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Abstract
This paper is focused on proving termination for program
families with numerical features by using abstract interpre-
tation. Furthermore, we present an interesting application of
the above lifted termination analysis for resolving “sketches”,
i.e. partial programs with missing numerical parameters
(holes), such that the resulting complete programs always
terminate. To successfully address the above problems, we
employ an abstract interpretation-based framework for in-
ferring sufficient preconditions for termination of single pro-
grams that synthesizes piecewise-defined ranking functions.
We introduce a novel lifted decision tree domain for ter-

mination, in which decision nodes contain linear constraints
defined over numerical features and leaf nodes contain piece-
wise ranking functions defined over program variables. More-
over, we encode a program sketch as a program family,
thereby allowing the use of the lifted termination analy-
sis as a program sketcher. In particular, we aim to find the
variants (family members) that terminate under all possible
inputs, which represent the correct sketch realizations.

We have implemented an experimental lifted termination
analyzer, called SPLFuncTion, for proving termination of
#if-based C program families and for termination-directed
resolving of C program sketches. We have evaluated our
approach by a set of loop benchmarks from SV-COMP, and
experimental results confirm the effectiveness our approach.

CCS Concepts: • Software and its engineering→ Soft-
ware notations and tools; Software creation and manage-
ment; • Theory of computation→ Semantics and reason-
ing.

Keywords: Program families, Lifted termination analysis,
Program sketching, Abstract interpretation
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1 Introduction
A program family (software product line) describes a set of
similar programs as variants of some common code base [1].
This enables end users to derive a program suitable to a par-
ticular application scenario. The well-known #if directives
from the C preprocessor CPP represent the most common
mechanism to implement such program families [22]. Op-
tional program fragments are annotated with #if directives,
which are included or excluded at compile-time, depending
on the functionality that end users specify. Program families
are quite popular in certain application domains, such as
cars, phones, medicine, robotics, etc [1].

Static analyses are a powerful tool to prove the correctness
of programs, and so it is very important to apply static anal-
yses to program families [32]. However, the traditional static
analyses cannot be directly applied to program families as
they only analyze pre-processed single programs. To handle
large program families, researchers have developed the so-
called lifted (variability-aware) static analyses, which process
the common code base directly, exploiting similarities among
individual variants to reduce analysis effort [3, 4, 11, 27, 37].
They analyze common and variable parts of the common
code base only once and are able to infer analysis properties
in all valid variants of the program family. Automatic proving
of program termination is a fundamental problem in pro-
gram analysis. Termination bugs can compromise programs
by making them irresponsive. They can also be exploited in
denial-of-service attacks [25]. Therefore, proving program
termination is important for establishing program reliability.
To address this problem in practice, several static analysis
techniques have been proposed [5, 19, 35]. They use different
strategies to synthesize ranking functions, a well-founded
metric which strictly decreases during program execution.

In this work, we introduce an approach to lift an existing
single-program termination analysis based on abstract inter-
pretation [34–36] to program families.Abstract interpretation
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[8, 29] is a general theory for approximating the semantics
of programs. It represents a powerful technique for deriv-
ing approximate, albeit computable static analyses, by using
fully automatic algorithms. In particular, we extend the tra-
ditional termination analysis developed by Urban and Mine
for automatically inferring sufficient preconditions that a
given program will always terminate under all inputs. This is
done by employing abstract interpretation techniques to de-
termine piecewise-defined ranking functions, which provide
upper bounds on the number of execution steps to termi-
nation as a function of the program variables. We lift this
analysis to a lifted termination analysis that operates on the
entire program family in one single pass. The elements of the
lifted domain are two-level lifted decision trees, in which the
first-level decision nodes are labelled with linear constraints
over feature variables, the second-level decision nodes are
labelled with linear constraints over program variables, and
the leaf nodes are affine functions over program variables.
In fact, the second-level decision nodes and leaf nodes rep-
resent piecewise-defined ranking functions. The lifted deci-
sion trees recursively partition the space of all possible valid
variants, while the piecewise-defined ranking functions pro-
vide termination-related information corresponding to each
partition. The efficiency of our decision tree-based lifted
analysis comes from the opportunity to share equal subtrees,
in case some termination properties are independent from
the values of some features. This possibility for sharing is
especially important in the case of program families that
contain numerical features with large domains, thus giving
rise to astronomical configuration spaces.

Several other approaches can also be used for termination
analysis of program families. First, the simplest brute-force
approach uses a preprocessor to generate all variants of
a family and then applies an existing off-the-shelf single-
program analyzer to each individual variant, one-by-one.
This approach is shown to be very inefficient [4, 37]. Sec-
ond, the tuple-based lifted analysis maintains one analysis
property (ranking function) per variant in tuples. However,
this explicit enumeration in tuples becomes computationally
intractable with larger program families because the num-
ber of variants grows exponentially (or even faster) with
the number of features. Third, the variability encoding ap-
proach [20, 38] replaces compile-time variability with run-
time variability (non-determinism) . In particular, a given
program family is transformed into a single program by en-
coding features with ordinary program variables that are
non-deterministically initialized to any value from their do-
main and by encoding #if directives with conditional if
statements. The resulting single programs, called variabil-
ity simulators, can be analyzed using off-the-shelf single-
program analyzers. However, the shortcoming of this ap-
proach is that it does not consider disjunctive properties
arising from features as lifted analyses do consider. This

leads to imprecisions and rough approximations in the in-
ferred analysis invariants, which often results in failures of
showing the required program properties.
Additionally, we leverage the lifted termination analysis

to synthesize numerical program sketches that always termi-
nate. A sketch is a partial program with missing numerical
expressions called holes to be discovered by the synthesizer.
Previous approaches for program sketching [30, 31] auto-
matically synthesize integer constant values for the holes so
that the resulting complete program satisfies safety properties
(“something bad never happens”) in the form of assertions.
This is called an assertion-directed program sketching. In this
work, we consider program sketching with respect to live-
ness properties (“something good eventually happens”) in
the form of termination. In particular, we construct a pro-
gram synthesizer that automatically finds integer values for
the holes so that the resulting complete program terminates
under all possible inputs. This is done by using our lifted
termination analysis of program families. We refer to this as
termination-directed program sketching. The key observation
is that all possible sketch realizations constitute a program
family, where each numerical hole is represented as a nu-
merical feature. Hence, we reduce the termination-directed
program sketching problem to selecting those variants from
the corresponding program family that always terminate.
This can be efficiently done by using our lifted termination
analysis, which is able to converge to a solution very fast
even for program families with astronomical sizes. This is
particularly true for sketches in which holes appear in linear
expressions that can be exactly represented in the numerical
domains used in the lifted decision trees (e.g., polyhedra). In
those cases, we can design more efficient lifted analysis with
extended transfer functions for assignments and tests, which
can directly handle read accesses to the feature variables. To
the best of our knowledge, this is the first work that tackles
the problem of termination-directed program sketching.

We have implemented our approach in a prototype lifted
termination analyzer, called SPLFuncTion, which is built
on top of the termination analyzer FuncTion [34, 35]. The
numerical abstract domains, including intervals, octagons,
polyhedra, from the APRON library [21] are used as param-
eters to implement decision and leaf nodes of the under-
lying decision trees. We illustrate this approach for auto-
matically inferring sufficient preconditions for termination
of #if-annotated C program families and for automatically
completing various numerical C sketches. We evaluate our
approach on a selected set of benchmarks from SV-COMP
suite 1. We compare its time performance against the tuple-
based lifted analysis and its precision performance against
the variability encoding approach.

In summary, we make several contributions in this work:
(1) We propose a novel lifted termination analysis based on

1Int. Comp. on Software Verification (https://sv-comp.sosy-lab.org/2020/).
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void main(){
1○ int x, y;
2○ #if (A<B) y = 50; #else y = 51; #endif
3○ while 4○ (x ≥ 0) {
5○ if (y ≤ 50) x = x-1; else x = x+1;
6○ #if (A<2) y=y-1; #else y=y+1 #endif }
}

Figure 1. The program family cav2006.c.

A < B

A=B=1
x≤-1

x≤-1 x≤-12 4x+6

2 4x+14 2 ⊥

Figure 2. Inferred lifted decision tree at location 1○ of
cav2006.c (solid edges = true, dashed edges = false, circles =
first-level decision nodes, rounded rectangles = second-level
decision nodes, rectangles = leaves).

abstract interpretation for program families with numerical
features; (2) We show the applications of the lifted termi-
nation analysis for resolving termination-directed program
sketches; (3)We implement a prototype lifted analyzer, called
SPLFuncTion, which performs termination analysis of #if-
annotated C programs and resolves C program sketches; and
(4)We evaluate our approach on benchmarks from SV-COMP
by comparing its performance against the tuple-based lifted
analysis and variability encoding.

2 Motivating Examples
Let us consider the code base of cav2006.c program family
given in Fig. 1. It represents a variability-extended version
of the program GopanReps-CAV2006.c from the category
termination-crafted-lit of the SV-COMP suite. The set of
features is F = {A, B}, where A and B are numerical features
whose domains are [0, 3] and [1, 2], respectively. The set
of valid configurations includes all possible combinations
of feature’s values, thus K = {(A = 0) ∧ (B = 1), (A = 1) ∧
(B = 1), (A = 2) ∧ (B = 1), (A = 3) ∧ (B = 1), (A = 0) ∧ (B =

2), (A= 1) ∧ (B= 2), (A= 2) ∧ (B= 2), (A= 3) ∧ (B= 2)}. For
each configuration from K , a different variant is derived by
appropriately resolving the two #if directives in the code
base, depending on how features are set at compile-time.
For example, the variant corresponding to configuration
(A = 0) ∧ (B = 1) will have A and B set to 0 and 1, so that

the assignments y = 50 and y = y-1 will be included in this
variant.

Assume that we want to perform lifted termination anal-
ysis of cav2006.c using the polyhedra numerical domain
[9] as parameter. If we use the lifted decision tree domain
proposed in this work, then the inferred decision tree in
the initial program location 1○, representing the ranking
function of cav2006.c (since this is a backward analysis), is
depicted in Fig. 2. Notice that the first-level decision nodes
of the decision tree in Fig. 2 are labeled with polyhedra linear
constraints over features (A and B), the second-level decision
nodes are labeled with polyhedra linear constraints over pro-
gram variables (x and y), while the leaves are labeled with
affine functions over program variables. In figures, we use
circles to represent first-level decision nodes, rounded rectan-
gles to represent second-level decision nodes, and rectangles
to represent leaves. The edges are labeled with the truth
value of the decision on the parent node: we use solid edges
for true (i.e. the constraint in the parent node is satisfied)
and dashed edges for false (i.e. the negation of the constraint
in the parent node is satisfied).

As the first-level decision nodes partition the space of valid
configurationsK (i.e. the possible values of features) and the
second-level decision nodes partition the memory space (i.e.
the possible values of program variables), we implicitly take
into account domains of features and program variables. For
example, the node with constraint (A<B) is satisfied when
(A< B) ∧ (0≤ A≤ 3) ∧ (1≤ B≤ 2). We can see that decision
trees offer possibilities for sharing of analysis equivalent
information corresponding to different configurations, thus
they provide symbolic and compact representation of lifted
analysis elements. For example, the decision tree in Fig. 2
shows that: (1) when (A< B) is true the variants terminate
with ranking function: 2 if (x≤−1) and 4x+6 if (x≥ 0); (2)
when (A=B=1) holds the ranking function is: 2 if (x ≤ −1)
and 4x+14 if (x ≥ 0); (3) when (A ≥ B) ∧ (A ≠ 1) holds the
variants potentially not-terminate (⊥ answer) for (x ≥ 0).
In the case (3), the else branches of both $if-s are taken
making (y≥ 51) to hold in the while-body. Therefore, the
else branch x = x+1 in location 5○ will always be taken,
thus causing the non-termination for (x≥0). On the other
hand, the case (2) will need two iterations more to terminate
than the case (1) for (x≥ 0), due to the fact when (A=B=1)
the initial value of y is 51 thus causing x = x+1 in location
5○ to be executed in the first iteration of while and after
this iteration we will have (y ≤ 50) making x = x-1 to be
executed in all following iterations. This is reflected in the
ranking functions of cases (1) and (2), where the variants
(A=B=1) need 8 execution steps (2 while-iterations) more
to terminate than (A<B). In effect, the decision tree-based
representation uses only three ranking functions, although
there are eight variants in total. This ability for sharing is the
key motivation behind the efficiency of this representation.
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void main() {
1○ int x;
2○ int y = ??1;
3○ while (x ≤ 10) {
4○ if (y ≥??2) x = x+1; else x = x-1; }
}

Figure 3. The sketch loop1.c

Alternatively, by using variability encoding the program
family cav2006.c can be transformed into a single program,
called variability simulator [38], which can be analyzed using
the single-program termination domain [34, 35]. In partic-
ular, the variability simulator of cav2006.c is obtained by
encoding features as ordinary program variables that are non-
deterministically initialized, that is: int A = [0, 3], B = [1, 2],
and by encoding #if directives as ordinary if statements.
The ranking function inferred in this case is: 5 if (x≤−1) and
⊥ if (x≥ 0). However, this invariant is not strong enough to
establish the termination of variants when (A<B)or(A=B=1).
As observed before in the literature [6, 16], a sketch can

be represented as a program family, such that all possible
realizations of the sketch correspond to possible variants in
the program family. For example, loop1.c sketch, given in
Fig. 3, contains two numerical holes. It can be encoded as
a program family, in which the two holes ??1 and ??2 are
replaced by two numerical features A and B with domain
[Min, Max] ⊆ Z 2. Hence, there are (Max− Min+1)2 variants
that can be instantiated from the loop1.c program family.
Notice that features in such a program family can occur in
arbitrary expressions, not only in presence conditions of
#if-s as before in traditional program families. Therefore,
we define an extended lifted termination analysis that can
handle such program families (features occur in arbitrary
expressions). If we analyze loop1.c program family using
the extended lifted termination analysis, we obtain as result
the lifted decision tree shown in Fig. 4. We can see that the
ranking function is fully-defined (over all possible values of x)
for variants satisfying (A ≥ B+1). Thus, the synthesizer can
choose one of the variants that satisfy the above constraint
(e.g., A=4, B=1) as a solution to the loop1.c sketch. Note that
when ¬(A ≥ B+1) holds we obtain potential not-termination
(⊥ answer) for (x ≤ 10).

3 A Language for Program Families
Let F = {𝐴1, . . . , 𝐴𝑛} be a finite and totaly ordered set of
numerical features available in a program family. For each
feature 𝐴 ∈ F , dom(𝐴) ⊆ Z denotes the set of possible
values that can be assigned to 𝐴. A valid combination of
feature’s values represents a configuration 𝑘 , which specifies
one variant of a program family. It is given as a valuation

2Note that Min and Max represent some minimal and maximal representable
integers. For example, Min = 0 and Max = 31 for 5-bit sizes of holes.

A-B≥1

x≤10 x≤10

-3x+36 3 ⊥ 3

Figure 4. Inferred lifted decision tree at location 1○ of
loop1.c (features A and B correspond to holes ??1 and ??2).

function 𝑘 : F → Z, which is a mapping that assigns a value
from dom(𝐴) to each feature𝐴 ∈ F , i.e. 𝑘 (𝐴) ∈ dom(𝐴). We
assume that only a subset K of all possible configurations
are valid. An alternative representation of configurations
is based upon propositional formulae. Each configuration
𝑘 ∈ K can be represented by a formula: (𝐴1 = 𝑘 (𝐴1)) ∧
. . . ∧ (𝐴𝑛 =𝑘 (𝐴𝑛)). The set of configurations K can be also
represented as a formula: ∨𝑘∈K𝑘 .

We define feature expressions, denoted FeatExp(F ), as the
set of propositional logic formulas over constraints of F :

\ ::= true | 𝑒F ⊲⊳ 𝑒F | ¬\ | \ ∧\ | \ ∨\, 𝑒F ::= 𝑛 | 𝐴 | 𝑒F⊕𝑒F

where 𝐴 ∈ F , 𝑛 ∈ Z, ⊕ ∈ {+,−, ∗}, and ⊲⊳ ∈ {<, ≤,=,≠}.
When a configuration 𝑘 ∈ K satisfies a feature expression
\ ∈ FeatExp(F ), we write 𝑘 |= \ , where |= is the standard
satisfaction relation of logic. We write [[\ ]] to denote the set
of configurations from K that satisfy \ , so 𝑘 ∈ [[\ ]] iff 𝑘 |=\ .
We consider a simple sequential non-deterministic pro-

gramming language, which will be used to exemplify our
work. The program variables Var= {x1, . . . , x𝑛} are statically
allocated and the only data type is the set Z of mathematical
integers. To encode multiple variants, a new compile-time
conditional statement is included: “#if (\ ) 𝑠 #endif” con-
tains a feature expression \ as a presence condition, such
that only if \ is satisfied by 𝑘 ∈ K the statement 𝑠 will be
included in the variant corresponding to 𝑘 . The syntax is:

𝑠 ::= skip | x:=𝑎𝑒 | 𝑠; 𝑠 | if (𝑏𝑒) then 𝑠 else 𝑠
| while (𝑏𝑒) do 𝑠 | #if (\ ) 𝑠 #endif,

𝑎𝑒 ::= 𝑛 | [𝑛, 𝑛′] | x | 𝑎𝑒⊕𝑎𝑒,
𝑏𝑒 ::= 𝑎𝑒 ⊲⊳𝑎𝑒 | ¬𝑏𝑒 | 𝑏𝑒 ∧ 𝑏𝑒 | 𝑏𝑒 ∨ 𝑏𝑒

where 𝑛 ranges over integers Z, [𝑛, 𝑛′] over integer intervals,
x over program variables Var, ⊕ ∈ {+,−, ∗, /}, and ⊲⊳∈ {<
, ≤,=,≠}. Integer intervals [𝑛, 𝑛′] denote a random integer
in the interval. The set of all statements 𝑠 is denoted by
Stm; the set of all arithmetic expressions 𝑎𝑒 is denoted by
AExp; and the set of all boolean expressions 𝑏𝑒 is denoted
by BExp. Any other preprocessor conditional constructs can
be desugared and represented only by #if construct. For
example, #if (\ ) 𝑠0 #elif (\ ′) 𝑠1 #endif is translated into
#if (\ ) 𝑠0 #endif ; #if (¬\ ∧ \ ′) 𝑠1 #endif.
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A program family is evaluated in two stages. First, the
C preprocessor CPP takes a program family 𝑠 and a config-
uration 𝑘 ∈ K as inputs, and produces a variant (single
program without #if-s) corresponding to 𝑘 as the output.
Second, the obtained variant is evaluated using the stan-
dard single-program semantics [35]. The first stage is speci-
fied by the projection function P𝑘 , which is an identity for
all basic statements and recursively pre-processes all sub-
statements of compound statements. Hence, P𝑘 (skip) =

skip and P𝑘 (𝑠;𝑠 ′) = P𝑘 (𝑠);P𝑘 (𝑠 ′). For “#if (\ ) 𝑠 #endif”,
statement 𝑠 is included in the variant if 𝑘 |= \ , 3 that is:

P𝑘 (#if (\ ) 𝑠 #endif) =
{
P𝑘 (𝑠) if 𝑘 |= \

skip if 𝑘 ̸ |= \
.

4 Lifted Decision Tree Domain for
Termination

Lifted analyses are designed by lifting existing single-program
analyses to work on program families, rather than on indi-
vidual programs. They directly analyze program families
without preprocessing them by taking the variability of pro-
gram families into account. In this work, we want to lift the
termination analysis based on abstract interpretation [35, 36],
which is used to infer piecewise-defined ranking functions in
all program locations. The elements of the (single-program)
termination analysis domain are represented by decision trees,
where the decision nodes are labelled with linear constraints
over program variables and the leaf nodes belong to an ab-
stract domain for affine functions defined over program vari-
ables. These functions provide upper bounds on the number
of execution steps to termination from a given program lo-
cation. Lifted analysis for program families relies on a lifted
domain of decision trees [15]. Hence, the elements of the
lifted termination analysis domain are so-called lifted deci-
sion trees, where the leaf nodes belong to the termination
domain and the decision nodes are linear constraints over
feature variables. This way, we construct two-level decision
trees, where each top-down path represents a subset of config-
urationsK that satisfy the constraints over feature variables
encountered along the first-level of the path and a subset
of program states that satisfy the constraints over program
variables encountered along the second-level of the path.

4.1 Numerical Domains
We assume that a single-program numerical domain D de-
fined over a set of variables 𝑉 = {𝑋1, . . . , 𝑋𝑙 } is equipped
with sound operators for concretization 𝛾D (which assigns
to each abstract element from D a concrete meaning that
represents a set of states mapping each variable from 𝑉 to
its value from Z), ordering ⊑D, join ⊔D, meet ⊓D, bottom ⊥D,
top ⊤D, widening ∇D, and narrowing △D, as well as sound
transfer functions for tests (boolean expressions) FILTERD,
3Since 𝑘 ∈ K is a valuation function, either 𝑘 |= \ holds or 𝑘 ̸ |= \ holds for
any \ ∈ FeatExp(F) .

forward assignments ASSIGND, and backward assignments
B-ASSIGND. More specifically, transfer function FILTERD (𝑑 :
D, 𝑏𝑒 : BExp) returns an abstract element fromD obtained by
restricting 𝑑 to satisfy test 𝑏𝑒 ; ASSIGND (𝑑 : D, x:=𝑎𝑒 : Stm)
returns an updated version of 𝑑 by abstractly evaluating
x:=𝑎𝑒 in it; whereas B-ASSIGND (𝑟 : D, x:=𝑎𝑒 : Stm) returns
an abstract element from D such that by abstractly evaluat-
ing x:=𝑎𝑒 in it produces the abstract element 𝑟 . Note that 𝑟
represents an invariant in the final location of the assignment
x:=𝑎𝑒 that needs to be propagated backwards.

In practice, the domain D will be instantiated with some
of the known numerical domains, such as Intervals ⟨I, ⊑𝐼 ⟩
[8], Octagons ⟨O, ⊑𝑂 ⟩ [28], and Polyhedra ⟨P, ⊑𝑃 ⟩ [9]. The
elements of I are intervals of the form: ±𝑋 ≥ 𝛽 , where
𝑋 ∈ 𝑉 , 𝛽 ∈ Z; the elements of O are conjunctions of octag-
onal constraints of the form ±𝑋1 ± 𝑋2 ≥ 𝛽 , where 𝑋1, 𝑋2 ∈
𝑉 , 𝛽 ∈ Z; while the elements of P are conjunctions of polyhe-
dral constraints of the form 𝛼1𝑋1 + . . . +𝛼𝑘𝑋𝑘 + 𝛽 ≥ 0, where
𝑋1, . . . 𝑋𝑘 ∈ 𝑉 , 𝛼1, . . . , 𝛼𝑘 , 𝛽 ∈ Z. We will sometimes write
D𝑉 to explicitly denote the set of variables 𝑉 over which
domain D is defined. In this work, we will use domains DVar
and DF that are defined over program and feature variables,
respectively. We refer to [29] for a precise definition of all
abstract operations and transfer functions for Intervals, Oc-
tagons, and Polyhedra.

4.2 Function Domains for Leaf Nodes
The elements of the domain for affine functions F𝐴 are:

F𝐴 = {⊥,⊤} ∪ {𝑓 : Z |Var |→N | 𝑓 (𝑥1,. . ., 𝑥𝑛) =𝑚1𝑥1 + . . .+𝑚𝑛𝑥𝑛 + 𝑞}

where an element 𝑓 ∈ F𝐴 is a natural-valued function of pro-
gram variables representing an upper bound on the number
of steps to termination; the element ⊥ represents potential
non-termination; and the element ⊤ represents the lack of
information to conclude (i.e. the approximations prevent the
analyzer from giving a definite answer). The function 𝑓 ∈ F𝐴
represents a piece of a partially-defined ranking function
over program variables from Var. The leaf nodes belonging
to F𝐴\{⊥,⊤} and {⊥,⊤} represent defined and undefined
leaf nodes, respectively. All abstract operations and transfer
functions of F𝐴 are defined in [35, 36].

4.3 Linear Constraints Domain for Decision Nodes
We introduce a family of abstract domains for finite sets of
linear constraintsCD𝑉 defined over variables𝑉 , which are pa-
rameterized by a numerical domain D𝑉 . For example, the set
of polyhedral constraints is CP𝑉 = {𝛼1𝑋1 + . . .+𝛼𝑙𝑋𝑙 + 𝛽 ≥ 0 |
𝑋1, . . . 𝑋𝑙 ∈ 𝑉 , 𝛼1, . . . , 𝛼𝑙 , 𝛽 ∈ Z, gcd( |𝛼1 |, . . . , |𝛼𝑙 |, |𝛽 |) = 1}.
The correspondence between the set of linear constraints
CD𝑉 and the numerical domain ⟨D, ⊑D⟩ is given using the
Galois connection ⟨P(CD𝑉 ), ⊆⟩ −−−−−→←−−−−−

𝛼CD

𝛾CD ⟨D𝑉 , ⊑D⟩, where
P(CD𝑉 ) is the power set of CD𝑉 . The abstraction function
maps a set of constraints in P(CD𝑉 ) to a conjunction of
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constraints from D𝑉 , while the concretization function 𝛾CD
maps a conjunction of constraints from D𝑉 to a set of con-
straints inP(CD𝑉 ). Hence,P(CD𝑉 ) andD𝑉 are two different
(set-theoretic and logic-theoretic) representations of linear
constraints over variables 𝑉 .
We assume the set of variables 𝑉 = {𝑋1, . . . , 𝑋𝑙 } to be

totally ordered, such that the ordering is 𝑋1 > . . . > 𝑋𝑙 . We
impose a total order <CD𝑉 on CD𝑉 to be the lexicographic
order on the coefficients 𝛼1, . . . , 𝛼𝑙 and constant 𝛼𝑙+1 of the
linear constraints, such that:
(𝛼1 · 𝑋1 + . . . + 𝛼𝑙 ·𝑋𝑙 + 𝛼𝑙+1 ≥ 0) <CD𝑉 (𝛼

′
1 · 𝑋1 + . . . + 𝛼 ′𝑙 ·𝑋𝑙 + 𝛼 ′𝑙+1 ≥ 0)

⇐⇒ ∃ 𝑗 > 0.∀𝑖 < 𝑗 .(𝛼𝑖 = 𝛼 ′𝑖 ) ∧ (𝛼 𝑗 < 𝛼 ′𝑗 )

The negation of linear constraints is formed as: ¬(𝛼1𝑋1+
. . . 𝛼𝑛𝑋𝑛+𝛽≥ 0) = −𝛼1𝑋1− . . .−𝛼𝑛𝑋𝑛−𝛽−1 ≥ 0. For example,
the negation of 𝑋 − 3 ≥ 0 is −𝑋 + 2 ≥ 0. To ensure canonical
representation of decision trees, a linear constraint 𝑐 and its
negation ¬𝑐 cannot both appear as decision nodes. Thus, we
only keep the largest with respect to <𝐶D between 𝑐 and ¬𝑐 .

4.4 Termination Decision Tree Domain
We now recall the termination decision tree domain [35, 36]
for representing partial ranking functions. A termination
decision tree 𝑡 ′ ∈ T𝑇 (CDVar , F𝐴) over the sets CDVar of linear
constraints defined over program variables Var and the do-
main of affine functions F𝐴 is: either a leaf node≪𝑓≫with
𝑓 ∈ F𝐴, or [[𝑐 ′ : 𝑡𝑙 ′, 𝑡𝑟 ′]], where 𝑐 ′ ∈ CDVar (denoted by 𝑡 ′.𝑐)
is the smallest constraint with respect to <CDVar appearing in
the tree 𝑡 ′ (i.e., all constraints within decision nodes in 𝑡𝑙 ′ and
𝑡𝑟 ′ are larger than 𝑐 ′), 𝑡𝑙 ′ (denoted by 𝑡 ′.𝑙 ) is the left subtree
of 𝑡 ′ representing its true branch, and 𝑡𝑟 ′ (denoted by 𝑡 ′.𝑟 )
is the right subtree of 𝑡 ′ representing its false branch. The
path along a decision tree establishes a set of program states
(those that satisfy the encountered constraints), and the leaf
nodes represent the partially defined ranking functions over
the corresponding program states.

The termination domain T𝑇 is equipped with sound oper-
ators for concretization 𝛾T𝑇 (which assigns to each decision
tree 𝑡 ′ a concrete meaning that represents a ranking func-
tion mapping each program state to the number of execu-
tion steps to termination), ordering ⊑T𝑇 , join ⊔T𝑇 , meet ⊓T𝑇 ,
bottom ⊥T𝑇 , top ⊤T𝑇 , widening ∇T𝑇 , as well as sound trans-
fer functions for tests FILTERT𝑇 and backward assignments
B-ASSIGNT𝑇 . We refer to [35, 36] for their definitions.

4.5 Lifted Decision Tree Domain
We now define the lifted decision tree domain for repre-
senting lifted ranking functions. A lifted decision tree 𝑡 ∈
T𝐿 (CDF ,T𝑇 (CDVar , F𝐴)) over the setsCDF of linear constraints
defined over feature variables F and the termination deci-
sion trees T𝑇 is: either a leaf node ≪𝑡 ′≫with 𝑡 ′ ∈ T𝑇 , or
[[𝑐 : 𝑡𝑙, 𝑡𝑟 ]], where 𝑐 ∈ CDF (denoted by 𝑡 .𝑐) is the small-
est constraint with respect to <CDF

appearing in the tree
𝑡 , 𝑡𝑙 (denoted by 𝑡 .𝑙) is the left subtree of 𝑡 representing its

Algorithm 1: B-ASSIGNT𝐿 (𝑡, x:=𝑎𝑒)
1 if isLeaf (𝑡) then return≪B-ASSIGNT𝑇 (𝑡, x:=𝑎𝑒)≫;
2 return [[𝑡 .𝑐 : B-ASSIGNT𝐿 (𝑡 .𝑙, x:=𝑎𝑒), B-ASSIGNT𝐿 (𝑡 .𝑟 , x:=𝑎𝑒)]];

Algorithm 2: FILTERT𝐿 (𝑡, 𝑏𝑒)
1 if isLeaf (𝑡) then return≪FILTERT𝑇 (𝑡, 𝑏𝑒)≫;
2 return [[𝑡 .𝑐 : FILTERT𝐿 (𝑡 .𝑙, 𝑏𝑒),FILTERT𝐿 (𝑡 .𝑟, 𝑏𝑒)]];

true branch, and 𝑡𝑟 (denoted by 𝑡 .𝑟 ) is the right subtree of
𝑡 representing its false branch. The path along a decision
tree establishes a set of configurations (those that satisfy the
encountered constraints), and the leaf nodes represent the
termination decision trees (i.e., partial ranking functions) for
the corresponding configurations.
The lifted operations for T𝐿 (CDF ,T𝑇 (CDVar , F𝐴)) rely on

the algorithm for tree unification [15], which finds a common
labelling of decision nodes of two trees. Hence, the result
of tree unification are decision trees with the same decision
nodes. All operations are then performed leaf-wise on the
unified decision trees by applying the corresponding opera-
tions of domain T𝑇 on leaf nodes. For example, the ordering
𝑡1 ⊑T 𝑡2 of two unified decision trees 𝑡1 and 𝑡2 is defined as:

≪𝑡 ′1≫⊑T𝐿 ≪𝑡 ′2≫ = 𝑡 ′1⊑T𝑇 𝑡 ′2,
[[𝑐 :𝑡𝑙1, 𝑡𝑟1]] ⊑T𝐿 [[𝑐 :𝑡𝑙2, 𝑡𝑟2]] = (𝑡𝑙1⊑T𝐿 𝑡𝑙2) ∧ (𝑡𝑟1⊑T𝐿 𝑡𝑟2)

We refer to [15] for similar lifted operations defined for the
lifted decision tree domain T(CDF ,DVar) [15], which is used
for the (forward) lifted numerical analysis.
We now describe lifted transfer functions for boolean

expression-based tests 𝑏𝑒 ∈BExp (FILTERT𝐿 ), feature-based
tests \ ∈ FeatExp(F ) (F-FILTERT𝐿 ), and backward assign-
ments x:=𝑎𝑒 (B-ASSIGNT𝐿 ). Note that the analysis informa-
tion about program variables is located only in leaf nodes
𝑡 ′ ∈ T𝑇 , whereas the analysis information about feature vari-
ables is located only in (first-level) decision nodes of lifted de-
cision trees 𝑐 ∈ CDF . Therefore, FILTERT𝐿 and B-ASSIGNT𝐿
modify only leaf nodes belonging toT𝑇 , whereas F-FILTERT𝐿
modifies only the decision nodes belonging to CD domain.
The lifted transfer function B-ASSIGNT𝐿 for handling an

assignment x:=𝑎𝑒 , where x is a program variable and 𝑎𝑒 ∈
AExp contains only program variables, is described by Algo-
rithm 1. B-ASSIGNT𝐿 : T𝐿 × Stm→ T𝐿 descends along the
paths of the lifted decision tree 𝑡 up to a leaf node ≪𝑡 ′≫,
where B-ASSIGNT𝑇 (𝑡 ′, x:=𝑎𝑒) [35, 36] is invoked to handle
backward assignments within the termination decision tree
𝑡 ′. The lifted transfer function FILTERT𝐿 : T𝐿 × BExp→ T𝐿
for handling boolean expression-based tests 𝑏𝑒 ∈ 𝐵𝐸𝑥𝑝 ,
where 𝑏𝑒 contains only program variables, is implemented
by Algorithm 2 by applying FILTERT𝑇 leaf-wise, so that the
test 𝑏𝑒 is satisfied by all leaves.
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Algorithm 3: F-FILTERT𝐿 (𝑡, \ )
1 switch \ do
2 case (𝑒F ⊲⊳ 𝑒F) | | ¬(𝑒F ⊲⊳ 𝑒F) do
3 𝐶 = FILTERDF (⊤DF , \ )
4 return RESTRICT(𝑡,K,𝐶)
5 case \1 ∧ \2 do
6 return F-FILTERT𝐿 (𝑡, \1) ⊓T𝐿 F-FILTERT𝐿 (𝑡, \2)
7 case \1 ∨ \2 do
8 return F-FILTERT𝐿 (𝑡, \1) ⊔T𝐿 F-FILTERT𝐿 (𝑡, \2)

Lifted transfer function F-FILTERT𝐿 : T𝐿×FeatExp(F ) →
T𝐿 for feature-based tests \ ∈ FeatExp(F ), where \ contains
only feature variables, is described by Algorithm 3 by reason-
ing inductively on the structure of \ (we assume negation is
only applied to atomic constraints). When \ is an atomic con-
straint over numerical features (Lines 2,3), we use FILTERD
to approximate \ , thus producing a set of linear constraints
𝐶 ∈ P(CDF ), which are subsequently added to the tree 𝑡 ,
possibly discarding all paths of 𝑡 that do not satisfy \ . This is
done by calling the function RESTRICT(𝑡,K,𝐶) that adds lin-
ear constraints from 𝐶 to 𝑡 (see [15] for a precise definition).
When \ is a conjunction (resp., disjunction) of two feature
expressions (Lines 4,5) (resp., (Lines 6,7)), the resulting deci-
sion trees are merged by operation meet ⊓T (resp., join ⊔T).
The transfer function for #if-s is then defined as:
[[#if (\ ) 𝑠 #end]]T𝐿𝑡 =

[[𝑠]]T𝐿 (F-FILTERT𝐿 (𝑡, \ )) ⊔T𝐿 F-FILTERT𝐿 (𝑡,¬\ )

where [[𝑠]]T𝐿 (𝑡) is the transfer function for statement 𝑠 .

4.6 Lifted Termination Analysis
The operations and transfer functions of T𝐿 (CDF ,T𝑇 ) can be
used to analyze termination of program families. The lifted
termination analysis derived from T𝐿 is a pure backward
analysis that infers ranking functions in all program loca-
tions. The lifted transfer function [[𝑠]]T𝐿 of a statement 𝑠
takes as input a lifted decision tree 𝑡 corresponding to the
final location of 𝑠 , and outputs a lifted decision tree over-
approximating the ranking function corresponding to the
initial location of 𝑠 . The input lifted decision tree 𝑡𝑖𝑛 at the fi-
nal location of a program has only one leaf node _𝑥1, . . . , 𝑥𝑛 .0
(that is, the zero function), and decision nodes define the set
K . The lifted decision tree describes that in the final location
of all variants there are zero execution steps to termination.
Analysis properties are propagated backward from the final
program location towards the initial location taking assign-
ments, #if-s, and tests into account with widening around
while-s. We apply delayed widening [8], which means that
we start extrapolating by widening only after some fixed
number of iterations of a loop are analyzed explicitly. This
way, we collect sufficient preconditions for ensuring definite

termination in the form of lifted decision trees at all program
locations. From the decision tree in the initial location, we
can thus establish for any variant from which initial states it
will definitely terminate.

We establish correctness of the lifted analysis based on
T𝐿 (CD,T𝑇 ) by showing that it produces identical results with
the brute-force approach that analyzes all variants one-by-
one using the domain T𝑇 . Let [[𝑠]]T𝐿 denote the transfer func-
tion of statement 𝑠 in T𝐿 (CD,T𝑇 ), while [[𝑠]]T𝑇 denotes the
transfer function of statement 𝑠 in T𝑇 . Given 𝑡 ∈ T𝐿 (CD,T𝑇 ),
we denote by 𝜋𝑘 (𝑡) ∈ T𝑇 the leaf node of tree 𝑡 that corre-
sponds to the variant 𝑘 ∈ K .
Theorem 4.1 (Correctness).
𝜋𝑘 ( [[𝑠]]T𝐿 (𝑡)) = [[𝑃𝑘 (𝑠)]]T𝑇 (𝜋𝑘 (𝑡)) for all 𝑘 ∈ K .
Proof. The proof is by induction on the structure of 𝑠 . We
consider the most interesting case of #if (\ ) 𝑠 #endif.

Assume 𝑘 |= \ . The leaf node 𝜋𝑘 (𝑡) is in F-FILTERT𝐿 (𝑡, \ )
but not in F-FILTERT𝐿 (𝑡,¬\ ). Thus, we have the result of
𝜋𝑘 ( [[#if (\ ) 𝑠 #endif]]T𝐿 (𝑡)) is [[𝑃𝑘 (𝑠)]]T𝑇 (𝜋𝑘 (𝑡)) by IH. On
the other hand, 𝑃𝑘 (#if (\ ) 𝑠#endif)=𝑃𝑘 (𝑠) and the result of
RHS is [[𝑃𝑘 (𝑠)]]T𝑇 (𝜋𝑘 (𝑡)).

Assume𝑘 ̸ |= \ . The leaf node𝜋𝑘 (𝑡) is in F-FILTERT𝐿 (𝑡,¬\ )
but not in F-FILTERT𝐿 (𝑡, \ ). Thus, we have that the result
of 𝜋𝑘 ( [[#if (\ ) 𝑠 #endif]]T𝐿 (𝑡)) is 𝜋𝑘 (𝑡). On the other hand,
𝑃𝑘 (#if (\ ) 𝑠 #endif)=skip, and thus the result of RHS is
[[skip]]T𝑇 (𝜋𝑘 (𝑡))=𝜋𝑘 (𝑡) □

Example 4.2. Consider the program family cav2006.c from
Section 2. We perform (backward) lifted termination analysis
parameterized by the polyhedra domain. In order to enforce
convergence of the analysis, we apply the widening opera-
tor at the loop head. The invariant inferred by our analysis
at program locations 4○ and 1○ are shown in Figs. 5 and 2.
By back-propagating the invariant at 4○, denoted 𝑡 4○, via
#if directive at loc. 2○ we obtain the invariant at 1○, de-
noted 𝑡 1○. That is, 𝑡 1○ = B-ASSIGNT𝐿 (F-FILTERT𝐿 (𝑡 4○, A<
B), y = 50) ⊔T𝐿 B-ASSIGNT𝐿 (F-FILTERT𝐿 (𝑡 4○, A≥B), y = 51).
F-FILTERT𝐿 (𝑡 4○, A<B) will return a decision tree with a root
node (A<B) where only the left subtree of 𝑡 4○ is kept, and
after back-propagating y = 50 we will obtain the left subtree
of 𝑡 1○. Similarly, we obtain the right subtree of 𝑡 1○.

5 Termination-Directed Program Sketching
In this section, we first introduce the language for writing
program sketches and define their transformation to program
families. Then, we extend the lifted decision tree domain to
obtain more efficient program sketcher. Finally, we present
an algorithm for solving termination-directed sketches.

5.1 Program Sketches
The language for sketches includes the same expression and
statement productions as the language for program fami-
lies, except that the #if statement is not allowed and a new
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Figure 5. Lifted decision tree at loc. 4○ of cav2006.c.

sketching construct is allowed represented by a basic numer-
ical hole, ??. That is, 𝑎𝑒 ::= . . . | ??. The numerical hole ?? is
a placeholder that the synthesizer must replace with a suit-
able integer constant, such that the resulting program will
always terminate under all possible inputs. Each hole occur-
rence in a program sketch 𝑠 is uniquely labelled as ??𝑖 and
has a bounded integer domain [𝑛𝑖 , 𝑛′𝑖 ]. We will sometimes
write ??[𝑛𝑖 ,𝑛

′
𝑖 ]

𝑖
to make explicit the domain of a hole.

We want to transform an input program sketch 𝑠 with a set
of 𝑚 holes ??[𝑛1,𝑛

′
1 ]

1 , . . . , ??
[𝑛𝑚,𝑛′𝑚 ]
𝑚 into an output program

family 𝑠 with a set of numerical features 𝐴1, . . . , 𝐴𝑚 with do-
mains [𝑛1, 𝑛′1], . . . , [𝑛𝑚, 𝑛′𝑚], respectively. The set of configu-
rations K includes all possible combinations of feature’s val-
ues. If a hole occurs in a linear expression that can be exactly
represented in the numerical domain D, then we can handle
the hole in a more efficient symbolic way by an extended
lifted termination analysis. Given the polyhedra domain P,
we say that a hole ?? can be exactly represented in P, if it oc-
curs in an expression of the form: 𝛼1𝑥1+ . . . 𝛼𝑖??+ . . . 𝛼𝑛𝑥𝑛+𝛽 ,
where 𝛼1, . . . , 𝛼𝑛, 𝛽 ∈ Z and 𝑥1, . . . 𝑥𝑛 are program variables
or other hole occurrences. Similarly, define when a hole can
be exactly represented in the interval and octagon domains.

We now define rewrite rules for eliminating holes ?? from
a program sketch 𝑠 . Let 𝑠 [??[𝑛,𝑛′ ]] be a basic (non-compound)
statement in which the hole ??[𝑛,𝑛′ ] occurs. When the hole
??[𝑛,𝑛

′ ] occurs in an expression that can be represented ex-
actly in the numerical domain D, we eliminate ?? using the
symbolic rewrite rule:

𝑠 [??[𝑛,𝑛′ ]] { 𝑠 [A] (SR)

Otherwise, we use the explicit rewrite rule:

𝑠 [??[𝑛,𝑛′ ]] { #if (A=𝑛) 𝑠 [𝑛] #elif . . . #elif (A=𝑛′-1) 𝑠 [𝑛′-1]
#else 𝑠 [𝑛′] #endif . . . #endif

(ER)

The set of features F is also updated with the fresh feature
A. We write Rewrite(𝑠) to be the resulting program family
obtained by repeatedly applying rules (SR) and (ER) on a
program sketch 𝑠 to saturation.

Note that in a program family Rewrite(𝑠) obtained using
(SR) and (ER) rules feature variables can occur in arbitrary
expressions, not only in #if-s as in traditional program fam-
ilies as defined in Section 3. Therefore, the syntax of arith-
metic expressions in program families is now extended with
feature variables, 𝑎𝑒 ::= . . . | 𝐴 ∈ F . Moreover, the projec-
tion function P𝑘 is updated accordingly to take into account
feature variables. Thus, P𝑘 recursively pre-processes all sub-
statements and sub-expressions of statements. For example,
𝑃𝑘 (x:=𝑎𝑒) = x:=𝑃𝑘 (𝑎𝑒), 𝑃𝑘 (𝑎𝑒⊕𝑎𝑒 ′) = 𝑃𝑘 (𝑎𝑒)⊕𝑃𝑘 (𝑎𝑒 ′), etc.
Finally, 𝑃𝑘 replaces a feature𝐴 with the value 𝑘 (𝐴) ∈ Z, that
is 𝑃𝑘 (𝐴) = 𝑘 (𝐴).
Example 5.1. Reconsider the sketch loop1.c in Fig. 3. Both
holes ?? can be represented exactly in the polyhedra domain
𝑃 , so we use (SR) rule to obtain the corresponding program
family. In contrast, consider the sketch vmcai2004a.c from
SV-COMP: int x; while (x ≥ 0) x = ??*x+10. The hole ??
occurs in a non-linear expression ??*x+10, so we use (ER)
rule to obtain the corresponding program family. □

Let 𝐻 be a set of holes in a program sketch. We define
a control function 𝜙 : 𝐻 → Z to describe the value of each
hole in a sketch. We denote by 𝑠𝜙 a candidate solution to the
sketch 𝑠 fully described by the control function 𝜙 . Let [[𝑠]]
denotes the standard semantics of a single-program s [35].
The following result can be proved by structural induction
on statements and expressions.
Theorem 5.2. Let 𝑠 be a sketch with holes ??1, . . . , ??𝑛 , and𝜙
be a control function. Let 𝑠 = Rewrite(𝑠) be a program family,
in which features 𝐴1, . . . , 𝐴𝑛 correspond to holes ??1, . . . , ??𝑛 .
We define a configuration 𝑘 ∈ K , s.t. 𝑘 (𝐴𝑖 ) = 𝜙 (??𝑖 ) for
1≤ 𝑖 ≤ 𝑛. Then, we have: [[𝑠𝜙 ]] = [[P𝑘 (𝑠)]].

5.2 Extended Lifted Termination Analysis
Feature variables obtained by (SR) rule can freely occur in
arbitrary expressions in the program family Rewrite(𝑠), not
only in presence conditions of #if-s as in traditional pro-
gram families (see Section 3). Hence, assignments x:=𝑎𝑒
and tests 𝑏𝑒 in Rewrite(𝑠), where 𝑎𝑒 and 𝑏𝑒 may contain
both program and feature variables from Var ∪ F , might
also impact some linear constraints within decision nodes as
well as some ranking functions within leaf nodes. Therefore,
we define extended (improved) versions of B-ASSIGNT𝐿 and
FILTERT𝐿 that take into account possibility of features oc-
curring in expressions, and so they can modify both leaf and
decision nodes. The lifted decision tree domain T𝐿 (CDF ,T𝑇 )
is now slightly refined, such that domain T𝑇 is defined over
both program and feature variables, Var ∪ F .
B-ASSIGNT𝐿 (𝑡, x:=𝑎𝑒,𝐶) (resp., FILTERT𝐿 (𝑡, 𝑏𝑒,𝐶)), given

in Algorithm 4 (resp., Algorithm 5), accumulates into the
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Algorithm 4: B-ASSIGNT𝐿 (𝑡, x:=𝑎𝑒,𝐶)
1 if isLeaf (𝑡) then
2 𝑡 ′ = B-ASSIGNT𝑇 (𝑡, x:=𝑎𝑒);
3 return≪FILTERT𝑇 (𝑡 ′,𝐶)≫
4 if isNode(𝑡) then
5 𝑙 = B-ASSIGNT (𝑡 .𝑙, x:=𝑎𝑒,𝐶 ∪ {𝑡 .𝑐});
6 𝑟 = B-ASSIGNT (𝑡 .𝑟, x:=𝑎𝑒,𝐶 ∪ {¬𝑡 .𝑐});
7 return [[𝑡 .𝑐 : 𝑙, 𝑐]]

Algorithm 5: FILTERT𝐿 (𝑡, 𝑏𝑒,𝐶)
1 if isLeaf (𝑡) then
2 𝑡 ′ = FILTERT𝑇 (𝑡 ⊎ 𝛼CD (𝐶), 𝑏𝑒);
3 𝐽 = 𝛾CD (𝑡 ′ ↾F);
4 if isRedundant(𝐽 ,𝐶) then return≪𝑡 ′≫;
5 else return RESTRICT(≪𝑡 ′≫,𝐶, 𝐽\𝐶);
6 if isNode(𝑡) then
7 𝑙 = FILTERT𝐿 (𝑡 .𝑙, 𝑏𝑒,𝐶 ∪ {𝑡 .𝑐});
8 𝑟 = FILTERT𝐿 (𝑡 .𝑟 , 𝑏𝑒,𝐶 ∪ {¬𝑡 .𝑐});
9 return [[𝑡 .𝑐 : 𝑙, 𝑟 ]]

set 𝐶 ∈ P(CDF ) (initialized to K), constraints encountered
along the paths of the decision tree (Lines 5,6) (resp., (Lines
7,8)), up to the leaf nodes where assignment x:=𝑎𝑒 is han-
dled by B-ASSIGNT𝑇 (resp., test 𝑏𝑒 is handled by FILTERT𝑇
applied on an element obtained by merging ⊎ constraints
from the leaf node and the set 𝐶) (Line 2). The obtained re-
sult 𝑡 ′ in B-ASSIGNT𝐿 is restricted to satisfy the accumulated
constraints𝐶 by using FILTERT𝑇 (Line 3), whereas the result
𝑡 ′ in FILTERT𝐿 is projected on features by ↾F to generate
a new set of constraints 𝐽 that are added to the given path
using the function RESTRICT (Line 5).
5.3 Solving Sketches
We can now reduce the termination-directed sketching prob-
lem to an lifted termination analysis problem. Once the lifted
termination analysis of the corresponding program family is
performed, we can see from the inferred lifted decision trees
in the initial location for which variants the fully-defined
ranking function is generated. Those variants that satisfy
the encountered linear constraints along the valid top-down
paths, represent the correct sketch realizations.

The synthesis algorithm for solving a sketch 𝑠 is described
by Algorithm 6. First, a program sketch 𝑠 is transformed
into a program family 𝑠 = Rewrite(𝑠) (Line 1). Second, the
extended lifted termination analysis of 𝑠 is performed, which
takes as input the lifted decision tree 𝑡𝑖𝑛 at the final location
and the program family 𝑠 and returns a lifted decision tree
in the initial location (Line 2). Finally, the returned lifted
decision tree 𝑡 is analyzed using the function FindDefined
(Line 3). It reports a set of variantsK ′ ⊆ K for which ranking

functions (leaf nodes) fully-defined over all possible values
of input variables are found. The following result follows
from the correctness of Rewrite (see Theorem 5.2) and the
correctness of lifted termination analysis (see Theorem 4.1).

Theorem 5.3. SolveSketch(𝑠) is correct and terminates.

Algorithm 6: SolveSketch(𝑠 : 𝑆𝑡𝑚)
1 𝑠 = Rewrite(𝑠);
2 𝑡 = [[𝑠]]T𝐿𝑡𝑖𝑛 ;
3 return FindDefined(𝑡);

6 Evaluation
We evaluate our decision tree-based approach for lifted termi-
nation analysis and termination-directed program sketching
by comparing its performances against the tuple-based lifted
analysis and the variability encoding approach. All above
approaches are based on the FuncTion tool [34–36], which
represents a single-program termination analyzer phrased in
the abstract interpretation framework. A detailed compari-
son of the FuncTion with other single-program termination
analyzers [5, 19] can be found in [34–36]. To the best of
our knowledge, this is the first study of lifted termination
analysis and termination-directed program sketching.

Lifted tuple-based termination analysis. The lifted
tuple-based domain for representing lifted ranking functions
is ⟨∏𝑘∈K T

𝑇 , ¤⊑⟩. That is, there is one separate copy of T𝑇 for
each configuration 𝑘 ∈ K . Hence, the elements of the lifted
domain are tuples 𝑡 ′ that maintain one property element (a
piecewise-defined ranking function from T𝑇 ) per configura-
tion. All lifted operations and transfer functions are defined
by lifting the corresponding operations and transfer func-
tions of the domain T𝑇 configuration-wise. For example, the
ordering is defined as: 𝑡 ′1 ¤⊑𝑡 ′2 ≡ 𝜋𝑘 (𝑡 ′1) ⊑T𝑇 𝜋𝑘 (𝑡 ′2), for ∀𝑘 ∈
K , where the projection 𝜋𝑘 selects the 𝑘 th component of
tuple 𝑡 ′. We refer to [15] for similar definitions of lifted
operations and transfer functions of the lifted tuple-based
domain ⟨∏𝑘∈K DVar, ¤⊑⟩. Note that the tuple-based analysis
represents a simple lifted (variability-aware) analysis [4, 27],
since it works on the level of program families. This ap-
proach improves over the “brute force” strategy since a lot
of caching effects and improvements are possible for it. For
example, it compiles and executes the fixed point iterative
algorithm once per whole family, configuration satisfiabil-
ity tests 𝑘 |= \ can be memoized, many transfer functions
that act identically for all configurations can be executed
only once, etc. Therefore, as evidenced in [4, 27], the lifted
tuple-based analysis is faster than the “brute force” approach.

Implementation. We have developed a prototype lifted
termination analyzer, called SPLFuncTion, which uses lifted
domains of tuples

∏
𝑘∈K T

𝑇 and decision trees T𝐿 . The tool
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also supports synthesis algorithm based on tuples and deci-
sion trees for solving termination-directed program sketches.
It is built on top of the FuncTion tool [34] for inferring
piecewise-defined ranking functions of single programs. The
well-known numerical abstract domains, such as intervals,
octagons, and polyhedra, are used as parameters in our lifted
domains. Their abstract operations and transfer functions are
provided by the APRON library [21]. Our proof-of-concept
implementation is written in OCaml and consists of around
7K LOC. The tool accepts programs written in a subset of
C with #if directives. It currently provides only a limited
support for arrays, pointers, struct and union types. The
only basic data type is mathematical integers.

Experiment setup and Benchmarks. Experiments are
executed on a 64-bit Intel®Core𝑇𝑀 i7-1165G7CPU@2.80GHz,
VM LUbuntu 20.10, with 8 GB memory, and we use a time-
out value of 200 seconds. All times are reported as aver-
age over five independent executions. The implementation,
benchmarks, and all obtained results are available from:
https://github.com/aleksdimovski/SPLFunction. In our ex-
periments, we use three instances of our lifted termina-
tion analysis via decision trees: AT (𝐼 ), AT (𝑂), and AT (𝑃);
and three instances of lifted termination analysis via tuples:
AΠ (𝐼 ), AΠ (𝑂), and AΠ (𝑃), which use intervals, octagons,
and polyhedra domains as parameters, respectively. For each
version of decision tree-based lifted analysis, we report the
running time in seconds (denoted by Time) to analyze the
given benchmark, and we report the speed up factor (de-
noted by Impr.) for each lifted analysis based on decision
trees relative to the corresponding lifted analysis based on
tuples (AT (−) vs. AΠ (−)). Additionally, we consider the
single-program termination analysis A(𝑃), as implemented
by the FuncTion tool [34], applied to variability simulators
of given program families.
The evaluation is performed on a dozen of C loop pro-

grams collected from several categories of SV-COMP suite:
termination-crafted-lit (written crafted-lit for short),
termination-crafted (crafted), termination-restrict
(restricted); from FuncTion project [34, 35]; as well as
on several C numerical sketches collected from the Sketch
project [30, 31]. In the case of SV-COMP, we have first se-
lected some loop programs with integer variables, and then
we have manually added variability (features and #if-s) in
each of them. We have inserted presence conditions with
different complexities, from atomic to more complex fea-
ture expressions, and #if-s are placed in different locations
of the code. Tables 1 and 2 present characteristics of the
benchmarks, such as: the file name (Benchmark), the cat-
egory where it is located (folder), the number of features
(|F |), configurations (|K |), and lines of code (LOC). Some of
the benchmarks for termination analysis are given in Figs. 1
and 6 to 9, whereas the benchmarks for sketching are given
in Figs. 3 and 10 to 13.

Performance Results. Table 1 shows the results of analyz-
ing our benchmarks by using different versions of our lifted
termination analyses based on decision trees and tuples. The
performance results confirm that sharing is indeed effective
and especially so for large values of |K |. On our benchmarks,
it translates to speed ups (i.e., (AT (−) vs.AΠ (−)) that range
from 1.6 to 38 times when |K | < 100, and from 5.8 to 217
times when |K | > 100. We can also notice that AT (𝐼 ) is
the fastest version, then it comes AT (𝑂), and AT (𝑃) is the
slowest decision tree-based analysis but the most precise.

Consider mccarthy91.c code snippet given in Fig. 6, which
represents an iterative implementation of the McCarthy 91
function [26]. Depending on the values assigned to feature
A at compile-time, variable x1 is initialized to [0,100] when
(A < 2) and to [101,110] when (A ≥ 2). The lifted termi-
nation analysis infers the ranking function [[A ≥ 2, 8,⊤]],
meaning that variants satisfying A≥ 2 terminate in at most
8 execution steps, whereas for variants satisfying A< 2 an
indefinite (I don’t know) answer is reported. In the case of
PastaB2.c given in Fig. 7, SPLFuncTion establishes termi-
nation for variants satisfying (Min ≤ A≤ 2) ∧ (Min ≤ B≤ 2).
For example, the ranking function is: 3x − 3y + 7 when
(x-y ≥ 5). Otherwise, an infinite behaviour is possible: when
(Min ≤ A≤ 2) ∧ (3 ≤ B≤Max) a possible non-termination is
reported if (x > y). For sas2014b.c given in Fig. 8, we prove
termination for variants satisfying (A≤ B+1). For example,
the ranking function is: 3x − 2 when (x ≥ y + 1) ∧ (y ≥ 1).
Finally, SPLFuncTion proves termination for all variants of
boolean.c in Fig. 9 by reporting ranking function: 303.

We have also applied the single-program termination anal-
ysis A(𝑃) on variability simulators of program families
in Table 1. For mccarthy91.c we obtain the ⊤ (’I don’t
know’) answer; for PastaB2.cwe obtain the⊥ answer when
(x ≥ y); while for sas2014b.cwe obtain the⊥ answer when
(x > 0 ∨ y > 0). For all other benchmarks, we also obtain
less precise ranking functions than using AT (𝑃), except for
boolean.c when the same answers are obtained. The lifted
analysisAT (𝑃) do not lose any precision with respect to fea-
ture variables, since domain elements are lifted decision trees
that partition the space of all possible values of features in-
ducing disjunctions into the base termination domain. Thus,
AT (𝑃) produces identical (precision-wise) results with the
brute-force approach (see Theorem 4.1). On the other hand,
the variability encoding approach uses a single-program
termination analysis A(𝑃), where domain elements are de-
cision trees that partition the space of possible values of
feature and program variables inducing disjunctions into
the base domain of affine functions. Still, this partitioning is
more coarse: the join of neighbouring leaf nodes is often in-
voked for many operations thus producing undefined results
as evidenced by the above experiments.
Table 2 shows the results of synthesizing our sketches

by using Polyhedra parameterized instances of our lifted

https://github.com/aleksdimovski/SPLFunction
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void main(){
int x1, x2 = 1;
#if (A<2) x1 = [0, 100];
#else x1 = [101, 110]; #endif
while (x2 ≥ 1) {
if {

x1 = x1-10; x2 = x2-1;
} else {
x1 = x1+11; x2 = x2+1; }

}
return x1; }

Figure 6. mccarthy91.c.

void main(){
int x;
int y;
while (x > y) {

#if (A≤ 2) x = x-1;
#else x = x+1; #endif
#if (B≤ 3) y = y+1;
#else y = y-1; #endif
}
}

Figure 7. PastaB2.c.

void main(){
int x;
int y;
while (x > 0 ∧ y > 0) {

#if (A≤B+1) x = x-y;
#else x = x+y; #endif
}
}

Figure 8. sas2014b.c.

void main(){
int x;
#if (A>1)∧(A≤ 3) x=[-99, 0];
#else x = [1, 99]; #endif
while (x) {
if (x>0) x = x-1;
else x = x+1;
}
}

Figure 9. boolean.c.

void main(){
int x=??;
while (x > 10) {

if (x==25) x = 30;
if (x ≤ 30) x=x-1;
else x=20;
}
}

Figure 10. tap2008a.c.

void main(){
int x=??;
while (x > 0 ∧ x < 50) {
if (x<20) x = x-1;
if (x > 10) x=x+1;
if (30 ≤ x ∧ x ≤ 40) x=x-1;
}
}

Figure 11. tap2008e.c.

void main(){
int x;
int K=??;
while (x ≠ K) {
if (x>K) x = x-1;
else x = x+1;
}
}

Figure 12. tacas2013b.c.

void main() {
int x = ??1;
while (x ≥ 0) {
if (y <??2) x = x-2;
}
}

Figure 13. loop2.c.

Table 1. Performance results for lifted termination analyses based on decision trees AT (−) vs. tuples AΠ (−) (which are used
as baseline). All times are in seconds.

Benchmark folder LOC |F | |K | AT (𝐼 ) AT (𝑂) AT (𝑃)
Time Impr. Time Impr. Time Impr.

cav2006.c crafted-lit 20 2 8 0.128 2.5× 0.168 1.6× 0.162 3×
mccarthy91.c crafted 25 1 32 0.097 35× 0.111 35× 0.269 38×
PastaB2.c restrict 17 2 128 0.001 13× 0.031 5.8× 0.039 9.6×
sas2014b.c crafted 15 2 256 0.005 40× 0.015 45× 0.038 95×
boolean.c FuncTion 20 1 16 0.011 12× 0.010 10.9× 0.020 12×
issue8.c FuncTion 20 1 8 0.008 5.5× 0.019 6.6× 0.027 7.1×
example5.c FuncTion 20 2 256 0.006 183× 0.007 125× 0.009 190×
Mysore.c crafted 15 1 16 0.001 5× 0.002 6.5× 0.020 10×
Copenhagen.c crafted 20 3 512 0.082 150× 0.125 92× 0.100 217×

analyses AT (𝑃) and AΠ (𝑃). We consider various versions
of our benchmarks with 4, 5, and 8-bit sizes of holes. Note
that a sketch with 𝑛-bit holes is translated into a family with
features that have 2𝑛 possible values. For example, loop1.c
sketch with two 5-bit holes will be transformed into a pro-
gram family with 25 · 25 = 1024 configurations. The decision
tree-based approach scales better for all benchmarks giving
speed ups that range from 13.8 to 78 times for 4-bit sketches,
and from 28.3 to 406 times for 5-bit sketches. In the case
of 8-bit sketches, AΠ (𝑃) often times out due to the large
configuration spaces (e.g. |K | = 65536 for sketches with two

holes). All sketches with holes that can be handled symboli-
cally by (SR) rule can be efficiently analyzed using AT (𝑃),
which does not depend on the sizes of holes in those cases.

Consider the sketch tap2008a.c given in Fig. 10. It con-
tains one hole ?? (corresponding feature A) that can be han-
dled symbolically by (SR) rule. Hence, our decision tree-based
synthesis approach has similar running times for all domain
sizes, reporting as solutions the constraints: (Min ≤ A ≤
24)∧ (31 ≤ A ≤ Max). That is, the sketch tap2008a.c always
terminates when the hole ?? is either less than 25 or larger
than 30. The obtained ranking function is: 3 when (A ≤ 10);
4A−37when (10 < A ≤ 24), and 47 when (A ≥ 31). Similarly,
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Table 2. Performance results for termination-directed sketching based on decision trees AT (𝑃) vs. tuples AΠ (𝑃) (which is
used as baseline). All times in seconds.

Benchmarks folder LOC |F | 4 bits 5 bits 8 bits

Time Impr. Time Impr. Time Impr.

loop1.c Sketch 20 2 0.074 74× 0.074 367× 0.074 timeout

tap2008a.c FuncTion 25 1 0.040 15× 0.040 30× 0.041 374×
tap2008e.c FuncTion 25 1 0.267 17.7× 0.269 41.5× 0.276 496×
tacas2013b.c crafted 20 1 0.027 13.8× 0.027 28.3× 0.027 281×
loop2.c Sketch 20 2 0.058 78× 0.058 406× 0.060 timeout

SPLFuncTion establishes that tap2008e.c given in Fig. 11
terminates for constraints: (Min ≤ A ≤ 11) ∧ (40 ≤ A ≤ Max).
The obtained ranking function is: 5A + 3 when (A ≤ 11);
−5A + 253 when (40 ≤ A ≤ 49), and 3 when (A ≥ 50). We
obtain that tacas2013b.c sketch terminates for any value
for the hole ?? (corresponding feature A). The ranking func-
tion is: 3A − 3x + 3 when (A-x ≥ 0); and −3A + 3x + 3 when
(A-x ≤ 0). Finally, the sketcher synthesizes a solution for
loop2.c that satisfies (??1 ≤ ??2 − 1). For example, the
ranking function is: 3??1 + 11 when (??1 ≥ 4).

Threats to validity. Our current tool supports a non-
trivial subset of C, and the missing constructs (e.g. pointers,
struct and union types) are largely orthogonal to the solu-
tion (lifted decision tree domain). That is, supporting these
constructs would not provide any new insights to our evalu-
ation. We perform lifted termination analysis of relatively
small benchmarks. However, the focus of the lifted decision
tree domain is to combat the configuration space blow-up
of program families, not their LOC size. So, we expect to
obtain similar or better results for larger benchmarks. An-
other threat to validity is the synthetic variability that has
been manually added to the benchmarks. We have gener-
ated benchmarks with various configuration spaces, ranging
from 16 to 65536 configurations. We have also inserted pres-
ence conditions with different complexities, from atomic to
more complex feature expressions, and #if-s are placed in
different code locations (e.g., initialization, inside loops, etc).

7 Related Work
Research on behavioral analysis of program families has
been a hot topic in the past decade. Various static analysis
techniques have been successfully lifted to work at the level
of program families. They can be classified based on the
underlying technologies that are used: abstract interpreta-
tion [11, 13, 15, 17, 27], data-flow analysis [3, 4, 37], type
checking [23, 24], type-based analysis [7], model checking
[2, 10, 12, 18], theorem proving [33] etc. Our approach be-
longs to the abstract interpretation category. Midtgaard et. al.
[27] have proposed the lifted tuple-based analysis phrased
in the abstract interpretation framework [8, 29], while the

works [11, 13] improve the tuple representation by using
lifted binary decision diagram (BDD) domains. They are
applied to classical program families with only Boolean fea-
tures. Subsequently, the lifted decision tree domain [15] has
been proposed to handle program families with both Boolean
and numerical features, which represent the majority of in-
dustrial embedded code. Moreover, this domain has been ex-
tended to analyze dynamic program families [14]. However,
the above lifted analyses are forward and infer numerical
invariants, whereas here we consider a backward analysis
inferring ranking functions.
In the recent past, several powerful termination provers

have been constructed. For example, the Terminator prover
[5] is based on iterative construction of transition invariants,
the FuncTion tool [35] is based on abstract interpretation,
while the tool in [19] represents a constraint-based approach.

The Sketch tool [30, 31] uses SAT-based inductive syn-
thesis to resolve the assertion-directed program sketches. It
reasons about loops by unrolling them, so is very sensitive
to the degree of unrolling. Our approach being based on ab-
stract interpretation uses widening instead of fully unrolling
loops, so that we can handle directly unbounded loops in a
sound way. Still, our approach is based on numerical abstract
domains, so it can be only applied for synthesizing numerical
programs. The Sketch tool is more general and especially
successful for bit-manipulating programs.

Recently, some researchers have explored ways to reduce
the sketching synthesis problem as a lifted analysis problem.
Ceska et. al. [6] use a counterexample guided abstraction
refinement technique for analyzing product lines to resolve
probabilistic PRISM sketches. In a similar vein as here, the
work [16] uses a lifted numerical analysis based on abstract
interpretation to resolve assertion-directed sketches.

8 Conclusion
In this work, we employ techniques from abstract interpre-
tation and product-line analysis for performing termination
analysis of program families and for automatic resolving
of program sketches. By means of an implementation and
a number of experiments, we show that our approach is
effective and performs well on a variety of C benchmarks.
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