answers625

than A(I) with respect to the reachability of assertions. That is, it may find more assertions626

that are unreachable in various variants. See the following paragraph ‘Other benchmarks’ for627

examples where ‘I don’t know’ answers by A(I) are turned into definite (‘correct’/‘erroneous’)628

answers by AT(I). We can see in Table 1 that, for all reachable assertions found by A(I),629

we obtain more precise answers using the lifted analysis AT(I). For example, A(I) finds630

128 ‘I don’t know’ assertions for spec27, while AT(I) with one feature Keys finds 128 (1:1)631

mixed assertions such that each assertion is ‘unreachable’ when Keys=0 and ‘I don’t know’632

when Keys=1. By using AT(I) with two features Keys and Forward, we obtain 128 (3:1)633

mixed assertions, with each assertion is ‘unreachable’ when Keys = 0∨ Forward = 0. Similar634

analysis results are obtained for the other specifications. For all specifications, the analysis635

time increases by considering more features. In particular, we find that AT(I) with one636

feature is in average 1.6 times slower than A(I), and AT(I) with two features is in average637

2.2 times slower than A(I). However, we also obtain more precise information when using638

AT(I) with respect to the reachability of assertions in various configurations.639

Other benchmarks. We now present the performance results for the benchmarks from640

other SV-COMP categories. The program half_2.c from loop-invgen category is given641

in Fig. 9a. When we perform a single-program analysis A(P ), we obtain the ‘I don’t642

know’ answer for the assertion. However, if n is considered as a feature and the lifted643

analysis AT(P ) is performed on the resulting dynamic program family, we yield that the644

assertion is: ‘correct’ when n ≥ 1, ‘erroneous’ when n ≤ −2, and ‘I don’t know’ answer645

otherwise. We observe that the lifted analysis considers two different behaviors of half_2.c646

separately: the first when the loops are executed one or more times, and the second647

when the loops are not executed at all. Hence, we obtain definite answers, ‘correct’ and648

‘erroneous’, for the two behaviors. The program seq.c from loop-invgen category is649

given in Fig. 9b. When seq.c is analyzed using A(P ), we obtain ‘I don’t know’ for the650

assertion. When n0 and n1 are considered as features with the domains [−Max, +Max],651

AT(P ) gives more precise results for the assertion. In particular, the assertion is ‘correct’652

when (1 ≤ n0 ≤ Max ∧ 1 ≤ n1 ≤ Max) or (−Max ≤ n0 ≤ 0 ∧ −Max ≤ n1 ≤ 0), whereas653

the assertion is ‘erroneous’ when (n0 + n1 ≤ 0 ∧ (n0 ≥ 1 ∨ n1 ≥ 1)) and we obtain ‘I don’t654

know’ when (n0 + n1 ≥ 1 ∧ (n0 ≤ 0 ∨ n1 ≤ 0)). The program sum01_bug02.c from loops655

is given in Fig. 9c. A(P ) reports ‘I don’t know’ for the assertion, while AT(P ), when n656

is a feature with domain [0, Max], reports more precise answers: ’erroneous’ when n ≥ 9,657

‘correct’ when n = 0, and ‘I don’t know’ otherwise. A(P ) reports ‘I don’t know’ for the658

assertion in count_up_down*.c from loops, which is given in Fig. 9d. Still, AT(P ) when659

n is a feature with domain [−Max, Max] reports: ’correct’ answer when n = 0 at the final660

location, ‘erroneous’ when n ≤ −1, and ‘I don’t know’ otherwise. Similarly, A(P ) reports ‘I661

don’t know’ for the assertions in hhk2008.c and gsv2008.c from loop-lit (given in Figs. 9e662

and 9f). However, AT(P ) reports more precise answers in both cases. We consider res and663

cnt (resp., x) as features with domains [−Max, Max] for hhk2008.c (resp., gsv2008.c), and664
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n:=[-Max, Max];
int k:=n, i:=0;
while (i<n) {

k := k-1;
i := i+2; }

int j:=0;
while (j<n/2) {

k := k-1;
j := j+1; }

assert
(

k≥−1
)
;

(a) half_2.c

n0:=[-Max, Max];
n1:=[-Max, Max];
int i0:=0, k=0;
while (i0<n0) {

i0 := i0+1;
k := k+1; }

int i1:=0;
while (i1<n1) {

i1 := i1+1;
k := k+1; }

int j1:=0;
while (j1<n0+n1) {

j1 := j1+1;
k := k-1; }

assert
(

k==0
)
;

(b) seq.c

n:=[0, Max];
int a := 2;
int i, j:=10, sn=0;
for (i=1; i ≤ n; i++) {

if (j>n) then

sn := sn+a;
j := j-1;

}

assert (sn == n*a);

(c) sum01_bug02.c

n:=[-Max, Max];
int x := n;
int y=0;
while (n>0) {

n := n-1;
y := y+1; }

}

assert (y == x);

(d) count_up_down ∗ .c

res:=[-Max, Max];
cnt:=[-Max, Max];
int a:=res, b:=cnt;
while (cnt>0) {

cnt := cnt-1;
res := res+1; }

assert
(

res==a+b
)
;

(e) hhk2008.c

x:=[-Max, Max];
x:=-50;
int y:=[-9,9];
while (x<0) {

x := x+y;
y := y+1; }

assert
(

y≤60+x
)
;

(f) gsv2008.c

c:=[-Max, Max];
int x := [−Max, Max];
if (c ≥ 2) then {

while (x+c ≥ 2) {
x := x-c;
c := c+1; }

}

assert (x ≤ −3);

(g) Mysore.c

x:=[-Max, Max];
y:=[-Max, Max];
int oldx;
while (x ≥ 0 ∧ y ≥ 0) }

oldx := x;
x := y-1; }
y := oldx-1; }

assert (x+y ≤ 0);

(h) Copenhagen.c

Figure 9 Benchmarks from SV-COMP. All underlined variables are considered as features in the
corresponding dynamic program families.

we obtain ‘correct’ answer when cnt = 0 for hhk2008.c (resp., when x ≥ 0 for gsv2008.c),665

‘erroneous’ answer when cnt ≤ −1 for hhk2008.c, and ‘I don’t know’ answer otherwise.666

Finally, AT(P ) reports more precise answers than A(P ) for Mysore.c and Copenhagen.c667

from termination crafted category (given in Figs. 9g and 9h).668

Although for all benchmarks AT(P ) infers more precise invariants, still AT(P ) also takes669

more time than A(P ), as expected. On our benchmarks, this translates to slow-downs (i.e.,670

A(P ) vs. AT(P )) of 4.9 times in average when |F| = 1, and of 6.9 times in average when671

|F| = 2. However, in some cases the more efficient version AT(O), which uses octagons, can672

also provide more precise results than A(P ). For example, AT(O) for half_2.c gives the673

precise ‘erroneous’ answer like AT(P ) but gives ‘I don’t know’ in all other cases, whereas674

AT(O) for count_up_down*.c gives the precise ‘erroneous’ and ‘unreachable’ answers like675

AT(P ) but it turns the ‘correct’ answer from AT(P ) into an ‘I don’t know’. On the other676

hand, for gsv2008.c and Mysore.c, AT(O) gives the same precise answers as AT(P ), but677

twice faster. Furthermore, for sum01*.c, even AT(I), which uses intervals, gives the same678

precise answers like AT(P ), but with the similar time performance as A(P ). Table 2 shows679

the running times of A(P ), AT(O), and AT(P ), as well as whether the corresponding analysis680

precisely evaluates the given assertion – denoted by Ans. (we use ✓ for yes, ≃ for partially681

yes, and × for no).682
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Table 2 Performance results for single analysis A(D) vs. lifted analysis AT(D) and AT(O) on
selected benchmarks from SV-COMP. All times are in seconds.

Benchmark folder |F| LOC
A(P ) AT(O) AT(P )

Time Ans. Time Ans. Time Ans.

half_2.c invgen 1 25 0.008 × 0.014 ≃ 0.017 ✓

seq.c invgen 2 30 0.015 × 0.084 ✓ 0.045 ✓

sum01*.c loops 1 15 0.008 × 0.009 ✓ 0.041 ✓

count_up_d*.c loops 1 15 0.002 × 0.008 ≃ 0.011 ✓

hhk2008.c lit 2 20 0.003 × 0.073 ≃ 0.032 ✓

gsv2008.c lit 1 20 0.002 × 0.007 ✓ 0.015 ✓

Mysore.c crafted 1 30 0.0008 × 0.002 ✓ 0.004 ✓

Copenhagen.c crafted 2 30 0.002 × 0.012 ≃ 0.021 ✓

Discussion683

Our experiments demonstrate that the lifted analysis AT(D) is able to infer more precise684

numerical invariants than the single-program analysis A(D) while maintaining scalability685

(addresses RQ1). As the result of more complex abstract operations and transfer functions686

of the decision tree domain, we observe slower running times of AT(D) as compared to A(D).687

However, this is an acceptable precision/cost tradeoff, since the more precise numerical688

invariants inferred by AT(D) enables us to successfully answer many interesting assertions in689

all considered benchmarks (addresses RQ2 and RQ3). Furthermore, our current tool is only690

a prototype implementation to experimentally confirm the suitability of our approach. Many691

abstract operations and transfer functions of the lifted domain can be further optimized,692

thus making the performances of the tool to improve.693

Our current tool supports a non-trivial subset of C, and the missing constructs (e.g.694

pointers, struct and union types) are largely orthogonal to the solution (lifted domains).695

In particular, these features complicate the abstract semantics of single-programs and696

implementation of the domains for leaf nodes, but have no impact on the semantics of697

variability-specific constructs and the lifted domains we introduce in this work. Therefore,698

supporting these constructs would not provide any new insights to our evaluation. If a699

real-world tool based on abstract interpretation (e.g. ASTREE [14]) becomes freely available,700

we can easily transfer our implementation to it.701

6 Related Work702

Decision-tree abstract domains have been a topic of research in the field of abstract inter-703

pretation in recent times [25, 15, 9, 46]. Decision trees have been applied for the disjunctive704

refinement of interval (boxes) domain [25]. That is, each element of the new domain is a705

propositional formula over interval linear constraints. Decision tree abstract domains has also706

been used to enable path dependent static analysis [15, 9] by handling disjunctive analysis707

properties. Binary decision tree domains [9] can express disjunctive properties depending on708

the boolean values of the branch (if) conditions (represented in decision nodes) with sharing709

of the properties of the other variables (represented in leaf nodes). Segmented decision710

tree abstract domains [15] are generalizations of binary decision tree domains and array711

segmentation, where the choices in decision nodes are made on the values of decision variables712
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according to the ranges specified by a symbolic segmentation. A pre-analysis is used to find713

decision variables and their symbolic segmentation. The choices for a given decision variable714

are made only once along a given path. The decision tree lifted domain proposed here can715

be considered as a generalization of the segmented decision tree domain, where the choices716

for a given feature variable can be made several times along a given path and arbitrary717

linear constraints over feature variables can be used to represent the choices in decision718

nodes. Moreover, linear constraints labelling decision nodes here are semantically inferred719

during the static analysis and do not necessarily syntactically appear in the code. Urban and720

Mine [46] use decision tree-based abstract domains to prove program termination. Decision721

nodes are labelled with linear constraints that split the memory space and leaf nodes contain722

affine ranking functions for proving program termination. The APRON library has been723

developed by Jeannet and Mine [33] to support the application of numerical abstract domains724

in static analysis. The ELINA library [44] represents an another efficient implementation of725

numerical abstract domains.726

Several lifted analyses based on abstract interpretation have been proposed recently727

[36, 23, 18, 19, 21] for analyzing traditional program families with #ifdef-s. A formal728

methodology for derivation of tuple-based lifted analyses from existing single-program analyses729

phrased in the abstract interpretation framework has been proposed by Midtgaard et. al. [36].730

They use a lifted domain that is a |K|-fold product of an existing single-program domain.731

That is, the elements of the lifted domain are tuples that contain one separate component for732

each configuration of K. A more efficient lifted analysis by abstract interpretation obtained733

by improving representation via BDD-based lifted domains is proposed by Dimovski [18, 19].734

The elements of the lifted domain are BDDs, in which decision nodes are labelled with Boolean735

features and leaf nodes belong to an existing single-program domain. BDDs offer more736

possibilities for sharing and interaction between analysis properties corresponding to different737

configurations. The above lifted analyses are applied to program families with only Boolean738

features. The work [21] extends prior approaches by using decision tree-based lifted domain739

for analyzing program families with numerical features. In this case, the elements of the740

lifted domain are decision trees, in which decision nodes are labelled with linear constraints741

over numerical features and leaf nodes belong to an existing single-program domain. This742

domain is also successfully applied to program synthesis for resolving program sketches [22].743

Several other efficient implementations of the lifted dataflow analysis from the monotone744

framework (a-la Kildall) [35] have also been proposed in the SPL community. Brabrand et745

al. [5] have introduced a tuple-based lifted dataflow analysis, whereas an approach based746

on using variational data structures (e.g., variational CFGs, variational data-flow facts) [47]747

have been used for achieving efficient dataflow computation of some real-world systems.748

Finally, SPLLIFT [4] is an implementation of the lifted dataflow analysis formulated within749

the IFDS framework, which is a subset of dataflow analyses with certain properties, such as750

distributivity of transfer functions.751

Dynamic program families (DSPLs) have been introduced by Hallsteinsen et al. [28] in752

2008 as a technique that uses the principles of traditional SPLs to build variants adaptable753

at run-time. Since then, the research on DSPLs has been mainly focussed on developing754

mechanisms for implementing DSPLs and for defining suitable feature models.755

There are many strategies for implementing variability in traditional SPLs, such as:756

annotative approach via the C-preprocessor’s #ifdef construct [34], compositional approach757

via the feature-oriented programming (FOP) [40] and the delta-oriented programming (DOP)758

[43], etc. The extensions of FOP and DOP to support run-time reconfiguration and software759

evolution as found in DSPLs has been proposed by Rosenmuller et al. [42] and Damiani760
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et al [17]. In this work, we extend the annotative approach via #ifdef-s to implement761

variability in DSPLs. The set of valid configurations K of a program family with Boolean762

and numerical features is typically described by a numerical feature model, which represents763

a tree-like structure that describes which combinations of feature’s values and relationships764

among them are valid. Several works address the need to change the structural variability765

(feature model) at run-time. One approach [30] relies on the Common Variability Language766

(CVL) as an attempt for modelling variability transformations by allowing different types767

of substitutions to re-configure new versions of base models. Cetina et al. [8] also propose768

several strategies for modelling runtime transformations using CVL. Helleboogh et al. [31]769

use a meta-variability model to support dynamic feature models, where high-level constructs770

enable the addition and removal of variants on-the-fly to the base feature model. In this work,771

we disregard syntactic representations of the set K as feature model, as we are concerned772

with behavioural analysis of program families rather than with implementation details of773

K. Therefore, we use the set-theoretic view of K that is syntactically fixed a priori. This is774

convenient for our purpose here. To the best of our knowledge, our work is pioneering in775

studying specifically designed behavioral analysis of dynamic program families.776

7 Conclusion777

In this work, we employ decision trees and widely-known numerical abstract domains for the778

automatic analysis of C program families that contain dynamically bound features. This779

way, we obtain a decision tree lifted domain for handling dynamic program families with780

numerical features. Based on a number of experiments on benchmarks from SV-COMP, we781

have shown that our lifted analysis is effective and performs well on a wide variety of cases782

by achieving a good precision/cots tradeoff. The lifted domain T(CD,D) is very expressive783

since it can express weak forms of disjunctions arising from feature-based constructs.784

In the future, we would like to extend the lifted abstract domain to also support non-linear785

constraints, such as congruences and non-linear functions (e.g. polynomials, exponentials)786

[6]. Note that the lifted analysis AT(D) reports constraints defined over features for which787

a given assertion is valid, fails, or unreachable. The found constraints take into account788

the value of features at the location before the given assertion. By using a backward lifted789

analysis [24, 38], which propagates backwards the found constraints by AT(D), we can infer790

the necessary preconditions (defined over features) in the initial state that will guarantee the791

assertion is always valid, fails, or unreachable.792
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