
Springer Nature 2021 LATEX template

Synthesizing Promela Model Sketches Using Abstract

Lifted Model Checking

Aleksandar S. Dimovski1*

1*Faculty of Informatics, Mother Teresa University, Mirche Acev no. 4, Skopje, 1000,
North Macedonia .

Corresponding author(s). E-mail(s): aleksandar.dimovski@unt.edu.mk;

Abstract

We present a novel approach to synthesize complete models from Promela model sketches by
using of lifted (family-based) verification and analysis techniques for model families (a.k.a soft-
ware product lines - SPLs). The input is a Promela model sketch, which represents a partial
model with missing numerical holes. The goal is to automatically synthesize values for the holes,
such that the resulting complete model satisfies a given Linear Temporal Logic (LTL) specifica-
tion. First, we encode a model sketch as a model family, such that all possible sketch realizations
correspond to possible variants in the model family. Then, we preform a lifted (family-based)
model checking of the resulting model family using variability-specific abstraction refinement,
so that only those variants (family members) that satisfy the given LTL properties represent
“correct” realizations of the given model sketch. We have implemented a prototype model syn-
thesizer for resolving Promela sketches. It calls the SPIN model checker for verifying Promela
models. We illustrate the practicality of this approach for synthesizing several Promela models.

Keywords: Model sketching, SPL (lifted) model checking, Abstract Interpretation

1 Introduction

This paper presents a novel synthesis framework
for reactive models that adhere to a given set of
properties. The input is a sketch [24], i.e. a partial
model with holes, where each hole is a placeholder
that can be replaced with one of finitely many
options; and a set of properties that the model
needs to fulfill. Model sketches are represented in
the Promela modelling language [20] and prop-
erties are expressed in Linear Temporal Logic
(LTL) [1]. The synthesizer aims to generate as
output a sketch realization, i.e. a complete model
instantiation, which satisfies the given properties
by suitably filling the holes. This is so-calledmodel
sketching problem.

In this work, we frame the model sketching
problem as a verification problem [18, 23] for
model families (a.k.a. software product lines –
SPLs) [4]. SPL Engineering represents an effi-
cient method to achieve customization of software
systems by using features (statically configured
options) to organize the variable functionality.
Family members, called variants, are specified
in terms of features selected for that particular
variant at compile-time. We consider model fami-
lies implemented using #if directives from the C
preprocessor CPP [4, 10].

All model sketch realizations can be encoded
as a model family, where each numerical hole
is represented by a numerical feature with the

1

Springer Nature 2021 LATEX template

2 Synthesizing Promela Model Sketches

same domain. Hence, the model sketching prob-
lem reduces to selecting correct variants (family
members) from the resulting model family that
satisfy the given LTL properties. The automated
analysis [19] of such families for finding a cor-
rect variant is challenging since in addition to the
state-space explosion affecting each family mem-
ber, the family size (i.e., the number of variants)
typically grows exponentially in the number of
features. This is particulary apparent in the case
of model families that contain numerical features
with big domains, thus admitting astronomic fam-
ily sizes. This also affects the model sketching
problem. A naive brute force enumerative solution
is to check each individual variant of the model
family by applying an off-the-shelf model checker
to each variant. This is shown to be very inefficient
for large families [3, 5] because the same execution
behaviour is checked multiple times, whenever
it is shared by many variants. An alternative is
to model the entire family by a single compact
model, called featured transition system (FTS),
and then apply specialized lifted (family-based)
model checking algorithms [3, 5] on it. Each exe-
cution behaviour in an FTS is associated with the
set of variants able to produce it. This way, an exe-
cution behaviour is checked only once regardless
of how many variants include it.

This paper applies an abstraction refinement
procedure over the compact, all-in-one, represen-
tation of model families (FTS) [13, 14] to solve
the model sketching problem. We use variability
abstractions [13, 14] to construct a divide-and-
conquer meta-algorithm for verifying FTSs that
relies on using an existing single-system model
checker SPIN. More specifically, we first devise
variability abstractions tailored for model fam-
ilies that contain numerical features. This way,
we extend the previous variability abstractions
[13, 14] that were designed for model families
with only Boolean features. Variability abstrac-
tions represent a configuration-space reduction
technique that compresses the entire model family
(with many configurations and variants) into an
abstract model [22] (with a single abstract config-
uration and variant), so that the result of model
checking a set of properties in the abstract model
is preserved in all variants of the model family.
The variability abstractions forget in which vari-
ant the abstract model operates. In particular,
the abstraction aggregates multiple variants in a

single abstract model, which is then fed to an off-
the-shelf model checker. If no counterexample is
found in the abstract model, then all variants sat-
isfy the given property and any of them represents
a solution to the sketching problem. Otherwise,
the counterexamples are analysed and classified
as either genuine, which correspond to execution
behaviours of some concrete variants, or spurious,
which are introduced due to the abstraction. If
a genuine counterexample exist, the correspond-
ing variants do not satisfy the given properties
and are rejected. Otherwise, the abstraction is too
coarse and a spurious counterexample is used to
refine the current abstract model. The procedure
is first applied on an abstract model that repre-
sents the entire model family, and then is repeated
on the refined abstract models representing suit-
able sub-families of the original model family for
which no conclusive results have been found so far.
The abstraction and refinement are done in an effi-
cient manner as source-to-source transformations
of Promela code, which makes our procedure
easy to implement/maintain as a simple meta-
algorithm script. This way, we also avoid the need
for intermediate storage in memory of the con-
crete full-blown models. Experiments show that
this approach often drastically reduces the average
time and search steps required for finding one cor-
rect variant, compared to the brute-force approach
and specialized lifted model checkers.

We have implemented our prototype model
synthesizer, called PromelaSketcher. It uses
variability-specific abstraction refinement for
lifted model checking of model families with
numerical features, and calls the SPIN model
checker [20] to verify the generated abstract mod-
els. We illustrate this approach for automatic com-
pletion of various Promela model sketches with
very large realization spaces. We also compare
its performance with the brute-force enumerative
approach and the lifted model checking approach.

The contributions of this paper are:

� We use an abstraction-refinement verification
procedure for lifted model checking to resolve
Promela model sketches with respect to LTL
properties.

� We give a proof of correctness of our procedure.
� We implement our procedure in the Prome-
laSketcher tool, which calls the SPIN model
checker to verify abstractions of model families.

Springer Nature 2021 LATEX template

Synthesizing Promela Model Sketches 3

� We perform experimental evaluation to assess
the effectiveness of our technique by comparing
its performances with the brute-force enumera-
tive approach and the specialized lifted model
checking tool ProVeLine.

This work is an extended and revised version of
[7].

2 Motivating Example

Let us consider the following Promela code
SIMPLE, which is the “Hello World” example of
sketching [24]:

init {
byte x; int y;
do :: break :: x++ od;
y := ??*x;
assert (y ≤ x+x) }

This sketch contains one integer hole, denoted by
??, which should be replace with a constant from
Z, such that the synthesized model satisfies the
given assertion for all possible traces in it. We use
‘do :: break :: x++ od’ to non-deterministically ini-
tialize variable x of type byte to any integer value
from its domain [0, 255].

As observed before in the literature [2, 17],
a sketch can be represented as a model family,
such that numerical holes correspond to numerical
features and all possible sketch realizations corre-
spond to possible variants in the model family. For
example, the SIMPLE sketch can be encoded as
a model family that contains one numerical fea-
ture A with domain [Min,Max] ⊆ Z 1, such that
the occurrence of the hole ?? is replaced with
a constant value that A can take. The obtained
model family SIMPLE is shown in Fig. 1a, where
an #if directive from the CPP preprocessor [10]
is used to encode multiple variants in the model
family. There is one variant for each possible
configuration, i.e. for each possible value that A

can take from its domain [Min,Max] at compile-
time. Thus, there are Max−Min+1 variants that
can be derived from this family. The SIMPLE
model family is represented by a featured tran-
sition system, which describes in an aggregated

1Feature A is represented as a global variable of type int,
and Min, Max represent minimal and maximal representable
integers.

form behaviors of its variants. Each transition
corresponding to #if-statements is labeled by a
feature expression specifying for which variants
the transition is to be included. For instance, from
state (x=1,y=0) there are transitions labeled by:
A=Min to state (x=1,y=Min), . . ., A=Max to state
(x=1,y=Max).

In the first iteration of our abstraction refine-
ment procedure for the SIMPLE model family,
we apply the join abstraction αjoin

K on the con-
figuration space K, thus obtaining an abstract
model with a single abstract configuration, where
the #if directive is replaced with an ordinary if

statement where all guards corresponding to var-
ious variants are enabled (i.e., set to true). The
abstract model of the SIMPLE family is shown
in Fig. 1b. We can verify the obtained abstract
model using the SPIN model checker, which finds
that the assertion fails and reports a counterex-
ample (trace). In this example, it reports the trace
corresponding to the case when (A = 3), i.e., when
y := 3*x. Hence, in the second iteration, we divide
the configuration space K = (Min ≤ A ≤ Max)
into two parts (Min ≤ A ≤ 2) and (4 ≤ A ≤
Max), in order to eliminate the “erroneous” vari-
ant. We use the projection operator π to generate
the corresponding partitions π(Min≤A≤2)(SIMPLE)
and π(4≤A≤Max)(SIMPLE). We construct single
abstract models for each sub-family (partition),
and repeat the verification task on each of them
using SPIN. Fig. 1c shows the abstract model
corresponding to the sub-family (Min ≤ A ≤
2). SPIN reports that the abstract model of
π(Min≤A≤2)(SIMPLE) satisfies the given assertion.
Hence, we can correctly replace the hole ?? with
an integer from [Min, 2].

3 Background: Model Families

In this section, we present the definitions of fea-
tured transition systems and LTL formulae.

3.1 Featured transition system

Let F = {A1, . . . , Ak} be a finite set of numeri-
cal features available in a model family. For each
feature A ∈ F, let dom(A) ⊆ Z denote the set of
possible values of A. A valid combination of fea-
ture’s values represents a configuration k, which
specifies one variant of a program family. It is
given as a valuation function k : F → Z, which is

Springer Nature 2021 LATEX template

4 Synthesizing Promela Model Sketches

init {
byte x; int y;
do :: break :: x++ od;
#if :: (A=Min) → y := Min *x;

. . .
:: (A=Max) → y := Max *x;

#endif

assert (y ≤ x+x) }
(a) SIMPLE.

init {
byte x; int y;
do :: break :: x++ od;
if :: true → y := Min *x;

. . .
:: true → y := 3*x;

. . .
:: true → y := Max *x;

fi

assert (y ≤ x+x) }
(b) αjoin

K (SIMPLE).

init {
byte x; int y;
do :: break :: x++ od;
if :: true → y := Min *x;

. . .
:: true → y := 2*x;
:: false → y := 3*x;

. . .
:: false → y := Max *x;

fi

assert (y ≤ x+x) }

(c) αjoin
K (π(Min≤A≤2)(SIMPLE)).

Fig. 1: The SIMPLE model family and its abstractions.

a mapping that assigns a value from dom(A) to
each feature A. We assume that only a subset K
of all possible configurations are valid. An alterna-
tive representation of configurations is based upon
propositional formulae. Each configuration k ∈ K
can be given by a formula: (A1 = k(A1)) ∧ . . . ∧
(Ak=k(Ak)). We have K≡∨k∈Kk.

We use transition systems (TS) to describe
behaviours of single systems. A transition system
is a tuple T = (S, I, trans, AP, L), where S is
a set of states; I ⊆ S is a set of initial states;
trans ⊆ S × S is a transition relation; AP is a
set of atomic propositions; and L : S → 2AP

is a labelling function specifying which atomic
propositions hold in a state. We write s1 −→ s2
whenever (s1, s2) ∈ trans. A path of a TS T is an
infinite sequence ρ = s0s1s2 . . . with s0 ∈ I s.t.
si −→ si+1 for all i ≥ 0. The semantics of T ,
[[T]]TS , is the set of its paths.

A featured transition system (FTS) represents
a compact model, which describes the behaviour
of a whole family of systems in a single monolithic
description. Their transitions are guarded by a fea-
ture expression that identifies the variants they
belong to. The feature expressions, FeatExp(F),
are generated by the grammar:

ψ ::= true | A ▷◁ n | ¬ψ | ψ ∧ ψ

where A ∈ F, n ∈ Z, and ▷◁∈ {=, <}. The
atomic feature expressions (A ▷◁ n) are relation-
ships between numerical features and constants.
This is enough for the aim of this paper, so we do
not consider more complex constraints. We write

[[ψ]] for the set of configurations that satisfy ψ, i.e.
k ∈ [[ψ]] iff k |= ψ.

A featured transition system (FTS) is a
tuple F = (S,I,trans, AP, L,F,K, δ), where
(S, I, trans, AP, L) form a TS; F is a set of avail-
able features; K is a set of valid configurations;
and δ : trans → FeatExp(F) is a total function
decorating transitions with feature expressions.

Variant derivation is a simple projection of an
FTS onto a single configuration producing a reg-
ular TS. Formally, the projection of an FTS F
to a configuration k ∈ K, denoted as πk(F), is
the TS (S, I, trans′, AP, L), where trans′ = {t ∈
trans | k |= δ(t)}. We lift the definition of pro-
jection to sets of configurations K′⊆K, denoted
as πK′(F), by keeping the transitions admitted by
at least one of the configurations in K′. That is,
πK′(F), is the FTS (S, I, trans′, AP, L,F,K′, δ′),
where trans′ = {t ∈ trans | ∃k ∈ K′.k |= δ(t)}
and δ′ = δ |trans′ is the restriction of δ to trans′.
The semantics of an FTS F , denoted as [[F]]FTS ,
is the union of paths of the projections on all valid
variants k ∈ K, i.e. [[F]]FTS = ∪k∈K[[πk(F)]]TS .

Example 1 Figure 2 shows the FTS F ′ of a bev-
erage vending machine [13, 14], which we will use
as a running example . The FTS F ′ has two fea-
tures: CancelPurchase (c, in brown), for canceling a
purchase after a coin is entered that is a Boolean
feature (we abbreviate (c = 1) with c and (c = 0)
with ¬c); ChooseDrink (d, in red) for choosing drinks
with domain {0 = none, 1 = coffee, 2 = tea, 3 =
capuccino}. Each transition is labeled by a feature
expression specifying for which variants the transition
is included. For instance, the transition s1

d=2−−→ s3
is included in variants where feature d is set to 2.

Springer Nature 2021 LATEX template

Synthesizing Promela Model Sketches 5

For clarity, we omit writing presence condition true in
transitions. There is an atomic proposition a ∈ L(s6),
which holds in state s6.

By combining various features, a number of vari-
ants of F ′ can be obtained. The set of valid configu-
rations is: K′={c∧(d=0), c∧(d=1), c∧(d=2), c∧(d=
3),¬c∧(d= 0),¬c∧(d= 1),¬c∧(d= 2),¬c∧(d= 3)}.
The basic version of F ′, described by the configura-
tion ¬c∧(d=2), works as follows: the machine takes
a coin (s0 → s1), selects a tea drink (s1 → s3),
serves it (s3 → s5), opens the compartment so that
a customer can take the drink (s5 → s6), and then
closes the compartment and waits for another order
again (s6 → s0). Note that [[d ̸= 0]] = {c∧ (d = 1),
c∧(d=2), c∧(d=3),¬c∧(d=1),¬c∧(d=2),¬c∧(d=3)}.
Thus, c∧(d=1) |= (d ̸=0), but c∧(d=0) ̸|= (d ̸=0).

3.2 LTL Properties

For specifying system properties, we consider the
Linear Temporal Logic (LTL) [1] generated by the
grammar:

ϕ ::= true | a ∈ AP | ¬ϕ | ϕ1 ∧ ϕ2 | ⃝ϕ | ϕ1Uϕ2

LTL formulae ϕ are interpreted over paths of
transition systems. The formula true holds for
all paths. The formula a means that the atomic
proposition a holds in the current (first) state of
a path. The formula ⃝ϕ means that ϕ holds in
the next state of a path, and ϕ1Uϕ2 means that
ϕ1 holds in all states visited until a state where ϕ2
holds is reached. Other operators can be defined
by means of syntactic sugar, for instance: ♢ϕ =
trueUϕ (ϕ holds eventually) and □ϕ = ¬♢¬ϕ (ϕ
always holds). We say that a TS T satisfies ϕ,
written T |= ϕ, iff all paths of T satisfy formula ϕ:
∀ρ∈ [[T]]TS. ρ |= ϕ [1]. We say that an FTS F sat-
isfies ϕ, written F |= ϕ, iff all its variants satisfy
ϕ, i.e. ∀k∈K. πk(F) |= ϕ.

Example 2 Recall FTS F ′ from Fig. 2. Consider the
property ϕ′ = □♢a, which states that the system will
always reach the state where a holds eventually. Note
that F ′ ̸|= ϕ′. E.g., if feature c is enabled, a counter-
example is: s0 → s1 → s0 → However, there exist
variants of F ′ satisfying ϕ′. E.g., π[[¬c∧(d=1)]](F ′) |=
ϕ′.

4 Abstraction Refinement
Framework

We now introduce variability abstractions and
the abstraction refinement procedure for verifying
FTSs, which are the key components of our model
sketching algorithm.

4.1 Abstraction

We start working with Galois connections [14]
between Boolean complete lattices of feature
expressions, and then induce a notion of abstrac-
tion of FTSs. The Boolean complete lat-
tice of feature expressions is: (FeatExp(F)/≡, |=
,∨,∧, true, false,¬). The join abstraction, αjoin

K ,
replaces each feature expression ψ with true if
there exists at least one configuration from K
that satisfies ψ. The abstract set of features is
empty: αjoin

K (F) = ∅, and the abstract set of con-

figurations is a singleton: αjoin
K (K) = {true}. The

abstraction and concretization functions between
FeatExp(F) and FeatExp(∅), forming a Galois con-
nection [14], are:

αjoin
K (ψ)=

{
true if ∃k ∈ K.k |= ψ

false otherwise

γjoin
K (true)= true, γjoin

K (false)=
∨
k∈2F\K k

We shall now use the above Galois connec-
tions for feature expressions to define abstrac-
tion of entire FTSs. This abstraction will basi-
cally apply the Galois connection (αjoin,γjoin)
to each feature expression. Given the FTS
F = (S, I, trans, AP, L,F,K, δ), we define TS
αjoin

K (F) = (S, I, trans′, AP, L) to be its abstrac-

tion, where trans′={t∈ trans | αjoin
K (δ(t))= true}.

Note that transitions in the abstract TS αjoin
K (F)

describe the behaviour that is possible in some
variants of the concrete FTS F , but not need
be realized in the other variants. The informa-
tion about which transitions are associated with
which variants is lost, thus causing a precision
loss in the abstract model. This way, the abstract
model contains all paths from any valid variant of
the concrete FTS, and moreover it may contain
other paths that are not present in some concrete
variant. That is, [[αjoin

K (F)]]TS ⊇ ∪k∈K[[πk(F)]]TS .
Since a TS satisfies an LTL formula if all its paths
satisfy the formula, the following holds.

Springer Nature 2021 LATEX template

6 Synthesizing Promela Model Sketches

s0 s1

s2

s3

s4

s5 s6

{a}c d
=
1

d=2

d
=
3

d=0

d ̸=0

d=0

Fig. 2: F ′.

s0 s1

s2

s3

s4

s5 s6

{a}

Fig. 3: αjoin
K′ (F ′).

s0 s1

s2

s3

s4

s5 s6

{a}

Fig. 4: αjoin
[[¬c∧(d ̸=0)]](π¬c∧(d ̸=0)(F ′)).

Theorem 1 (Preservation results) For every ϕ ∈
LTL, αjoin

K (F) |= ϕ =⇒ F |= ϕ.

The problem of evaluating F |= ϕ can be
reduced to a number of smaller problems. Let
the subsets K1,K2, . . . ,Kn form a partition of K.
Then, F |= Φ iff πKi(F) |= ϕ for all i = 1,. . ., n.

Corollary 2 Let K1,K2, . . . ,Kn form a partition of
K. If αjoin

K1
(πK1

(F)) |= ϕ ∧ . . . ∧ αjoin
Kn (πKn(F)) |= ϕ,

then F |= ϕ. Moreover, if αjoin
Kj (πKj (F)) |= ϕ then

πk(F) |= ϕ for all variants k ∈ Kj .

Example 3 Recall FTS F ′ of Fig. 2. Figure 3 shows its
abstract model, the TS αjoin

K′ (F ′). Consider the prop-
erty ϕ′ = □♢a introduced in Example 2. We have
αjoin

K′ (F ′) ̸|= ϕ′, since there is a path in αjoin
K′ (F ′)

where s6 is never reached: s0 → s1 → s0 → So we
cannot conclude whether ϕ′ is satisfied or not by F ′

using the abstract model αjoin
K′ (F ′). Hence, refinement

is needed to make the abstract model more precise.

4.2 Abstraction Refinement

We now describe an abstraction refinement proce-
dure (ARP), which uses spurious counterexamples
to iteratively refine partitions of K and abstract
models until either property satisfaction is shown
for some variants or a genuine counterexample is
found for all variants.

The ARP for checking F |= ϕ is illustrated by
Algorithm 1. We first construct an initial abstract
model αjoin

K (F), and check αjoin
K (F) |= ϕ (Line 2).

This verification step can be performed using a
single-system model checker such as SPIN. If the
abstract model satisfies the given property (i.e.,
the counterexample c is null), then all variants
from K satisfy it and we stop. In this case, the
global variable end is also set to true making all
other recursive calls to ARP to end (Lines 5, 10, 15).

Otherwise, a non-null counterexample c is found.
Let ψ be the feature expression computed by con-
joining feature expressions labelling all transitions
that belong to path c when c is simulated in F
(Line 7). This simulation of path c from αjoin

K (F)

in F can be done due to the fact that αjoin
K (F)

and F have the same control structures, except
that the transitions in F are guarded by feature
expressions. There are two cases to consider.

Algorithm 1 ARP(F ,K, ϕ)
Input: An FTS F , a configuration set K, and an

LTL formula ϕ
Output: Correct variants k ∈ K, s.t. πk(F) |= ϕ
1: Global Var: end:=false
2: c = (αjoin

K (F) |= ϕ)
3: if c=null then
4: end:=true
5: return K
6: end if
7: ψ:=FeatExp(c)
8: if sat(ψ∧(

∨
k∈K k)) then

9: (ψ1, . . . , ψn):= Split([[¬ψ]] ∩K)
10: if (end) then return ∅
11: end if
12: ARP (π[[ψ1]](F),[[ψ1]],ϕ); ...; ARP (π[[ψn]](F),[[ψn]],ϕ)

13: else
14: ψ′ = CraigInterpolation(ψ,K)
15: if (end) then return ∅
16: end if
17: ARP (π[[ψ′]](F),[[ψ′]],ϕ); ARP (π[[¬ψ′]](F),[[¬ψ′]],ϕ)

18: end if

First, if ψ ∧ (
∨
k∈K k) is satisfiable (i.e. K ∩

[[ψ]] ̸= ∅), then the found counterexample c is
genuine for variants in K ∩ [[ψ]]. For the other
variants from K ∩ [[¬ψ]], the found counterexam-
ple cannot be executed (Lines 9,10,11,12). We call
Split to split the space K ∩ [[¬ψ]] in sub-families
[[ψ1]], . . . , [[ψn]], such that all atomic constraints

Springer Nature 2021 LATEX template

Synthesizing Promela Model Sketches 7

in ψi are of the form: (A ▷◁ n), where A ∈ F
and n ∈ dom(A). For example, assume that we
have two numerical features Min ≤ A ≤Max and
Min≤ B≤Max. If ψ = (A=3), then Split([[¬ψ]])
is (Min≤ A≤ 2) ∧ (Min≤ B≤Max) and (4≤ A≤
Max) ∧ (Min≤B≤Max); if ψ = (A=3) ∧ (B = 2),
then Split([[¬ψ]]) is (Min≤A≤2)∧(Min≤B≤1),
(Min≤A≤2)∧(3≤B≤Max), (4≤A≤Max)∧(Min≤
B ≤ 1) and (4 ≤ A ≤ Max) ∧ (3 ≤ B ≤ Max).
Finally, we call ARP to verify the sub-families:
π[[ψ1]](F), . . . , π[[ψn]](F). Note that if K∩ [[¬ψ]] = ∅,
then Split updates the variable end to true and
so no recursive ARP-s are called.

Second, if ψ ∧ (
∨
k∈K k) is unsatisfiable (i.e.

K ∩ [[ψ]] = ∅), then the found counterexample c
is spurious for all variants in K (due to incom-
patible feature expressions) (Lines 14,15,16,17).
Now, we describe how a feature expression ψ′ used
for constructing refined sub-families is determined
by means of Craig interpolation [12] from ψ and
K. We find the minimal unsatisfiable core ψc of
ψ∧(

∨
k∈K k), which contains a subset of conjuncts

in ψ∧(
∨
k∈K k), such that ψc is still unsatisfiable

and if we drop any single conjunct in ψc then the
result becomes satisfiable. We group conjuncts in
ψc in two non-empty groups X and Y such that
ψc = X ∧ Y = false. Then, the interpolant ψ′ is
such that: 1) X =⇒ ψ′, 2) ψ′ ∧ Y = false, 3) ψ′

refers only to common variables of X and Y . The
interpolant ψ′ summarizes and translates why X
is inconsistent with Y in their shared language.
Finally, we call the ARP to check π[[ψ′]](F) |= ϕ and
π[[¬ψ′]](F) |= ϕ. By construction, it is guaranteed
that the spurious counterexample c does not occur
in both π[[ψ′]](F) and π[[¬ψ′]](F) [12].

Theorem 3 ARP(F ,K, ϕ) terminates and is correct.

Proof Since ARP is always called in the next iteration
for strictly smaller partitions K′ ⊂ K and the configu-
ration space is finite, the number of iterations is also
finite. The correctness of ARP follows from Theorem 1
and Corollary 2. □

Example 4 Consider the call ARP(F ′,K′, ϕ′), where
F ′, K′, and ϕ′ are from Examples 1 and 2. We first
check αjoin

K′ (F ′) |= ϕ′. The following counterexample
is found: c = s0 → s1 → s0 → The associated
feature expression in F ′ is: c. So, this is a genuine
counterexample for variants [[c]] ∩ K′ = {c ∧ (d =

0), c∧(d= 1), c∧(d= 2), c∧(d= 3)}. In the next iter-
ation, we check π[[¬c]]∩K′(F ′) |= ϕ′? We obtain the
counterexample: c = s0 → s1 → s3 → s5 → s0 → . . .,
with the associated feature expression (d=2)∧(d=0).
This is a spurious counterexample with the interpolant
(d=0). In the next iteration, we consider calls to check
π[[¬c∧(d=0)]]∩K′(F ′) |= ϕ′ and π[[¬c∧(d ̸=0)]]∩K′(F ′) |=
ϕ′? We obtain that αjoin

[[¬c∧(d̸=0)]]
(π[[¬c∧(d ̸=0)]](F ′)) |=

ϕ′ holds (see αjoin
[[¬c∧(d̸=0)]]

(π[[¬c∧(d ̸=0)]](F ′)) in Fig. 4).

Thus, ARP ends by reporting correct variants [[¬c∧(d ̸=
0)]] = {¬c∧(d=1),¬c∧(d=2),¬c∧(d=3)}.

5 Syntactic Transformations

We introduce the modelling language Promela
for writing sketches and model families, describe
how to translate sketches into model families, and
how to construct abstract models and projections
out of model families.

5.1 Promela language

We now present the syntax of the Promela
language.

Syntax.

Promela is a non-deterministic modelling lan-
guage of the SPIN model checker [20], which
is designed for describing systems composed of
concurrent processes that communicate asyn-
chronously. A Promela model, P , consists of
a finite set of processes to be executed concur-
rently. The basic statements of processes are:
skip, break, x := expr, c?x, c!expr, s1;s2, if ::
g1 → s1 · · · :: gn → sn fi, do :: g1 → s1 · · · :: gn →
sn od, where x is a variable, expr is an expression,
c is a channel, and gi are conditions over variables.

Sketches.

To encode sketches, a single sketching construct
of type expression is included: a basic integer hole
denoted by ??. Each hole occurrence is assumed to
be uniquely labelled as ??i, and it has a bounded
integer domain [ni, n

′
i].

Model Families.

To encode multiple variants, a new compile-
time conditional statement is included. The new

Springer Nature 2021 LATEX template

8 Synthesizing Promela Model Sketches

guarded-by-features statement is of the form:

#if :: ψ1 → s1 . . . :: ψn → sn #endif

where ψ1, . . . , ψn are feature expressions defined
over F. Actually, this is the only place where fea-
tures may be used. If presence condition ψi is
satisfied by a configuration k ∈ K the statement
si will be included in the variant corresponding
to k. Hence, “#if” plays the same role as “#if”
directives in C preprocessor CPP [10].

5.2 Syntactic Transformations

We now present the syntactic transformations of
the Promela models used in this work.

From Sketches to Model Families.

Our aim is to transform a sketch P̂ with a set
of holes ??

[n1,n
′
1]

1 , . . . , ??
[nm,n

′
m]

m , into a model fam-
ily P with a set of numerical features A1, . . . , Am
with domains [n1, n

′
1], . . . , [nm, n

′
m], respectively.

The set of configurations K includes all possible
combinations of feature’s values. We now define a
rewrite rule for eliminating holes ?? from a model
sketch. The rewrite rule is:

s[??[n,n
′]]⇝ #if ::(A=n)→s[n] . . . ::(A=n′)→s[n′] #endif (1)

where s[−] is a (non-compound) basic statement
with a single expression − in it, ??[n,n

′] is an
occurrence of a hole with domain [n, n′], and A

is a fresh numerical feature with domain [n, n′].
The meaning of the rule (1) is that if the current
sketch being transformed matches the abstract
syntax tree node of the shape s[??[n,n

′]] then
replace s[??[n,n

′]] according to the rule (1). We
write Rewrite(P̂) to be the final model family
obtained by repeatedly applying the rule (1) on
sketch P̂ and on its transformed versions until we
reach a point where this rule can not be applied.

Let H be a set of holes in the sketch P̂ . We
define a control function φ : Φ = H → Z to
describe the value of each hole in the sketch. We
write [[P̂]]φTS for TS obtained by replacing holes in

P̂ according to φ. By induction on the structure
of P̂ , we can show:

Theorem 4 Let P̂ be a sketch and φ be a control
function, s.t. features A1, . . . , An correspond to holes
??1, . . . , ??n. We define a configuration k ∈ K, s.t.

k(Ai) = φ(??i) for 1≤ i ≤ n. Let P = Rewrite(P̂).
We have: [[P̂]]φTS ≡ [[πk([[P]]FTS)]]TS .

Example 5 The sketch SIMPLE in Section 2 is
encoded as the model family SIMPLE in Fig. 1a.

From Model Families to Projections and
Abstract Models.

We present two syntactic transformations of
model families P = Rewrite(P̂) obtained from
Promela sketches P̂ : projection π[[ψ]](P) and

variability abstraction αjoin
K (P).

The projection π[[ψ]](P) is obtained by defining
a translation recursively over the structure of ψ.
Let ψ be of the form (A<m). The rewrite rule is:

#if ::(A=n)→s[n]. . . ::(A=m)→s[m] . . . ::(A=n′)→s[n′]#end⇝

#if ::(A=n)→s[n]. . . :: false→s[m] . . . :: false → s[n′]#end
(2)

That is, all guards that do not satisfy (A<m) are
replaced with false. The rewrite rule for (A=m)
is defined similarly. Let ψ be a feature expression
of the form ¬ψ′. We first transform P by applying
the projection ψ′, then in all #if-s obtained from
the projection ψ′ we change the guards: guards of
the form (A = m′) become false, and false guards
are returned to the form (A = m′) by looking at a
special memo list where we keep record of them.

The abstract model αjoin
K (P) is obtained by

resolving all “#if”-s. The rewrite rule is:

#if :: ψ1 → s1 :: . . . :: ψn → sn #endif⇝
if :: αjoin

K (ψ1) → s1 :: . . . :: αjoin
K (ψn) → sn fi

(3)

where all guards in the new if are set to true
or false depending whether there is some valid
configurations that satisfies that guard or not.

Let P be a Promela family and let [[P]]FTS
be the FTS obtained by its compilation. The fol-
lowing correctness result states that the abstract
model obtained by applying αjoin

K on [[P]]FTS coin-

cides with the TS obtained by compiling αjoin
K (P).

The same applies for projections π[[ψ]]. The fol-
lowing result follows by observation that feature
expressions are introduced in FTSs and Promela
model families only through “#if”-s.

Theorem 5 π[[ψ]]([[P]]FTS) ≡ [[π[[ψ]](P)]]FTS and

αjoin
K ([[P]]FTS)≡ [[αjoin

K (P)]]TS .

Springer Nature 2021 LATEX template

Synthesizing Promela Model Sketches 9

Example 6 For the model family SIMPLE in Fig. 1a,
the abstract model αjoin

K (SIMPLE) is given in Fig. 1b,

while αjoin
Min≤A≤2(πMin≤A≤2(SIMPLE)) is in Fig. 1c.

6 Synthesis Algorithm

The synthesis algorithm SYNTHESIZE(P̂) for
solving a sketch P̂ is described by Algorithm 2.
The sketch P̂ is first encoded as a model family
P = Rewrite(P̂) (Line 1). Then, we call function
ARP(P ,K, ϕ), which takes as input the model fam-
ily P , its configuration set K, and the property
to verify ϕ, and returns as solution a set of vari-
ants K′ ⊆ K that satisfy ϕ (Line 2). Finally, the
inferred set of correct variants K′ ⊆ K is returned
as solution of the given model sketching problem
(Line 3).

Algorithm 2 SYNTHESIZE(P̂)

Input: A sketch P̂
Output: Correct realizations of P̂
1: P = Rewrite(P̂)
2: K′ = ARP(P ,K, ϕ)
3: return K′

The correctness of SYNTHESIZE(P̂) follows
from the correctness of Rewrite (see Theorem 4),
ARP (see Theorem 3) and syntactic transforma-
tions (see Theorem 5).

7 Evaluation

We now evaluate our approach for model sketch-
ing by abstraction refinement for lifted model
checking.

Implementation

We have developed a prototype model synthe-
sizer, called PromelaSketcher, for resolving
Promela sketches. It uses the ANTLR parser
generator (https://www.antlr.org/) for processing
Promela code, while projections and abstrac-
tions of #if-enriched Promela code are imple-
mented using source-to-source transformations as
described in Section 5. It calls the SPIN model
checker [20] to verify the generated Promela
abstract models. Our tool is written in Java and
consists of around 2K LOC.

Experiment setup and Benchmarks

All experiments are run on 64-bit Intel®CoreTM

i7-1165G7 CPU@2.80GHz, VM LUbuntu 20.10,
with 8 GB memory. All times are reported as
average over five independent executions. The tool
is available: https://github.com/aleksdimovski/
Promela sketcher. We compare our approach with
the Brute force enumeration and the lifted
model checker ProVeLine. TheBrute force enu-
meration approach generates all possible sketch
realizations and verifies them using SPIN one by
one. The lifted model checker ProVeLine takes
as input Promela model families obtained by
transforming model sketches P = Rewrite(P̂),
compiles them into FTSs, and applies specialized
lifted model checking algorithms directly over the
obtained FTSs, thus returning the set of correct
variants. Hence, ProVeLine is called only once for
each benchmark. For each experiment, we report:
Time which is the total time to resolve a sketch in
seconds; and Calls which is the number of times
SPIN is called. We show performances for three
different sizes of holes: 3-bits, 4-bits, and 8-bits.
Note that a sketch with n-bits holes is translated
into a family with features that have 2n possible
values. We only measure the model checking SPIN
times to generate a process analyser (pan) and to
execute it.

Performance Results

Table 1 shows the performance results of synthe-
sizing our benchmarks.

The Loop sketch [24] in Fig 5 contains one
hole ?? represented by feature A. The coarsest
abstract model has an if statement with one
optional sequence ‘do :: (x>n) → . . . od’ for
each possible value n of feature A. PromelaS-
ketcher reports counterexamples for the cases
(A =Min), . . . , (A = 4), and then we obtain the
correct solution for the abstraction (5≤A≤Max).

The Welfare sketch [20] is a problem due to
Feijen. There are three ordered lists of integers a,
b, and c. At least one element appears in all three
lists. Find the smallest indices i, j, and k, such
that a[i]=b[j]=c[k]. That is, we want to find the
first element that appears in all three lists. The list
c is initialized in such a way that concrete values
assigned to the first n− 1 elements do not appear
in lists a and b, and the last n-th element of c is
assigned to the hole ??. Hence, the hole ?? should

https://www.antlr.org/
https://github.com/aleksdimovski/Promela_sketcher
https://github.com/aleksdimovski/Promela_sketcher

Springer Nature 2021 LATEX template

10 Synthesizing Promela Model Sketches

init {
byte x:=10;
int y:=0;
do :: (x>??) → x--;

y++

:: else → break

od;
assert (y < 6) }
Fig. 5: Loop.

int a[5], b[5], c[5];
init {
byte i, j, k;
a[0]:=1; . . . a[4]:=18;
b[0]:=4; . . . a[4]:=25;
c[0]:=5; . . . c[4]:=??;
do :: a[i]<b[j] ∧ i<4 → i++;

:: b[j]<c[k] ∧ j<4 → j++;
:: c[k]<a[i] ∧ k<4 → k++;
:: else → break od;

assert(a[i]=b[j]∧b[j]=c[k]
∧c[k]=a[i]) }

Fig. 6: Welfare.

byte N:=4, MAX, distance[16];
byte city, dest, tour, seen;
bool visited[4];
#define Dist(a,b) distance[4*a+b]

inline travel2(dest) {
(city != dest ∧ tour ≤ MAX) →
tour := tour + Dist(city,dest)

city := dest

if :: (¬visited[city]) →
visited[city]:=true; seen++

:: else → break fi}
init {
MAX:=??;
Dist(0,1)=20; . . . Dist(3,2)=12;
do :: select (dest: 0 .. (N-1)) →

travel2(dest) od;
ltl p {[](seen<N ∧ tour>MAX) } }

Fig. 7: Salesman.

be replaced with the smallest value that appear
also in lists a and b. PromelaSketcher success-
fully partitions the configuration space and finds
the correct solutions for various values assigned to
lists a, b, and c.

The Salesman sketch [20] is a well-known
optimisation problem, whose Promela solution
is given in Fig. 7. Given a list of N cities and
distances between each pair of cities, it asks to
find the shortest possible tour that visits each
city and returns to the origin city. We now use
our approach to find the shortest tour through the
cities. We initialize variable MAX to an integer hole
??. Whenever there exists a shorter tour than the
one assigned to MAX, the given LTL property p fails
and a counterexample is reported. Therefore, the
LTL property p will be correct only when MAX is
initialized to the value less or equal to the shortest
possible tour. PromelaSketcher successfully
finds this value for ?? in only two iterations. In the
first iteration, it reports a counterexample with
a tour of length (n + 1) that is greater than the
shortest possible tour that is of length n. Then,
in the second iteration, the abstraction (A ≤ n)
satisfies the property p.

In summary, we can see from Table 1
that PromelaSketcher significantly outper-
forms Brute force. On our benchmarks, it
translates to speed ups that range from 1.2× to
3.5× for 4-bits holes, and from 11.5× to 51.4×

for 8-bits holes. We can also see that Prome-
laSketcher outperforms ProVeLine for 3-bits
benchmarks. For bigger benchmarks, ProVeLine
crashes with an out-of-memory error.

8 Related Work

One of the earliest sketching approaches is
the Sketch tool [24] that uses SAT-based
counterexample-guided inductive synthesis to
resolve program sketches in C. Recently, there
have been proposed several works that resolve
program sketches using lifted (SPL) static analy-
sis. The work [17] uses a forward numerical lifted
analysis [10] based on abstract interpretation to
resolve numerical sketches with respect to Boolean
specifications, while the works [8, 9] use a combi-
nation of forward and backward [6, 21] analyses
to resolve sketches with respect to Boolean and
quantitative specification. In the context of model
sketching, Ceska et. al [2] have proposed two
approaches to the automated synthesis of par-
tial probabilistic models: the first one is based on
abstraction refinement, and the second approach
is based on inductive synthesis.

Classen et al. [3, 5] have shown how specif-
ically designed lifted model checking algorithms
can be used for verifying LTL and CTL proper-
ties of FTSs. The variability abstractions and the
abstraction-refinement procedures are proposed

Springer Nature 2021 LATEX template

Synthesizing Promela Model Sketches 11

Table 1: Performance results. All times in sec.

Bench.
3 bits 4 bits 8 bits

Promela Brute ProVeLine Promela Brute ProVeLine Promela Brute ProVeLine

Sketcher force Sketcher force Sketcher force

Call Time Call Time Call Time Call Time Call Time Call Time Call Time Call Time Call Time

SIMPLE 2 0.122 8 0.303 1 0.144 2 0.123 16 0.610 1 crash 2 0.127 256 10.04 1 crash

Loop 4 0.262 8 0.303 1 0.167 4 0.263 16 0.610 1 crash 4 0.653 256 9.739 1 crash

Welfare 4 0.277 8 0.291 1 0.351 5 0.278 16 0.617 1 crash 10 0.539 256 9.849 1 crash

Salesman 2 0.148 8 0.319 1 0.221 2 0.142 16 0.636 1 crash 2 0.142 256 10.29 1 crash

for efficient lifted model checking of LTL [12, 14]
and CTL [11, 15, 16].

9 Conclusion

In this paper, we employ techniques from product-
line model checking for resolving model sketches.

References

[1] Baier C, Katoen J (2008) Principles of model
checking. MIT Press

[2] Ceska M, Dehnert C, Jansen N, et al (2019)
Model repair revamped - - on the auto-
mated synthesis of markov chains -. In:
Essays Dedicated to Scott A. Smolka on the
Occasion of His 65th Birthday, LNCS, vol
11500. Springer, pp 107–125, https://doi.org/
10.1007/978-3-030-31514-6 7, URL https://
doi.org/10.1007/978-3-030-31514-6 7

[3] Classen A, Cordy M, Heymans P, et al (2012)
Model checking software product lines with
SNIP. STTT 14(5):589–612. https://doi.org/
10.1007/s10009-012-0234-1, URL http://dx.
doi.org/10.1007/s10009-012-0234-1

[4] Clements P, Northrop L (2001) Software
Product Lines: Practices and Patterns.
Addison-Wesley

[5] Cordy M, Schobbens P, Heymans P, et al
(2013) Beyond boolean product-line model
checking: dealing with feature attributes and
multi-features. In: 35th International Con-
ference on Software Engineering, ICSE ’13.
IEEE Computer Society, pp 472–481, https:

//doi.org/10.1109/ICSE.2013.6606593, URL
https://doi.org/10.1109/ICSE.2013.6606593

[6] Dimovski AS (2021) Lifted termination anal-
ysis by abstract interpretation and its appli-
cations. In: GPCE ’21: Concepts and Expe-
riences. ACM, pp 96–109, https://doi.org/
10.1145/3486609.3487202, URL https://doi.
org/10.1145/3486609.3487202

[7] Dimovski AS (2022) Model sketching by
abstraction refinement for lifted model check-
ing. In: SAC ’22: The 37th ACM/SIGAPP
Symposium on Applied Computing, Virtual
Event, 2022. ACM, pp 1845–1848, https:
//doi.org/10.1145/3477314.3507170, URL
https://doi.org/10.1145/3477314.3507170

[8] Dimovski AS (2022) Quantitative pro-
gram sketching using lifted static anal-
ysis. In: 25th International Conference,
FASE 2022, Proceedings, LNCS, vol 13241.
Springer, pp 102–122, https://doi.org/10.
1007/978-3-030-99429-7 6, URL https://doi.
org/10.1007/978-3-030-99429-7 6

[9] Dimovski AS (2023) Quantitative program
sketching using decision tree-based lifted
analysis. J Comput Lang 75:101,206. https:
//doi.org/10.1016/j.cola.2023.101206, URL
https://doi.org/10.1016/j.cola.2023.101206

[10] Dimovski AS, Apel S (2021) Lifted static
analysis of dynamic program families by
abstract interpretation. In: 35th European
Conf. on Object-Oriented Programming,
ECOOP 2021, LIPIcs, vol 194. Schloss
Dagstuhl, pp 14:1–14:28, https://doi.org/10.

https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/978-3-030-31514-6_7
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1007/s10009-012-0234-1
http://dx.doi.org/10.1007/s10009-012-0234-1
http://dx.doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1145/3486609.3487202
https://doi.org/10.1145/3486609.3487202
https://doi.org/10.1145/3486609.3487202
https://doi.org/10.1145/3486609.3487202
https://doi.org/10.1145/3477314.3507170
https://doi.org/10.1145/3477314.3507170
https://doi.org/10.1145/3477314.3507170
https://doi.org/10.1007/978-3-030-99429-7_6
https://doi.org/10.1007/978-3-030-99429-7_6
https://doi.org/10.1007/978-3-030-99429-7_6
https://doi.org/10.1007/978-3-030-99429-7_6
https://doi.org/10.1016/j.cola.2023.101206
https://doi.org/10.1016/j.cola.2023.101206
https://doi.org/10.1016/j.cola.2023.101206
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14

Springer Nature 2021 LATEX template

12 Synthesizing Promela Model Sketches

4230/LIPIcs.ECOOP.2021.14, URL https://
doi.org/10.4230/LIPIcs.ECOOP.2021.14

[11] Dimovski AS, Wasowski A (2017) From
transition systems to variability mod-
els and from lifted model checking back
to UPPAAL. In: Models, Algorithms,
Logics and Tools, LNCS, vol 10460.
Springer, pp 249–268, https://doi.org/10.
1007/978-3-319-63121-9 13, URL https:
//doi.org/10.1007/978-3-319-63121-9 13

[12] Dimovski AS, Wasowski A (2017)
Variability-specific abstraction refine-
ment for family-based model checking.
In: 20th International Conference, FASE
2017, Proceedings, LNCS, vol 10202.
Springer, pp 406–423, https://doi.org/10.
1007/978-3-662-54494-5 24, URL http:
//dx.doi.org/10.1007/978-3-662-54494-5 24

[13] Dimovski AS, Al-Sibahi AS, Brabrand
C, et al (2015) Family-based model
checking without a family-based model
checker. In: 22nd Int. Symposium, SPIN
2015, Proceedings, LNCS, vol 9232.
Springer, pp 282–299, https://doi.org/10.
1007/978-3-319-23404-5 18, URL http:
//dx.doi.org/10.1007/978-3-319-23404-5 18

[14] Dimovski AS, Al-Sibahi AS, Brabrand
C, et al (2017) Efficient family-based
model checking via variability abstrac-
tions. STTT 19(5):585–603. https://doi.org/
10.1007/s10009-016-0425-2, URL https://
doi.org/10.1007/s10009-016-0425-2

[15] Dimovski AS, Legay A, Wasowski A (2019)
Variability abstraction and refinement for
game-based lifted model checking of full
CTL. In: 22nd International Conference,
FASE 2019, Proceedings, LNCS, vol 11424.
Springer, pp 192–209, https://doi.org/10.
1007/978-3-030-16722-6 11, URL https://
doi.org/10.1007/978-3-030-16722-6 11

[16] Dimovski AS, Legay A, Wasowski A (2020)
Generalized abstraction-refinement for game-
based CTL lifted model checking. Theor
Comput Sci 837:181–206. https://doi.org/10.
1016/j.tcs.2020.06.011, URL https://doi.org/
10.1016/j.tcs.2020.06.011

[17] Dimovski AS, Apel S, Legay A (2021)
Program sketching using lifted analysis for
numerical program families. In: NASA For-
mal Methods - 13th International Sympo-
sium, NFM 2021, Proceedings, LNCS, vol
12673. Springer, pp 95–112, https://doi.org/
10.1007/978-3-030-76384-8 7, URL https://
doi.org/10.1007/978-3-030-76384-8 7

[18] Ghosh D, Singh J (2020) Effective spectrum-
based technique for software fault finding. Int
j inf tecnol 12:677–682. https://doi.org/10.
1007/s41870-019-00347-1, URL https://doi.
org/10.1007/s41870-019-00347-1

[19] Goyal S, Bhatia PK (2021) Software fault
prediction using lion optimization algorithm.
Int j inf tecnol 13:2185–2190. https://doi.org/
10.1007/s41870-021-00804-w, URL https://
doi.org/10.1007/s41870-021-00804-w

[20] Holzmann GJ (2004) The SPIN Model
Checker - primer and reference manual.
Addison-Wesley

[21] MD. Obaidullah Al-Faruk MASK. M.
Akib Hussain, Tonni SM (2020) Bfm: a
forward backward string matching algo-
rithm with improved shifting for information
retrieval. Int j inf tecnol 12:479–483. https:
//doi.org/10.1007/s41870-019-00371-1, URL
https://doi.org/10.1007/s41870-019-00371-1

[22] Mohan GB, Kumar RP (2023) Lattice
abstraction-based content summarization
using baseline abstractive lexical chaining
progress. Int j inf tecnol 15:369–378. https:
//doi.org/10.1007/s41870-022-01080-y, URL
https://doi.org/10.1007/s41870-022-01080-y

[23] Shozab Khurshid AKS, Iqbal J (2021) Effort
based software reliability model with fault
reduction factor, change point and imperfect
debugging. Int j inf tecnol 13:331–340. https:
//doi.org/10.1007/s41870-019-00286-x, URL
https://doi.org/10.1007/s41870-019-00286-x

[24] Solar-Lezama A (2013) Program sketching.
STTT 15(5-6):475–495. https://doi.org/10.
1007/s10009-012-0249-7, URL https://doi.
org/10.1007/s10009-012-0249-7

https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-662-54494-5_24
http://dx.doi.org/10.1007/978-3-662-54494-5_24
http://dx.doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/978-3-030-16722-6_11
https://doi.org/10.1007/978-3-030-16722-6_11
https://doi.org/10.1007/978-3-030-16722-6_11
https://doi.org/10.1007/978-3-030-16722-6_11
https://doi.org/10.1016/j.tcs.2020.06.011
https://doi.org/10.1016/j.tcs.2020.06.011
https://doi.org/10.1016/j.tcs.2020.06.011
https://doi.org/10.1016/j.tcs.2020.06.011
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/s41870-019-00347-1
https://doi.org/10.1007/s41870-019-00347-1
https://doi.org/10.1007/s41870-019-00347-1
https://doi.org/10.1007/s41870-019-00347-1
https://doi.org/10.1007/s41870-021-00804-w
https://doi.org/10.1007/s41870-021-00804-w
https://doi.org/10.1007/s41870-021-00804-w
https://doi.org/10.1007/s41870-021-00804-w
https://doi.org/10.1007/s41870-019-00371-1
https://doi.org/10.1007/s41870-019-00371-1
https://doi.org/10.1007/s41870-019-00371-1
https://doi.org/10.1007/s41870-022-01080-y
https://doi.org/10.1007/s41870-022-01080-y
https://doi.org/10.1007/s41870-022-01080-y
https://doi.org/10.1007/s41870-019-00286-x
https://doi.org/10.1007/s41870-019-00286-x
https://doi.org/10.1007/s41870-019-00286-x
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7

	Introduction
	Motivating Example
	Background: Model Families
	Featured transition system
	LTL Properties

	Abstraction Refinement Framework
	Abstraction
	Abstraction Refinement

	Syntactic Transformations
	Promela language
	Syntax.
	Sketches.
	Model Families.

	Syntactic Transformations
	From Sketches to Model Families.
	From Model Families to Projections and Abstract Models.

	Synthesis Algorithm
	Evaluation
	Related Work
	Conclusion

