
On defining a model driven architecture for an enterprise e-health

system

Blagoj Atanasovskia, Milošš Bogdanovićb,Goran Velinovc, Leonid Stoimenovb,
Aleksandar S. Dimovskie, Bojana Koteskac, Dragan Jankovićb, Irena Skrceskad,
Margita Kon-Popovskac, Boro Jakimovskic

aSorsix International, Skopje, Macedonia, blagoj.atanasovski@sorsix.com;
bUniversity of Nis, Faculty of Electronic Engineering, Nǐs, Serbia,
{milos.bogdanovic,leonid.stoimenov,dragan.jankovic}@elfak.ni.ac.rs;
cFaculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje,
Macedonia,
{goran.velinov,bojana.koteska,margita.kon-popovska,boro.jakimovski}@finki.ukim.mk;
dFaculty of Informatics, European University, Skopje, Macedonia,
irena.skrceska@eurm.edu.mk;
eMother Teresa University, Skopje, Macedonia; aleksandar.dimovski@unt.edu.mk

ARTICLE HISTORY

Compiled November 4, 2021

ABSTRACT
The national e-health systems implemented in Serbia as “MojDoktor” (MyDoc-
tor) and in Macedonia as “MojTermin” (MyAppointment) are based on the same
integrated health information platform. It represents a central electronic system,
where all medical health related information about patients, health workers, health-
care delivery organizations, documents, procedures is stored and processed on-line.
Its architecture was designed to allow for process oriented development with agile
methodologies. This methodology allowed for fast deployment and adoption, but
a change in the architecture to a more formal approach is required to assure its
extensibility, soundness, interoperability and standardization.

In this paper, we propose a formalization of the system design and its implemen-
tation as a Model Driven Architecture® 1. We develop a set of formal models on
several abstraction levels and explain how different layers of the MDA framework
are covered using them. We also propose a model for data transformations that will
provide interfaces for interoperability between an external and our system. We con-
clude the paper with a complete example that utilizes the formal models to define
a RESTful service model that is interoperable with our system.

KEYWORDS
Model driven architecture, National e-health system, Integrated information
systems, Formal models, and Verification

CONTACT Aleksandar S. Dimovski. Email: aleksandar.dimovski@unt.edu.mk
1The OMG group that launched it holds registered trademarks on the term Model Driven Architecture®

and its acronym MDA®



1. Introduction

Electronic health record (EHR) represents a record of any health-related event (e.g.
hospital admission, general practitioner visit, allergies) experienced by an individual
over their lifespan from in utero to death (see Nguyen et al. (2014)). A national e-
health system is a central electronic system, which enables collection and management
of national EHRs data. It ensures interoperability of the existing autonomous and
heterogeneous systems developed at different times, with different objectives, different
data semantic and models, platforms and technology. The model of storage of EHRs
data can be centralized (patient-centric) or decentralized (distributed or institution-
centric), see Lapsia et al. (2012).

National e-health systems in Macedonia and Serbia were implemented in the period
of 2011-2016 and 2015-2016, respectively. Based on the analysis of the health systems
and the level of implementation of the local e-health applications in both countries, but
also taking into account the risk factors and the experiences from previous implemen-
tations of e-health systems in the region, an adapted centralized model of data storage
is implemented. In such a model some Healthcare Delivery Organizations (HDOs)
have local copies of the data (they have e-health applications), while others do not
have copies of the data and they are about to start using the new central system. In
order to integrate the e-health applications that are used by HDOs with the national
e-health system, the unambiguous semantics of data exchange between them is de-
fined and appropriate Application Programming Interface (API) for integration and
interoperability is developed.

The integration of these local e-health applications with the central e-health system
enables integrated execution of business processes taking place partly in the e-health
applications, and partly in the central system. In addition, the integration provides
uni- or bi-directional data exchange: e-health applications provide the necessary data
to the central e-health system and/or receive the necessary data for storage from the
central e-health system. All systems used in the state institutions: Republic Health
Insurance Fund (RHIF), Institutes for Public Health (IPH), Medicines and Medical
Devices Agency (MMDA or Drug Agency), and so on, are also integrated, e.g. the
data retrieved from the RHIF is insurance status of patients.

For the HDOs and the state institutions that do not have an e-health application,
the national e-health system provides authorized access to some specific modules or
functionalities through a web user interface (e.g. the users form IPH have access to all
functionalities of the BI module). The user interface of the national e-health system
is designed and developed according to the user-centred design principles for e-health
systems described by Johnson et al. (2005); Chan et al. (2011).

From a data collection point of view, the system continuously creates new and up-
dates existing records. In Serbia, the system creates records for over 240,000 prescrip-
tions, 80,000 referrals and 170,000 examinations, each working day, while handling over
4,800,000 requests through the web APIs. In Macedonia, the system creates records
for over 70,000 prescriptions and 30,000 referrals, each working day, while handling
over 1,000,000 requests through the web APIs. Although the national e-health systems
in both countries are being effectively used, still there are challenges to overcome in
order the system to be more productively used and the positive effects of its usage to
be increased.

Velinov et al. (2015) recognize that long term strategy goals of a national e-health
system should be standardization on a national level, and this should be enhanced to a
full interoperability on a European level. The current implementations of the systems

2



use a number of international codes and nomenclatures with unified significance, like
ICD10 and ATC, but the semantic interoperability is defined by internal specification
adopted on the national level. For international system interoperability, internationally
recognized standards for medical data exchange, such as HL7, OpenEHR, etc. should
be implemented.

From the initial data analysis many conclusions can be provided and numerous
improvements of the health system in both countries can be planned. Unfortunately,
there are cases where the quality of the entered data is not very high. Such examples
are incomplete data, incorrect data, etc. Therefore, strict rules for data quality control
should be introduced and appropriate changes in the system architecture design should
be implemented.

We need to change the software system architecture to a more formal approach in
order to modernize and transform the existing e-health systems to be interoperable
and standardized, and we need to do such transformation in a secure and sound way.
For this aim to be achieved, we have developed a formal model which formalizes
all steps taken while implementing an enterprise e-health system, including the first
one which is usually left out of the formal model scope - the formalization of work-
flow diagrams that describe health-care processes. Our formal model is inspired by
Riccobene and Scandurra (2009) and Tao et al. (2017). It incorporates benefits from
both approaches and adds additional benefits in terms of simplicity, usability, system
design and interoperability. We believe that the developed formal model is simpler
and easier to implement, especially in cases when information systems are already
in place. In contrast to the above cited works, our model does not focus exclusively
to capture behaviour formalism at the PIM level, but follows the complete design
or redesign process starting from work-flow diagrams introduced within Computation
Independent Model (CIM) of Model Driven Architecture (MDA). The formal model
we present in this paper includes data transformation meta-model which can be used
for exchanging data between the system implementing our model and any other system
implementing electronic health information exchange standard. Thus, we consider our
proposal to significantly improve interoperability level of any e-health system that
would use it.

2. Motivation and state-of-the-art

In order to design a viable Integrated Health Information System (IHIS), software
engineers are facing a variety of problems originating from the high complexity of the
health care processes they are attempting to conceptualize. Although a certain level of
standardization has been achieved in the past decade, e.g. CEN (2008); HL7 (2011);
ISO/TC215 (2009), there still seems to be missing an overall standard that makes
it possible for electronic health care data to be easily interchanged between health
enterprises. Without the ability to easily interchange data, interoperability remains
an unsolved issue for majority of health information system and brings both research
and development communities back to a set of questions regarding the architecture of
these systems: What methodologies should be used to conceptualize the health care
processes? Should health care information system always rely on platform-independent
models? What architecture should be used to insure successful deployment of infor-
mation system in heterogeneous and distributed environments? Which interoperability
standards should be adopted to enhance health information exchange? What is the
impact of all these issues upon software development process?

3



In the past decade, Model Driven Architecture (MDA) has been widely adopted as
an framework for development of integrated health information systems. This archi-
tecture has been foreseen as a possible solution for a wide range of problems addressed
by the designers of health information systems. MDA characteristics offer a possibil-
ity to develop health information system as a loosely coupled group of applications
functioning in a heterogeneous and distributed environment. If MDA is adopted in
the early design stage, it offers system architects an opportunity to design a truly
lawful, portable and interoperable system by supporting the following architectural
characteristics as recognized by Lopez and Blobel (2009):

• system flexibility, scalability and re-usability is ensured through component-
orientation;
• architecture is model-driven and separated from the software development pro-

cess;
• platform-independent and platform-specific modelling processes are separated

(imposed through MDA characteristics);
• reference models and domain models can be specified at meta-level which in turn

can be used as foundation for the development of shared terminology and/or
ontology.

In the context of long-term usability and interoperability of an IHIS, there is a
significant number of examples adopting MDA architecture. As stated in Blobel and
Pharow (2006), Germany has started a national programme for establishing a health
telematics platform which combines card enabled communication with network based
interoperability. In order to achieve semantic interoperability, this platform success-
fully combines model driven architecture with variety of different generic components
and development approaches such as ISO reference model for open distributed process-
ing (RM-ODP) IOS (2009), a unified process based on the Rational Unified Process
RUP (2017), the HL7 development framework HL7 (2006), service oriented architec-
ture (SOA) (2007) , CORBA services CORBA (2012), advanced EHR architecture
approaches CEN (2008), etc.

Another example of development framework for semantically interoperable IHIS
has been provided by Lopez and Blobel (2009). The main objective of this research
was to enhance existing IHIS architectures to enable semantic interoperability. The
authors present an analysis of existing IHIS architectures and provide a harmoniza-
tion framework based on the usage of The Generic Component Model (GCM). The
methodology they propose takes advantage of Service-Oriented Architecture (SOA),
MDA, ISO 10746 and HL7 Development Framework (HDF). Further, the modelling
process is based on the Rational Unified Process (RUP) to ensure the flexibility of the
development while harmonizing different architectural approaches. In Rayhupathi and
Umar (2008), authors explore the potential of the model driven architecture in health
care information systems development. MDA was used as a mean to develop a system
capable of tracking patient information. They present the underlying MDA structure
in the form of UML diagrams accompanied by PIM to PSM transformation rules.
These rules have been used to generate the prototype application from the model they
also present. This development provided additional insights regarding the development
of transformation rules. As output, this research provided design guidelines for using
MDA in IHIS development and confirmed MDA is usable for generating general models
and has the potential to overcome lack of open standards, interoperability, portability,
scalability, and the high cost of implementation issues.

4



Another possible application of MDA is within the information systems focused on
achieving semantic interoperability of electronic health records. As an example, the
approach described in Garde et al. (2009) focuses on methods which will ensure clinical
content is internationally accessible as well as technically and clinically correct. Al-
though this approach can represent the foundation for safely sharing the information
clinicians need, decision support and legacy data migration, in order to make a system
semantically interoperable all data should conform to shared models, terminologies
and/or ontologies which can be introduced through means of MDA. In the same con-
text, Schlieter and et al. (2015) attempt to create a specific MDA for the health-care
domain. They needed a mechanism that fosters a sustainable tele-health platform in
terms of a methodology that provides an efficient way to deploy new artefacts on the
platform and ensure these artefacts are compliant to the platform properties. They
show how the MDA approach can be used in order to build a methodological fundament
for a systematic creation of an application system. Their use-case is an application for
IT based work-flow support for an interdisciplinary stroke care project.

The work by Curcin et al. (2014) uses MDA to develop tools for data collection which
allow non-informatics experts to model requirements in their local domain. They rec-
ognized a problem in the process of implementing local improvement initiatives in
healthcare systems, so they developed a Model-Driven framework and implementa-
tion that allows local teams in medical organizations to specify the metrics to track
their performance during an intervention, together with data points to calculate these
metrics. Based on the metric specification the software generates appropriate data
collection pages. In Jones et al. (2005) MDA augmented with formal validation was
used to develop m-health components promising portability, interoperability, platform
independence and domain specificity. The authors are developing systems based on
inter-communicating devices worn on the body (Body Area Networks) that provide
an integrated set of personalised health-related services to the user. This mobile health-
care application feeds captured data into a healthcare provider’s enterprise information
system. In their previous work the same authors propose an extension of the model-
driven approach where formal methods are used to support the process of modelling
and model transformation. The semi-formal modelling with UML is verified by using
tools such as SPIN by Holzmann (2003) for model checking and TORX by Tretmans
and Belinfante (1999) for model testing. They refer to Bolognesi et al. (1995) , Jones
(1995) and Jones (1997) as possible formal approaches to the transformation.

In this paper we present a set of models that formalize the implementation of e-
health system using MDA as a framework. Once the formal approach becomes fully
implemented, we believe that both developers and system users will have the following
benefits:

(1) The complexity of system will be abstracted through means of MDA models. This
way, decisions regarding operational design will be delegated to lower modelling
levels. The formal model we introduce in this paper follows the complete system
design process - from conceptual design to platform specific implementation. This
way, decisions regarding operational design will be delegated to lower modelling
levels while retaining the ability to formally validate any of the previous design
steps.

(2) The system will become capable of exchanging information with other systems
implementing different e-health standards. It will be capable of supporting differ-
ent e-health standards by aligning (mapping) its Platform Independent Models
(PIM) with the structure of the components defined by different standards. This

5



Figure 1. Architecture of the national e-health system

ability is introduced through data transformation meta-model defined within our
formal model. As an example, we present data transformation model for HL7
standard messages.

(3) Development costs regarding the future improvements of the system are expected
to be decreased due to re-usability of the developed models and alignments
(mappings). And the verification capabilities of the models will prevent errors
from reaching production.

3. The e-health system overview

3.1. Functional ecosystem

The implemented national e-health systems in both countries build functional ecosys-
tems involving all HDOs and state institutions of public healthcare - as providers and
users of information in this ecosystem. The systems play an important role in improv-
ing the operational management and the strategic planning of the reforms in public
health in both countries. The top level architecture of the system is shown in Figure 1.
The system consists of functional modules, grouped into four packages as follows:

• Healthcare: e-Referral, e-Prescription, e-Booking, Medical Daybook, Diabetes,
E-Mother Card, Hospital Information System (HIS), Laboratory Information
System (LIS), Radiology Information System (RIS);
• Information, monitoring and control: Reports and BI, SMS and E-Mail, Billing,

Web & Mobile Public Portal, Payment for Performance (P4P), Security, Admin,
Balanced ScoreCard (BSC);
• Health prevention: Immunology, Prevention Programs, Scheduled Checkups;
• Public health: Disease Registration, Code Lists, Registers, Human Resources

(HR);

The central component of the system is the EHR module. All modules provide web

6



user interface. The following modules enable integration with other systems via API:
E-referral, E-prescription, E-booking, Medical Day-book, HIS, LIS, RIS, while others
are used only through a graphical user interface.

The system architecture provides several advantages:

• Existing e-health applications continue to be used in the HDOs and state insti-
tutions, where they gain importance because the national e-health system takes
data from them. The need for their expansion, upgrading and improvement is
created. So local e-health applications are not merely providers of information -
with the integration they also receive data from the national e-health system.
• A model of integration is chosen which provides on-line operation of the system -

all data are actualized at the moment when they are entered. Accurately defined
API for integration allows quick technical integration, minimal technical errors,
there is no wait for data synchronization, etc.
• For the users of existing e-health applications there is no change of the way they

work or of the application software, thus avoiding resistance to change or the
need for mastering new systems.
• For the new users that did not have e-health applications, intuitive user interface

with simple and clearly defined operating procedures is developed.
• Due to privacy and confidentiality, a special focus is put on data security.
• A system that is most suitable for users - agile (incremental and iterative) ap-

proach to the definition, development and implementation of new functionalities
is chosen. In the cases of functionalities that do not meet the real needs, after
feedback from the users, a fast repairs and improvements are done.

3.2. Interoperability and EHR components

Collecting of EHRs data on the national level, as a central module of the system,
has been enabled through the above mentioned modules. A context level Data Flow
Diagram (DFD) of the system is shown in Figure 2.

A model of interoperability has been selected by which the local e-health applica-
tions are integrated with the central national e-health system. All the existing different
e-health applications (74 in Macedonia and 57 in Serbia) were integrated into a na-
tional e-health system. Accurately defined API for integration brings the following
advantages: there is no wait for data synchronization, there is quick technical inte-
gration, technical errors are minimal, etc. The integration is based on interfaces that
allow data exchange according to an internal XML based standard. Within the in-
tegration, accepted international codification systems are used, such as ICD-10 for
diagnosis coding, ATC for medications coding and AR-DRG classification system for
health services.

The EHRs combine time-oriented, problem-oriented and source-oriented compo-
nents (by Häyrinen et al. (2008)): Patient personal data; Health risk factors; Allergies/
intolerances; History of diseases registered in the national registers (cancer, diabetes,
cardiovascular diseases, etc.); History of: diagnostic treatments, specialist treatments,
inpatient treatment with surgical interventions, medical examinations, radiological
treatments, laboratory findings; used medications (chronic and acute therapies, nar-
cotics and medications approved by a consilient opinion); Dental card. This means
that the EHR module on the national level contains all data components that are rel-
evant to the long-term health status of the patient, MITRE-corporation (2006). The
above mentioned segmentation by components of the EHRs is made according to the

7



Figure 2. The system context level DFD

requirements and the needs of the Ministry of Health (MoH) of Macedonia, but it is
adaptable to any segmentation and display, US-HHS (2010). The manner of defining
and monitoring the access to data is provided below.

Due to the sensitivity of the data that are accessed through EHR module, US-
HHS (2010); Ricciardi (2010); US-HHS (2015); Xu et al. (2017), there are strict rules
of defining this access. The e-health system has the functionality for defining the
rules of access to the EHR. This functionality is intended for administrators from
the MoH. A very fine granularity for dividing the content of the EHR is provided.
The content can be divided into different dimensions (criteria), to the level of each
combination of values. The dimensions by which the rules of access could be defined
are: EHR components (described above), Specialties, Diagnoses, Episodes of care,
Prescribed/used medications, HDOs level of healthcare, etc. There is a flexible tool
for creating and saving the filters in the form of predicate expressions. It allows easy
selection of different criteria for filtering and building complex expressions by including
or excluding one value or a set of values from any dimension (IN or NOT IN), easy
embedding or combining (AND or OR).

3.3. Security

The system covers the following security aspects: role-based access, network security
mechanisms, data encryption, digital signature and access monitoring. It uses a secu-
rity access for allocation of roles and privileges that are defined in detail at the level
of each action. The authentication mechanism allows each user to access the system
within the privileges that are permitted to him. Each user can access it by logging
the web application or through a web service from an e-health application used in the
HDO.

According to the needs for secure access to sensitive data, two instances are used for
web-based access to the system: external, open – designed for public access, accessible
via HTTP protocol and internal, private – designed for users that log in to the system
through the HTTPS protocol for which a security certificate is provided. The internal

8



communication within the framework of the system is carried out through an encrypted
HTTPS protocol that provides security and crypto protection against the interception
of data.

In the cases of access through a web service, there is a dual security mechanism.
The authentication is carried out on the level of the provider (software vendor) that
has a registered e-health application for use in HDOs integrated with the national e-
health system through an application token, as well as at the level of the user (doctor,
pharmacist, etc.) who uses web services of the national e-health system through a
session token.

The system allows a two-phase authentication - using a user name and a password
(the passwords are stored in an encrypted form) for login and verification of the login
by sending a message to the logged-in user on his or her official e-mail account or a
PIN code on his or her official mobile phone number. The physical security of the data
and a system for monitoring of the hardware infrastructure, mechanisms for protection
against network attacks have been provided. Each activity of the users is recorded in
special log files, that is, records are stored for each change or reading of the data from
the system.

The system records (logs) all attempts of access to the EHR of the patients. Thus,
the access procedure is as follows: the user of the system (doctor) requests access to
the EHR of a particular patient, to which he receives a message with a legal lesson
on the consequences of accessing personal medical data and a request for confirmation
that he or she consciously requires access. Upon confirmation of the request for access
to the EHR, the user receives a message on his or her official e-mail with a link that
opens the EHR for the given patient. The content displayed depends on the defined
privileges for access to certain parts of the EHR, according to the rules of access.
Access logs are stored and consist of data by which user has accessed the EHR, which
parts of it he could see, from which HDO and the exact time and date.

3.4. The development methodology

An adapted agile methodology for the design and implementation of the information
system was used. The system was developed and implemented in phases with gradual
expansion according to the adapted methodology for iterative and gradual develop-
ment by Larman and Basili (2003), in the following way:

(1) By consulting domain experts, work-flow diagrams were created that record the
processes and rules in the health-care sector.

(2) With these work-flow diagrams and additional discussion, a relational model was
made of:
(a) all the entities required to describe the data;
(b) all the relations and constraints between entities.

(3) A central database which is instatiated with the relational model developed in
Step (2) was created.

(4) A service layer to govern the database operations was created, this layer imple-
ments the semantic and security constraints that can not be modelled with the
relational model.

(5) A web application was created, which represents an interface between users and
the service layer.

(6) A web API was created to allow third party applications to communicate with
the service layer.

9



When all functionalities were not well defined, i.e. there was no precise and de-
tailed description of the functional requirements, a sequential process of development
was organized, with elements of Dynamic System Development Method (DSDM) as
in Meso and Jain (2006), Voigt (2004). It should be emphasized here that a signifi-
cant flexibility was expected from the implementer - to accept frequent requests that
changed the functionality, after the stages of acceptance and deployment in produc-
tion were finished, without considering them as change requests. Similar approach was
taken for the development of functionalities that were not required in the original
version of the official technical documentation. Since interesting cases appeared when
the management of the two project teams assessed that some functionality is crucial
for the successful use of the system, so that the given functionality was accepted and
developed, regardless whether it was formally required in the functional requirements
or not.

4. Transforming informal work-flow diagrams to MDA

As mentioned in the previous sections, the national e-health systems ’Moj Doktor’
and ’Moj Termin’ are in production. With this paper we aim to create a set of formal
models that can be used to formally verify the already deployed code, and allow for
stable future updates.

This section is organized as follows. A description of the process for creating elec-
tronic referrals is presented in Subsection 4.1. The described process will be used as
a running example throughout the rest of the section. Using this example, in Subsec-
tion 4.2 we start the formalisation by describing the informal work-flow diagrams used
with developing the current implementation of the system. In Subsection 4.3, a class
diagram of the existing web services is presented as the first model. By abstracting
the first model, a formal model for describing any service is defined in Subsection 4.4
and then in Subsection 4.5 we give a formal model for describing complete processes.
The section concludes with part of the example process expressed with this model
in Subsection 4.6, how models are organized in layers based on MDA framework in
Subsection 4.7, and the definition of a valid process in Subsection 4.8.

4.1. The process of creating electronic referrals

The Healthcare package of modules (see Fig. 1) creates the possibility to define and
approve appointment timeslots for doctors, the creation and update of electronic re-
ferrals and examinations, a way to make appointments for surgeries, and to follow
the activities of doctors in clinics. The process of referral creation is executed over
30,000 and 100,000 times per day in Macedonia and Serbia, respectively. It represents
a business process which is taken as a running example for the remaining of this paper.

In the E-Referral module, there are multiple types of referrals. Certain types of
referrals do not require an appointment to be made, they are created referring to a
clinic or laboratory, and the first available doctor receives the patient as soon as they
arrive. Regular referrals require an available appointment timeslot, and each timeslot
can be assigned to only one referral.

The process of creating an electronic referral depends on the type of referral, the
patient’s state, and the resources available. A resource can be a doctor or a machine.
Referrals that represent a request for a laboratory to perform tests on a patient are a
special category. Laboratories serve patients that have been referred on a first-come-

10



Figure 3. The work-flow of the referral creation process

first serve basis, there are no appointment times, and the required input is the patient,
the laboratory and the details about what kind of tests are required. If the patient is
referred to a resource then the patient’s state determines whether the patient needs an
emergency, priority or a regular referral. Emergency referrals are issued for patients
in need of urgent care. Emergency referrals require only the patient and accepting
clinic to be specified. Priority referrals are for patients with worsening states, they
are referred to a clinic and need to be examined in the following few days. Regular
referrals need an appointment time to be available, and for regular referrals a specific
resource needs to be selected, not just a referred clinic.

A referral is always created by a doctor. A referral can be from a general practitioner
to a specialist or a machine/equipment (e.g. MRI Scan), from one specalist to another,
or a control referral from one specialist to themselves in the future.

4.2. An informal work-flow diagram

The first step taken in implementing the system was creating work-flow diagrams.
They represent an informal representation of processes that the system automates.
We consider them informal because complex workflows are hard to model, constraints
are not presented and interpretation can vary between readers. Because of this, they
are not ideal for documenting health-care processes, and significant amount of non-
structured text was required to capture all the rules and constraints.

Figure 3 represents the process of referral creation in the “MojDoktor” web appli-
cation. The process descibed can be started by any authenticated doctor. First the
doctor will be presented with a list of available clinics and the resources in each of
those clinics in the system. The doctor must choose the clinic and/or resource. Then
the doctor selects the referral type. For laboratory referrals and priority referrals, the
doctor directly fills in the referral details (patient info, referring diagnosis etc.) and
creates the referral. For regular referrals, an available appointment time must be se-
lected or the doctor must go back to the clinic selection. If an available appointment
time was found, the referral can be created. The electronic referral is stored in the
central database.

11



The work-flow diagram contains user choices (type of referral, clinic selection), calls
to web services (available resources, available appointment times, create referral), and
documents are created (and stored in the database). In the diagram in Figure 3 we
use the shaded fields to emphasize which steps of the process are actions done by the
information system, while the others are user input. After the workflow diagram was
created, the implementation follows the remaining steps outlined in Section 3.4.

For each of the shaded steps an appropriate web service exists. The Get Available
Resources and Clinics web service returns a collection of clinics, and for each clinic
a list of available resources that can be referred to. The logic behind which resources
and clinics are returned depends on the authenticated doctor and is described by a
separate work-flow diagram. For example, only a gynocologyst can refer a patient to a
mammogram. The Get available Appointment Times web service expects a resource id
as input, and it returns a collection of available Appointment Times or an error if no
Appointment Times are available. The Create Referral web service expects as input
a referral type, clinic, resource, appointment time, and referral details. Based on the
input, it creates a specific referral document, stores it in the central database, updates
the selected timeslot as not available and concludes the process.

4.3. Creating models for the implemented web services

For all the steps in the work-flow diagrams that are actions done by the system,
there is an implementation in code. The first step in the formalization of the system
is to create UML class diagrams that document each of the web services. For the
web services in Figure 3, the Class diagrams in Figure 4 are given as an example.
The implementation follows the standard layered architecture for web applications.
There are models (or entities) that represent instances of the data in the system. In
this example the Clinic, Resource, Appointment Time and Referral entities are shown
with a part of their properties. Each of the entities is accessed and saved through a
specific repository for it. Repositories encapsulate all database related code. On top
of the repository layer is the service layer. The business logic of each web service is
recorded here. The getAvailableResourcesAndClinics method of the ResourcesService
is the implementation of the step of the same name in Figure 3. In the ReferralsService,
three methods are shown for creating referrals, and depending of the user choices in
the process in Figure 3, the appropriate method will be called.

Class diagrams descibe the properties and methods a class should have, and the
relationships between classes. But most of the business logic of the complete process
is inside the methods of the classes of the Service layer and the logical ordering of the
operations required to complete the process. The class diagrams of the implementation
fail to capture this logic.

4.4. A formal model for describing services

To address the issue that simple class diagrams of the implemented services do not
capture the logical ordering required to complete a business process, a formal model
for the representation of a Service and a Process is needed. In this section we present
a formal model for describing Services. The model utilizes a class diagram. The idea
is that ”instances” of this model would create the specific services (Create Referral,
Get Available Appointment Times, etc).

Figure 5 shows the classes of the Service Model. A Service has a unique name, which

12



Figure 4. Class diagrams for the web services in the Create referral process

represents the method that contains the logic in the implementation. A Service also
has input arguments, in the model they are given as a dictionary where the keys are
the argument names of the method, and the values are the argument types. The output
of the service is not named, only the type is given. When this model is translated to
the PSM layer it becomes a class definition with a single method.

The Type class given in Figure 5 is just a description of a data structure with a
set of uniquely named properties, and each property is of a certain Type. Some of the
Types in the system are Entities that are connected to the tables in the database,
others are projections of those Entities, and the rest are just used for state transfer
between the Web Application and the APIs, between different services, etc. which we
call Data Transfer Objects (DTOs).

The service model also requires that the SideEffects be modeled that would result
from calling that service. Possible side effects are to create, update or delete one
or multiple entities stored in the database. Each modified entity is referred by it’s
type, and a collection of Constraints that must be satisfied from the input or output
arguments. A constraint has a type, which gives the type of comparison (Equal, Not
Equal, Less than). The property field specifies which property of the modified entity
the constraint referrs to. The valueRef property specifies which of the input or output
arguments should be compared to the property of the modified entity.

4.5. A formal model for describing processes

In the previous section, the requirement for a formal model for describing Processes was
given. (Riccobene and Scandurra 2009) propose a formalism based on Abstract State
Machines (ASMs) to capture behaviour formalism at the PIM level, and (Tao et al.

13



Figure 5. Class diagram representing an abstract model for a Service

2017) have proposed a framework for describing software architecture that is based
on creating meta-models and constraints between the meta-models. We propose here
a simpler model, which is inspired from ASMs and meta-models. With this model, we
formalize the work-flow diagrams introduced in Section 4.2. The class diagram shown
in Figure 6 is used to describe this model. A Process has a set of Implementation
steps, such that each step is unique and identified with a name. The process knows
the starting and terminating steps, identified by their names. The allowed transitions
between steps are also part of the process.

A step is an instance of the Implementation class, which is an abstract class. It can
be either a Service, User Input, or another Process. Services represent the Web Services
in the Information System, User Inputs are descriptions of user choices on the front-
end applications, and Processes can be composed with sub-processes. Implementations
have names, inputs and outputs. For a Service, a name is the method’s name. The
input represents the input arguments of the method, given as a dictionary from the
argument name to the type of each argument. The output represents the return type
of the method.

As a process is executed, the output of all the steps is stored in the Process State.
The process state keeps the output in a dictionary where the key is the step that
produced that output. One method exists in this class that returns the Output object
for a given step name. The Process State is not persisted between executions of the
Process, data is lost once a process completes.

The transitions between the steps in a Process can be conditional. For each step, ex-
cept the ending step, there should be an OutgoingTransition[] entry in the transitions
dictionary in the Process. For each outgoing edge there should be an OutgoingTransi-
tion that contains a predicate. The predicate signifies (based on the process state) if
a transition between two steps activates). The last OutgoingTransition should always
be the default choice, and must always activate in order to guarantee that a process
will complete. Since only one transition can be active at one time, we limit our models
to not support concurrency.

An OutputReference describes a projection of the output from an already executed
step in the process. It contains a stepId and a propertyName. The stepId identifies
one of the steps, and represents an Implementation. The propertyName is one of
the properties of the output of the referenced Implementation. The propertyName is
nullable, and if it is set to null then the complete output Type is referenced (similar to
* in SQL). Let us say that there are two steps in a Process with id’s Step 1 and Step
2. The output of Step 1 is an Object with two properties a and b. Step 1 precedees

14



Figure 6. Class diagram representing an abstract model for a Process

Step 2 and the Process can transition from Step 1 to Step 2 only if the value stored
in the property b of Step 1 is greater than 3. Then the transitions map should contain
an instance of an OutgoingTransition class where outgoingStep = ”Step2” and the
implementation of test is test(state) => state[Step1].b > 3.

To complete the model of a Process we need to provide a way to transform the
output from one step, to the required format of another step. For that, the Process
class contains another table, called argumentMapping. For each transition between
steps Step X and Step Y, an ArgumentMapping specifies how to generate the required
input parameters of Step Y from the process state. Each input argument can only be
generated from a single OutputReference.

A Process model defined like this allows for the system designers to record the
business logic in a structured way. Implementation can now follow the constraints put
in a Process model clearly, or if a step is ambiguously defined then a feedback can be
quickly given to the designers. Most importantly adding new features to the system,
or changing existing ones must be compliant with the model.

4.6. A formal model for describing the process of creating referrals

We give an example only on the part of the formal description of the ”Create Referral”
process due to the verbosity required to fully describe the entire process. In the original
workflow-diagram in Figure 3 after the ”Select Referral Type” step, based on the user
selection, the process continues either to the ”Get available Appointment Times” step
(if the user selected a Regular Referal type), or to the ”Populate Referral Details”
step. This is modeled in the object diagram in Figure 7 with the transitions dictionary
instance and the argumentMapping Table instance. The transitions contain an entry
for the SelectReferralType key, an array of two OutgoingTransitions.

The first OutgoingTransition object shows that a transition from ”Select Referral

15



Figure 7. Object diagram of the Conditional transitions in the Create referral process

Type” to ”Populate Details” can happen only if the result of the ”Select Referral
Type” step saved in the Process State is not equal to a Regular referral type. The
second OutgoingTransition object gives the opposite requirement, but for a transition
from the ”Select Referral Type” step to ”Get Appointment Times”.

The argumentMapping table contains two objects. The first object of type Ar-
gumentMapping gives the required transformations for the input arguments of the
”Populate Referral Details” step, when transitioning into it from the ”Select Referral
Type” step. Since the ”Populate Referral Type” requires no input, this object is empty.
The second object in the argumentMapping table shows that the ”resourceId” input
argument of the ”Get Appointment Times” Service should be the same as the value
stored in the ”id” property of the object outputed by the ”Select Resource” step that
is stored in the process state. The output of the ”Select Resource” step is an object
of type ”Resource”, which describes the resource that the patient is being referred to.

4.7. Organizing the models with MDA

The different models presented in this section are just abstractions done starting from
the current implementation with the goal to capture the business logic in the initial
requirements. Figure 8 shows a topological view of how the models can be organized.

Horizontally the models can be grouped based on which part of the system they
describe. Three areas are identified: Processes, Services and Documents. Processes
describe the different paths a patient can take in health-care, Services are the logic
behind a step of the Process, and Documents are the records created in each step.
Vertically the models are grouped based on the MDA layers. At the top layer are the
work-flow diagrams, free-form text that describes the business logic, and the document
descriptions, which all comprise the Computation Independent Model (CIM). This layer
of the architecture was already present and organized this way when the system was
implemented. At the bottom of Figure 8 is the code, that is the classes that implement
the Web Services, the definitions of each of the Entities that are saved in the database
and all the requests and responses that the API receives and sends out. This layer
represents the Platform Specific Model (PSM). For the implemented classes, class
diagrams can be extracted that will be specific to the Java programming language

16



Figure 8. Organization of the models with MDA

in which the system is implemented. The Processes are not implemented in the PSM
layer. Section 4.3 describes the models of this layer.

We divide the PIM layer in two sections: models and meta-models. The models
sub-layer contains models that describe specific services (Create Regular Referral, Get
Available Timeslots) or specific entities (Referral, Appointment Time), for each of
them a platform-specific implementation exists. In this sub-layer models for specific
processes are introduced (see Section 4.6). The implementations must conform to the
models, and the models must conform to the meta-models. The meta-model sublayer
defines generic models for Processes, Services and Entities. These meta-models (defined
in Section 4.5) give the rules by which the models can be built.

4.8. Validity of processes

With the model given in Section 4.5, the validity of a process can be defined. A process
is said to be a valid if:

• Each step is reachable
• For each step the input requirements can be met
• There is no transitive dependency between processes
• A combination of Service Results and User Input exists that will lead the process

to terminate

The process model establishes by design the compatibility of the required input
types for a step and the results of previously executed steps. The model allows for the
verification of entities also, so that all required data is present in the database. The
collection of models for all the processes in the system produces the set of required
entities to be saved in the database, and the input and output of each step defines the
required projections of each of the entities.

The validity of a process or locating existing issues in the models can be automati-

17



cally confirmed. Instances of the Abstract Process Model were created by representing
the objects using JSON notation. Each object is saved in a separate file. Then a tool
was built that reads the object model stored in these files, and parses the files. While
parsing of the process model, validation checks whether:

• models are provided for all the steps of the process;
• models are provided for all the input and output types for each of the steps;
• the input arguments for each step are generated by previous steps on the execu-

tion path.

Recursively if one of the process steps is a sub-process the model for that process is
also parsed. When parsing the models for services, entities and DTOs valid code is
genrated. The current implementation of the parsing tools generates Java code, but
the process and service models are independent from the generated code, and different
backends can quickly be implemented. Having an independent implementation reduces
the risk of the system becoming obsolete. The additional information supplied in the
Service models about the expected side-effects and the constraints under which the
service must operate increase the security of the system by automaticly generating
unit tests for each service when parsing the models.

The JSON notation used to store the process models has the advantage that it’s
easily parsable yet still human readable. The models tend to get verbose when repre-
senting larger processes, but the format allows for building simple additional tooling
that would provide a visual user interface that would generate the JSON representa-
tion for the process models. In addition to the generated code for the Services, with
a small effort the tool can be updated to support automatic generation of unit tests
based on the supplied side-effects and the conditions given in the models.

The tool was implemented using Java® and is hosted on BitBucket® in a public
online repository(Atanasovski 2018). The repository contains example input files for
several processes and each of their components. With artifacts built from the source
code the input files can be parsed, validated and code is generated for the services
and data objects. The only dependency that the system requires upfront to build the
artifacts is the Java® SE 8 JDK.

5. Semantic interoperability

In the introduction we stressed the need to improve the system to be more interop-
erable. In this section we will build upon the ideas presented in Section 4 and (Tu
et al. 2014) to create a formal model for data transformations based on creating in-
terfaces between systems instead of modifying the existing systems. First a definition
of a meta-model in the PIM layer is given, then example instances of this meta-model
are discussed. With the Data Transformation models the requirement for an external
system to be integrated with the central system is reduced to implementing the trans-
formation rules between the data types of the external system, and the types used in
our system.

5.1. Data transformation meta-model

We present the meta-model as a class diagram in Figure 9. The collection of data types
in a system is a finite Set that we will call the Data Model. The Data Transformation
Meta-Model needs to be aware of two Data Models, the from data model is the source

18



Figure 9. A Meta-Model for describing transformations between two Sets of Types

data model whose Types are tranlated into the Types of the to data model. For one
external system to be integrated with our platform two implementations of the Mod-
elToModel class must be given. The first maps the types from the data model of the
external system to the types of our platform. The second does the opposite. The first
is required to send requests to our platform, the second to recive responses.

The ModelToModel instance will keep the transformation logic in the transforma-
tions property. It is a table where the keys are a Type and an Argument Name. The
Type is one of the availableTypes in the targetData Model. For each target Type and
each of the properties of that type there should be an instance of a Mapper.

The Mapper is a class that specifies a list of input types, and an output type.
The inputTpes belong to the source DataModel specified in the from property of the
ModelToModel class, the out Type belongs to the target DataModel specified in the
to property.

5.2. Example data transformation models

To demonstrate the transformation meta-model we create a model for a subset of the
types present in the HL7 standard to be generated from data types in our system. In
HL7 each referral contains information stored in a ReferralInformationSegment. This
type contains the information about the referral’s priority, status, category etc. On
the left side of Figure 10 is the diagram of ReferralInformationSegment class. For each
of the properties a Mapper model needs to be defined. In our system, the required
information to generate this message can be found in the Referral entity and it’s
properties.

An example transformation model is presented in Figure 11 where Mappers are
created for the referralPriority and referralType properties from the ReferralInforma-
tionSegment external class. The referral priority in the external model can be obtained
from the ReferralType enumaration class in the internal model. The referal priority
in the external model can be obtained from the information in the Referral class in
the internal model. Finally the last step required before implementing the logic of
the transformations in code, is to create interfaces that would be compliant with the
object diagram in Figure 11. The implementation logic and the final interfaces of the
mappers are given in Figure 12.

Using the presented meta-model, models and implementations can be devised for
all the web services in the system. We use the HL7 messages as an example, but

19



Figure 10. On the left, a part of the ReferralInformationSegment message in the HL7 standard. On the right,

a part of the Referral entity in the Moj Doktor system

there is a posibility to create an Interoperability Layer that will translate messages
between our system and any external system. An inability to create a Mapper for some
required property is a direct indication that the systems are not interoperable without
modification.

5.3. Designing a RESTful web service interoperable with the system

The applicability of UML and model driven engineering can be used for generating
RESTful APIs (Schreier 2011). Many of the web services today are using the architec-
tural style called REpresentational State Transfer (REST) which meets the modern
software development requirments for web and mobile applications (Rodŕıguez et al.
2016).

We will conclude the section by presenting a specification for a RESTful web service
that can fullfill one of the steps of the ”Create Referral” process defined in Section 4.1.
We focus on the ”Get available Appointment Times” step. The interface of the web
service designed here can be the used in the implementation of a new front-end portal.
We will utilize the data meta-model defined in this section to show the transformation
of the data internal to the system to a representation that gives only the required
information outside of the system. Additionally we will show that the model of the
RESTful web service can be derived form the meta-model in 4.5.

In the work-flow diagram in Figure 3 the ”Get available Appointment Times” step
executes after the doctor has selected the referral type, and the resource to which the
patient is being referred to. The goal of the step if to retreive from the system a list
of Appointment Times that are available for booking. The first step is to create an
instance of the Service class from the Process Model from Figure 6.

The Get Available Appointment Times service requires only one argument, the id
of the selected resource to which the referral is going to refer to. The output should
contain a list of only the available appointment times that belong to the requested
resource. Figure 13 shows the instance of the Service class. The output of the service is
specified as a Available Appointments Response type. This type contains a list of Ap-

20



Figure 11. An object diagram depicting the Mappers for two of the properties of the ReferralInformation-
Segment class

Figure 12. Mappers for HL7 ReferralStatus and ReferralPriority

21



Figure 13. Object diagram of an instance for the Get Available Appointment Times service

Figure 14. Left - partial class of the AppointmentTime entity in the system. Right - class of the required

output from the web service

pointmentTimeDTO which in turn only contain only the information needed required
for the user to make a choice should be returned.

On the left side of Figure 14 a partial class of the Appointment Time entity is shown
along with it’s relationships to the Resource and Referral entities in the system. These
entities contain a lot more information that what is required for the Get Available
Appointment Times step.

The required Mapper instance that will create an AppointmentTimeDTO object
from an AppointmentTime is straight forward, it is presented in Figure 15. With a
Mapper instance like this, and the Service instance from Figure 13 all the requirements
are satisfied to define a Available Appointment Times RESTfull service.

In Figure 16 a class diagram of the RESTful resource is given. The REST resource
is an object with a URI, the HTTP request method, associated parameters and the re-

Figure 15. Appointment Time to Appointment Time DTO mapper

22



Figure 16. Class diagram of the Available Appointment Times RESTful service

quest/response body. It represents a specific service available on the path specified by
its URI property, which in our case, is the ”Available Appointments Service”. This ser-
vice will respond only to GET HTTP requests. Since a GET request does not contain
a body, the resourceId input argument is given as a path variable of the HTTP URL.
The path that will trigger/call the service is ’/api/appointments/resourceId’, where
resourceId is a placeholder. The service produces an AvailableAppointmentsResponse.

Using tools like ”Visual Paradigm for UML” (VP-UML 2013) the generation of a
REST API and API documentation at this step is a simple process since it is generated
automatically. Source code of the communication model and sample source code of
client and servlet are generated. API documentation contains HTML files that shows
how to use the selected REST Resource.

6. Conclusion

In this paper, we have described the implementation of an enterprise e-health system,
where all medical and health related data are stored in a centralized database and
processed on-line. The system allows integration with various health organizations,
which can communicate with the central database in two directions (read and write).

The goal of this paper was to define the Platform Independent Model (PIM). The
main reasons were to provide a structured (formal) description of the logic required
for each Process, to reduce the possibility of the system becoming obsolete because
of the chosen implementation technology, and most importantly to provide a safe and
sound platform for introducing changes in the system.

We fit the models defined in the paper in the MDA framework and explain how the
different layers are covered with our models. The main contribution is the definition
of a Process Model that can represent not just the relationships but also execution
semantics, and a definition of a valid process. Building upon the Process Model we
present a model for formalizing data transformation to improve the interoperability of
the system and give a working example for transforming data from our system in HL7
messages. We also give a complete example that utilises all of the models defined in
the previous sections to create a definition of a RESTful service that can be validated
and is interoperable with our system.

We also developed a tool that runs static verification of the processes, whether
all input requirements are satisfied for all steps of the processes, whether all required
types are defined, if there are duplicates, etc. The next iteration of the tool will include
automatic generation of unit tests for web services based on the side effects specified
in the models. A second type of tools will do dynamic verification. These tools will do
verification by executing the steps on supplied data. They will be based on technolo-

23



gies for Unit and Integration Testing that support mocking of components, coverage
reporting and dynamic code generation and injection.

We also plan on making the models presented here more change-proof by utiliz-
ing the findings in (Dam et al. 2016) to evolve the models and prevent the system
from becoming obsolete. We can also use the experiences from developing a similar
e-health system in Slovenia, see Stanimirovic (2015), in order to strengthen the value
of the model suggested here by taking into account other operative, development and
implementation aspects.

References

Atanasovski, B. (2018, Jul). Process model parser - online code repository. url-
https://bitbucket.org/atanasovskib/pmp/src/master/. Accessed: 2018-07-02.

Blobel, B. and P. Pharow (2006). A model driven approach for the german health telemat-
ics architectural framework and security infrastructure. International Journal of Medical
Informatics 76, 169—-175.

Bolognesi, T., D. De Frutos, R. Langerak, and D. Latella (1995). Correctness preserving
transformations for the early phases of software development. In LOTOSphere: Software
Development with LOTOS, pp. 161—-180. Springer, Boston, MA.

CEN (2008). Electronic health record communication (en 13606).
Chan, J., K. G. Shojania, A. C. Easty, and E. E. Etchells (2011). Does user-centred design

affect the efficiency, usability and safety of cpoe order sets? Journal of the American Medical
Informatics 18 (3), 276–281.

CORBA (2012). Common object request broker architecture (corba) 3.3.
Curcin, V., T. Woodcock, A. J. Poots, A. Majeed, and D. Bell (2014). Model-driven ap-

proach to data collection and reporting for quality improvement. Journal of Biomedical
Informatics 52 (C), 151—-162.

Dam, H. K., L.-S. Le, and A. Ghose (2016). Managing changes in the enterprise architecture
modelling context. Enterprise Information Systems 10 (6), 666–696.

Erl, T. (2007). Principles of Service Design. Prentice Hall.
Garde, S., R. Chen, H. Leslie, T. Beale, I. McNicoll, and S. Heard (2009). Archetype-based

knowledge management for semantic interoperability of electronic health records. In In-
ternational Congress of the European Federation for Medical Informatics (MIE-09), pp.
1007–1011.

Häyrinen, K., K. Saranto, and P. Nykänen (2008). Definition, structure, content, use and
impacts of electronic health records: A review of the research literature. International
Journal of Medical Informatics 77 (5), 291–304.

HL7 (2006). Hl7 development framework methodology specification (hdf). Technical report,
International Organization for Standardization, Health Level Seven Inc.

HL7 (2011). Health level-7. Technical report, Health Level Seven International (HL7).
Holzmann, G. (2003). MDA distilled: principles of model-driven architecturThe Spin Model

Checker: Primer and Reference Manuale. Addison-Wesley Professional.
IOS (2009). Reference model of open distributed processing (rm-odp, iso/iec 10746). Technical

report, International Organization for Standardization.
ISO/TC215 (2009). Iso/hl7 27931, data exchange standards health level seven version 2.5.
Johnson, C. M., T. R. Johnson, and J. Zhangb (2005). A user-centered framework for re-

designing health care interfaces. Journal of Biomedical Informatics 38, 75–87.
Jones, V. (1995). Realization of ccr in c. In LOTOSphere: Software Development with LOTOS,

pp. 348—-368.
Jones, V. (1997). Engineering an implementation of the osi ccr protocol using the informa-

tion systems engineering techniques of formal specification and program transformation.
Technical report, University of Twente, Centre for Telematics and Information Technology

24



Technical Report series no. 97-19. ISSN 1381-3625.
Jones, V., A. Rensink, and E. Brinksma (2005). Modelling mobile health systems: an ap-

plication of augmented mda for the extended healthcare enterprise. In EDOC Enterprise
Computing Conference, 2005 Ninth IEEE International, pp. 58–69. IEEE.

Lapsia, V., K. Lamb, and W. A. Yasnoff (2012). Where should electronic records for patients
be stored? International Journal of Medical Informatics 81 (12), 821–827.

Larman, C. and V. R. Basili (2003). Iterative and incremental development: A brief history.
Journal Computer 36 (6), 47—-56.

Lopez, D. and B. G. Blobel (2009). A development framework for semantically interoperable
health information systems. International Journal of Medical Informatics 78, 83—-103.

Meso, P. and R. Jain (2006). Agile software development: Adaptive systems principles and
best practices. IS Management 23 (3), 19–30.

MITRE-corporation (2006). Electronic health records overview. Technical report, US NIH
National Center for Research Resources (NCRR).

Nguyen, E., E. Bellucci, and L. T. Nguyen (2014). Electronic health records implementation:
an evaluation of information system impact and contingency factors. International Journal
of Medical Informatics 83(11), 779–796.

Rayhupathi, W. and A. Umar (2008). Exploring a model-driven architecture (mda) approach
to health care information systems development. International Journal of Medical Infor-
matics 77, 305—-314.

Ricciardi, L. (2010). Protecting Sensitive Health Information in the Context of Health Infor-
mation Technology. Technical report, Consumer Health, Clinovations LLC.

Riccobene, E. and P. Scandurra (2009). Weaving executability into uml class models at pim
level. In Proceedings of the 1st Workshop on Behaviour Modelling in Model-Driven Archi-
tecture, pp. 1–10. ACM.

Rodŕıguez, C., M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali, and G. Percannella
(2016). Rest apis: a large-scale analysis of compliance with principles and best practices. In
International Conference on Web Engineering, pp. 21–39. Springer.

RUP (2017). Best practices for software development teams, rational software white paper,
tp026b, rev 11/01.

Schlieter, H. and et al. (2015). Towards model driven architecture in health care information
system development. In 12th International Conference on Wirtschaftsinformatik, WI 2015,
pp. 497–511.

Schreier, S. (2011). Modeling restful applications. In Proceedings of the Second International
Workshop on RESTful Design, WS-REST ’11, New York, NY, USA, pp. 15–21. ACM.

Stanimirovic, D. (2015). Modelling the health information system in slovenia — operative,
construction and implementation aspects. International Journal of Engineering Business
Management 7, 13.

Tao, Z., Y. Luo, C. Chen, M. Wang, and F. Ni (2017). Enterprise application architecture
development based on dodaf and TOGAF. Enterprise Information Systems 11 (5), 627–651.

Tretmans, J. and A. Belinfante (1999). Automatic testing with formal methods. In 7th
European Int. Conference on Software Testing, Analysis & Review, Barcelona, Spain.

Tu, Z., G. Zacharewicz, and D. Chen (2014). Building a high-level architecture federated in-
teroperable framework from legacy information systems. International Journal of Computer
Integrated Manufacturing 27 (4), 313–332.

US-HHS (2010). Data segmentation in electronic health information exchange: Policy con-
siderations and analysis. Technical report, ONC, US Department of Health and Human
Services (HHS).

US-HHS (2015). Guide to Privacy and Security of Electronic Health Information. Technical
report, ONC, US Department of Health and Human Services (HHS).

Velinov, G., B. Jakimovski, D. Lesovski, D. Ivanova Panova, D. Frtunik, and M. Kon-Popovska
(2015). Ehr system mojtermin: Implementation and initial data analysis. Studies in Health
Technology and Informatics 210, 872–876.

Voigt, B. J. J. (2004). Dynamic System Development Method. Ph. D. thesis, Department of

25



Information Technology, University of Zurich.
VP-UML (2013). Visual paradigm for uml. Visual Paradigm for UML-UML tool for software

application development , 1–72.
Xu, B., L. Xu, H. Cai, L. Jiang, Y. Luo, and Y. Gu (2017). The design of an m-health moni-

toring system based on a cloud computing platform. Enterprise Information Systems 11 (1),
17–36.

26


