
Variability Abstraction and Refinement for
Game-based Lifted Model Checking of full CTL

Aleksandar S. Dimovski[0000−0002−3601−2631]1, Axel Legay2, and Andrzej
Wasowski[0000−0003−0532−2685]3

1 Mother Teresa University, 12 Udarna Brigada 2a, 1000 Skopje, Mkd
2 UCLouvain, Belgium and IRISA/NRIA Rennes, France

3 IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark

Abstract. Variability models allow effective building of many custom
model variants for various configurations. Lifted model checking for a
variability model is capable of verifying all its variants simultaneously
in a single run by exploiting the similarities between the variants. The
computational cost of lifted model checking still greatly depends on the
number of variants (the size of configuration space), which is often huge.
One of the most promising approaches to fighting the configuration space
explosion problem in lifted model checking are variability abstractions. In
this work, we define a novel game-based approach for variability-specific
abstraction and refinement for lifted model checking of the full CTL,
interpreted over 3-valued semantics. We propose a direct algorithm for
solving a 3-valued (abstract) lifted model checking game. In case the
result of model checking an abstract variability model is indefinite, we
suggest a new notion of refinement, which eliminates indefinite results.
This provides an iterative incremental variability-specific abstraction and
refinement framework, where refinement is applied only where indefinite
results exist and definite results from previous iterations are reused.

1 Introduction

Software Product Line (SPL) [6] is an efficient method for systematic development
of a family of related models, known as variants (valid products), from a common
code base. Each variant is specified in terms of features (static configuration
options) selected for that particular variant. SPLs are particulary popular in the
embedded and critical system domains (e.g. cars, phones, avionics, healthcare).

Lifted model checking [4,5] is a useful approach for verifying properties of
variability models (SPLs). Given a variability model and a specification, the lifted
model checking algorithm, unlike the standard non-lifted one, returns precise
conclusive results for all individual variants, that is, for each variant it reports
whether it satisfies or violates the specification. The main disadvantage of lifted
model checking is the configuration space explosion problem, which refers to the
high number of variants in the variability model. In fact, exponentially many
variants can be derived from only few configuration options (features). One of the
most successful approaches to fighting the configuration space explosion are so-
called variability abstractions [14,15,17,12]. They hide some of the configuration

details, so that many of the concrete configurations become indistinguishable
and can be collapsed into a single abstract configuration (variant). This results
in smaller abstract variability models with a smaller number of abstract configu-
rations. In order to be conservative w.r.t. the full CTL temporal logic, abstract
variability models have two types of transitions: may-transitions which represent
possible transitions in the concrete model, and must-transitions which represent
the definite transitions in the concrete model. May and must transitions corre-
spond to over and under approximations, and are needed in order to preserve
universal and existential CTL properties, respectively.

Here we consider the 3-valued semantics for interpreting CTL formulae over
abstract variability models. This semantics evaluates a formula on an abstract
model to either true, false, or indefinite. Abstract variability models are designed
to be conservative for both true and false. However, the indefinite answer gives
no information on the value of the formula on the concrete model. In this case, a
refinement is needed in order to make the abstract models more precise.

The technique proposed here significantly extends the scope of existing auto-
matic variability-specific abstraction refinement procedures [8,18], which currently
support the verification of universal LTL properties only. They use conservative
variability abstractions to construct over-approximated abstract variability mod-
els, which preserve LTL properties. If a spurious counterexample (introduced
due to the abstraction) is found in the abstract model, the procedures [8,18] use
Craig interpolation to extract relevant information from it in order to define
the refinement of abstract models. Variability abstractions that preserve all
(universal and existential) CTL properties have been previously introduced [12],
but without an automatic mechanism for constructing them and no notion of
refinement. The abstractions [12] has to be constructed manually by an engineer
before verification. In order to make the entire verification procedure automatic,
we need to develop an abstraction and refinement framework for CTL properties.

In this work, we propose the first variability-specific abstraction refinement
procedure for automatically verifying arbitrary formulae of CTL. To achieve this
aim, model checking games [26,24,25] represent the most suitable framework
for defining the refinement. In this way, we establish a brand new connection
between games and family-based (SPL) model checking. The refinement is defined
by finding the reason for the indefinite result of an algorithm that solves the
corresponding model checking game, which is played by two players: Player∀
(trying to refute the formula Φ on an abstract model M) and Player∃ (trying
to verify Φ on M). The game is played on a game board, which consists of
configurations of the form (s, Φ′) where s is a state of the abstract modelM and
Φ′ is a subformula of Φ, such that the value of Φ′ in s is relevant for determining
the final model checking result. The players make moves between configurations
in which they try to verify or refute Φ′ in s. All possible plays of a game are
captured in the game-graph, whose nodes are the elements of the game board and
whose edges are the possible moves of the players. The model checking game is
solved via a coloring algorithm which colors each node (s, Φ′) in the game-graph
by T , F , or ? iff the value of Φ′ in s is true, false, or indefinite, respectively.

2

Player∀ has a winning strategy at the node (s, Φ′) iff the node is colored by F
iff Φ′ does not hold in s, and Player∃ has a winning strategy at (s, Φ′) iff the
node is colored by T iff Φ′ holds in s. In addition, it is also possible that neither
of players has a winning strategy, in which case the node is colored by ? and the
value of Φ′ in s is indefinite. In this case, we want to refine the abstract model.
We can find the reason for the tie by examining the game-graph. We choose a
refinement criterion, which splits abstract configurations so that the new, refined
abstract configurations represent smaller subsets of concrete configurations.

2 Background

Variability Models. Let F = {A1, . . . , An} be a finite set of Boolean variables
representing the features available in a variability model. A specific subset of
features, k ⊆ F, known as configuration, specifies a variant (valid product) of a
variability model. We assume that only a subset K ⊆ 2F of configurations are
valid. An alternative representation of configurations is based upon propositional
formulae. Each configuration k ∈ K can be represented by a formula: k(A1) ∧
. . .∧k(An), where k(Ai) = Ai if Ai ∈ k, and k(Ai) = ¬Ai if Ai /∈ k for 1 ≤ i ≤ n.

We use transition systems (TS) to describe behaviors of single-systems.

Definition 1. A transition system (TS) is a tuple T = (S,Act, trans, I, AP,L),
where S is a set of states; Act is a set of actions; trans ⊆ S × Act × S is a
transition relation which is total, so that for each state there is an outgoing
transition; I ⊆ S is a set of initial states; AP is a set of atomic propositions;
and L : S → 2AP is a labelling function specifying which propositions hold in a
state. We write s1

λ−−→s2 whenever (s1, λ, s2) ∈ trans.

An execution (behaviour) of a TS T is an infinite sequence ρ = s0λ1s1λ2 . . . with
s0 ∈ I such that si

λi+1−→ si+1 for all i ≥ 0. The semantics of the TS T , denoted
as [[T]]TS , is the set of its executions.

A featured transition system (FTS) is a particular instance of a variability
model, which describes the behavior of a whole family of systems in a single
monolithic description, where the transitions are guarded by a presence condition
that identifies the variants they belong to. The presence conditions ψ are drawn
from the set of feature expressions, FeatExp(F), which are propositional logic
formulae over F: ψ ::= true | A ∈ F | ¬ψ | ψ1 ∧ ψ2. We write [[ψ]] to denote the
set of configurations from K that satisfy ψ, i.e. k ∈ [[ψ]] iff k |= ψ.

Definition 2. A featured transition system (FTS) represents a tuple F =
(S,Act, trans, I, AP,L,F,K, δ), where S,Act, trans, I, AP , and L form a TS; F
is the set of available features; K is a set of valid configurations; and δ : trans→
FeatExp(F) is a total function decorating transitions with presence conditions.

The projection of an FTS F to a configuration k ∈ K, denoted as πk(F), is the
TS (S,Act, trans′, I, AP,L), where trans′ = {t ∈ trans | k |= δ(t)}. We lift the
definition of projection to sets of configurations K′⊆K, denoted as πK′(F), by
keeping the transitions admitted by at least one of the configurations in K′. That

3

s0

¬r

s1

¬r

s2

r
pay/¬f drink

take

free/f

cancel/c

Fig. 1: VendMach

s0

¬r

s1

¬r

s2

r
pay drink

take

Fig. 2: π∅(VendMach)

s0

¬r

s1

¬r

s2

r
drink

take

pay

free

cancel

Fig. 3: αjoin(VendMach)

is, πK′(F), is the FTS (S,Act, trans′, I, AP,L,F,K′, δ′), where trans′ = {t ∈
trans | ∃k ∈ K′.k |= δ(t)} and δ′ = δ|trans′ is the restriction of δ to trans′. The
semantics of an FTS F , denoted as [[F]]FTS , is the union of behaviours of the
projections on all valid variants k ∈ K, i.e. [[F]]FTS = ∪k∈K[[πk(F)]]TS .

Modal transition systems (MTSs) [22] are a generalization of transition systems
equipped with two transition relations: must and may. The former (must) is used
to specify the required behavior, while the latter (may) to specify the allowed
behavior of a system. We will use MTSs for representing abstractions of FTSs.

Definition 3. A modal transition system (MTS) is represented by a tuple M =
(S,Act, transmay, transmust, I, AP,L), where transmay ⊆ S × Act × S describe
may transitions of M; transmust ⊆ S ×Act× S describe must transitions of M,
such that transmay is total and transmust ⊆ transmay.

A may-execution in M is an execution (infinite sequence) with all its transitions
in transmay; whereas a must-execution in M is a maximal sequence with all its
transitions in transmust, which cannot be extended with any other transition from
transmust. Note that since transmust is not necessarily total, must-executions
can be finite. We use [[M]]may

MTS (resp., [[M]]must
MTS) to denote the set of all may-

executions (resp., must-executions) in M starting in an initial state.

Example 1. Throughout this paper, we will use a beverage vending machine as a
running example [4]. Figure 1 shows the FTS of a VendMach family. It has
two features, and each of them is assigned an identifying letter and a color. The
features are: CancelPurchase (c, in brown), for canceling a purchase after a coin
is entered; and FreeDrinks (f , in blue) for offering free drinks. Each transition is
labeled by an action followed by a feature expression. For instance, the transition
s0

free/f−−−→ s2 is included in variants where the feature f is enabled. For clarity,
we omit to write the presence condition true in transitions. There is only one
atomic proposition served ∈ AP , which is abbreviated as r. Note that r ∈ L(s2),
whereas r 6∈ L(s0) and r 6∈ L(s1).

By combining various features, a number of variants of this VendMach can
be obtained. The set of valid configurations is: KVM = {∅, {c}, {f}, {c, f}} (or,
equivalently KVM ={¬c∧¬f, c∧¬f,¬c∧f, c∧f}). Figure 2 shows a basic version
of VendMach that only serves a drink, described by the configuration: ∅ (or,
as formula ¬c ∧¬f). It takes a coin, serves a drink, opens a compartment so the
customer can take the drink. Figure 3 shows an MTS, where must transitions
are denoted by solid lines, while may transitions by dashed lines. ut

4

CTL Properties. We present Computation Tree Logic (CTL) [1] for specifying
system properties. CTL state formulae Φ are given by:
Φ ::= true | false | l | Φ1∧Φ2 | Φ1∨Φ2 | Aφ | Eφ, φ ::=©Φ | Φ1UΦ2 | Φ1VΦ2

where l ∈ Lit = AP ∪ {¬a | a ∈ AP} and φ represent CTL path formulae. Note
that the CTL state formulae Φ are given in negation normal form (¬ is applied
only to atomic propositions). The path formula ©Φ can be read as “in the next
state Φ”, Φ1UΦ2 can be read as “Φ1 until Φ2”, and its dual Φ1VΦ2 can be read
as “Φ2 while not Φ1” (where Φ1 may never hold).

We assume the standard CTL semantics over TSs is given [1] (see also [16,
Appendix A]). We write [T |= Φ] = tt to denote that T satisfies the formula Φ,
whereas [T |= Φ] = ff to denote that T does not satisfy Φ.

We say that an FTS F satisfies a CTL formula Φ, written [F |= Φ] = tt,
iff all its valid variants satisfy the formula, i.e. ∀k ∈ K. [πk(F) |= Φ] = tt.
Otherwise, we say F does not satisfy Φ, written [F |= Φ] = ff. In this case, we
also want to determine a non-empty set of violating variants K′ ⊆ K, such that
∀k′∈K′. [πk′(F) |= Φ] = ff and ∀k∈K\K′. [πk(F) |= Φ] = tt.

We define the 3-valued semantics of CTL over an MTS M slightly differently
from the semantics for TSs. A CTL state formula Φ is satisfied in a state s of an
MTS M, denoted [M, s |=3 Φ], iff (M is omitted when clear from context): 4

(1) [s |=3 a] =
{

tt, if a ∈ L(s)
ff, if a 6∈ L(s)

, [s |=3 ¬a] =
{

tt, if a 6∈ L(s)
ff, if a ∈ L(s)

(2) [s |=3 Φ1 ∧ Φ2] =

tt, if [s |=3 Φ1] = tt and [s |=3 Φ2] = tt
ff, if [s |=3 Φ1] = ff or [s |=3 Φ2] = ff
⊥, otherwise

(3) [s |=3 Aφ] =

tt, if ∀ρ ∈ [[M]]may,s

MTS . [ρ |=3 φ] = tt
ff, if ∃ρ ∈ [[M]]must,s

MTS . [ρ |=3 φ] = ff
⊥, otherwise

[s |=3 Eφ] =

tt, if ∃ρ ∈ [[M]]must,s

MTS . [ρ |=3 φ] = tt
ff, if ∀ρ ∈ [[M]]may,s

MTS . [ρ |=3 φ] = ff
⊥, otherwise

where [[M]]may,s
MTS (resp., [[M]]must,s

MTS) denotes the set of all may-executions (must-
executions) starting in the state s of M. Satisfaction of a path formula φ for
a may- or must-execution ρ = s0λ1s1λ2 . . . of an MTS M (we write ρi = si to
denote the i-th state of ρ, and |ρ| to denote the number of states in ρ), denoted
[M, ρ |=3 φ], is defined as (M is omitted when clear from context):

(4) [ρ |=3 (Φ1UΦ2)]=

tt, if ∃0≤ i≤|ρ|.

(
[ρi |=3Φ2]= tt ∧ (∀j<i.[ρj |=3 Φ1]= tt)

)
ff, if ∀0≤ i≤|ρ|.

(
∀j<i.[ρj |=3Φ1] 6=ff =⇒ [ρi |=3Φ2]=ff

)
∧ ∀i≥0.[ρi |=3Φ1] 6=ff =⇒ |ρ| =∞

⊥, otherwise
4 See [16, Appendix A] for definitions of [s |=3 Φ1∨Φ2], [ρ |=3 ©Φ], and [ρ |=3 (Φ1VΦ2)].

5

A MTSM satisfies a formula Φ, written [M |=3 Φ] = tt, iff ∀s0 ∈ I. [s0 |=3 Φ] = tt.
We say that [M |=3 Φ] = ff if ∃s0 ∈ I. [s0 |=3 Φ] = ff. Otherwise, [M |=3 Φ] = ⊥.
Example 2. Consider the FTS VendMach and MTS αjoin(VendMach) in
Figures 1 and 3. The property Φ1 = A(¬rUr) states that in the initial state
along every execution will eventually reach the state where r holds. Note that
[VendMach |= Φ1] = ff. E.g., if the feature c is enabled, a counter-example where
the state s2 that satisfies r is never reached is: s0 → s1 → s0 → The set of
violating products is [[c]]={{c}, {f, c}} ⊆ KVM . However, [π[[¬c]](VendMach) |=
Φ1] = tt. We also have that [αjoin(VendMach) |=3 Φ1] = ⊥, since (1) there is a
may-execution in αjoin(VendMach) where s2 is never reached: s0 → s1 → s0 →
. . ., and (2) there is no must-execution that violates Φ1.

Consider the property Φ2 = E(¬rUr), which describes a situation where in the
initial state there exists an execution that will eventually reach s2 that satisfies r.
Note that [VendMach |= Φ2] = tt, since even for variants with the feature c there
is a continuation from the state s1 to s2. But, [αjoin(VendMach) |= Φ2] = ⊥
since (1) there is no a must-execution in αjoin(VendMach) that reaches s2 from
s0, and (2) there is a may-execution that satisfies Φ2. ut

3 Abstraction of FTSs

We now introduce the variability abstractions [12] which preserve full CTL. We
start working with Galois connections5 between Boolean complete lattices of
feature expressions, and then induce a notion of abstraction of FTSs.

The Boolean complete lattice of feature expressions (propositional formulae
over F) is: (FeatExp(F)/≡, |=,∨,∧, true, false,¬). The elements of the domain
FeatExp(F)/≡ are equivalence classes of propositional formulae ψ∈FeatExp(F)
obtained by quotienting by the semantic equivalence ≡. The ordering |= is the
standard entailment between propositional logics formulae, whereas the least
upper bound and the greatest lower bound are just logical disjunction and
conjunction respectively. Finally, the constant false is the least, true is the
greatest element, and negation is the complement operator.

Over-approximating abstractions. The join abstraction, αjoin, replaces each
feature expression ψ with true if there exists at least one configuration from
K that satisfies ψ. The abstract set of features is empty: αjoin(F) = ∅, and
abstract set of configurations is a singleton: αjoin(K) = {true}. The abstraction
and concretization functions between FeatExp(F) and FeatExp(∅) are:

αjoin(ψ)=
{

true if ∃k ∈ K.k |= ψ

false otherwise
γjoin(ψ)=

{
true if ψ is true∨
k∈2F\K k if ψ is false

which form a Galois connection [15]. In this way, we obtain a single abstract
variant that includes all transitions occurring in any variant.
5 〈L,≤L〉 −−−→←−−−α

γ
〈M,≤M 〉 is a Galois connection between complete lattices L (concrete

domain) and M (abstract domain) iff α : L→M and γ : M → L are total functions
that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m), for all l ∈ L,m ∈M .

6

Under-approximating abstractions. The dual join abstraction, α̃join, re-
places each feature expression ψ with true if all configurations from K satisfy ψ.
The abstraction and concretization functions between FeatExp(F) and FeatExp(∅),
forming a Galois connection [12], are defined as [9]: α̃join = ¬ ◦ αjoin ◦ ¬ and
γ̃join = ¬ ◦ γjoin ◦ ¬, that is:

α̃join(ψ) =
{

true if ∀k ∈ K.k |= ψ

false otherwise
γ̃join(ψ)=

{∧
k∈2F\K(¬k) if ψ is true

false if ψ is false

In this way, we obtain a single abstract variant that includes only those transitions
that occur in all variants.

Abstract MTS and Preservation of CTL. Given a Galois connection
(αjoin,γjoin) defined on the level of feature expressions, we now define the abstrac-
tion of an FTS as an MTS with two transition relations: one (may) preserving
universal properties, and the other (must) preserving existential properties. The
may transitions describe the behaviour that is possible in some variant of the
concrete FTS, but not need be realized in the other variants; whereas the must
transitions describe behaviour that has to be present in all variants of the FTS.

Definition 4. Given the FTS F = (S,Act, trans, I, AP,L,F,K, δ), define MTS
αjoin(F) = (S,Act, transmay, transmust, I, AP,L) to be its abstraction, where
transmay = {t ∈ trans | αjoin(δ(t)) = true}, and transmust = {t ∈ trans |
α̃join(δ(t))= true}.

Note that the abstract model αjoin(F) has no variability in it, i.e. it contains
only one abstract configuration. We now show that the 3-valued semantics of
the MTS αjoin(F) is designed to be sound in the sense that it preserves both
satisfaction (tt) and refutation (ff) of a formula from the abstract model to the
concrete one. However, if the truth value of a formula in the abstract model is ⊥,
then its value over the concrete model is not known. We prove [16, Appendix B]:

Theorem 1 (Preservation results). For every Φ ∈ CTL, we have:

(1) [αjoin(F) |=3 Φ]= tt =⇒ [F |= Φ]= tt.
(2) [αjoin(F) |=3 Φ]=ff =⇒ [F |= Φ]=ff and [πk(F) |= Φ]=ff for all k ∈ K.

Divide-and-conquer strategy. The problem of evaluating [F |= Φ] can be
reduced to a number of smaller problems by partitioning the configuration space K.
Let the subsets K1,K2, . . . ,Kn form a partition of the set K. Then, [F |= Φ] = tt
iff [πKi(F) |= Φ] = tt for all i = 1, . . . , n. Also, [F |= Φ] = ff iff [πKj (F) |= Φ] = ff
for some 1 ≤ j ≤ n. By using Theorem 1, we obtain the following result.

Corollary 1. Let K1,K2, . . . ,Kn form a partition of K.

(1) If [αjoin(πK1(F)) |= Φ]= tt ∧. . .∧ [αjoin(πKn(F)) |= Φ]= tt, then [F |= Φ]= tt.
(2) If [αjoin(πKj (F)) |= Φ] = ff for some 1 ≤ j ≤ n, then [F |= Φ] = ff and

[πk(F) |= Φ]=ff for all k ∈ Kj.

7

Example 3. Recall the FTS VendMach of Fig. 1. Figure 3 shows the MTS
αjoin(VendMach), where the allowed (may) part of the behavior includes the
transitions that are associated with the optional features c and f in Vend-
Mach, and the required (must) part includes transitions with the presence
condition true. Consider the properties introduced in Example 2. We have
[αjoin(VendMach) |=3 Φ1] = ⊥ and [αjoin(VendMach) |=3 Φ2] = ⊥, so we
cannot conclude whether Φ1 and Φ2 are satisfied by VendMach or not. ut

4 Game-based Abstract Lifted Model Checking

The 3-valued model checking game [24,25] on an MTS M with state set S, a
state s ∈ S, and a CTL formula Φ is played by Player ∀ and Player ∃ in order
to evaluate Φ in s of M. The goal of Player ∀ is either to refute Φ on M or
to prevent Player ∃ from verifying it. The goal of Player ∃ is either to verify Φ
on M or to prevent Player ∀ from refuting it. The game board is the Cartesian
product S × sub(Φ), where sub(Φ) is defined as:

if Φ= true, false, l, then sub(Φ)={Φ}; if Φ=Æ©Φ1, then sub(Φ)={Φ}∪sub(Φ1)
if Φ = Φ1 ∧ Φ2, Φ1 ∨ Φ2, then sub(Φ) = {Φ} ∪ sub(Φ1) ∪ sub(Φ2)
if Φ = Æ(Φ1UΦ2),Æ(Φ1VΦ2), then sub(Φ) = exp(Φ) ∪ sub(Φ1) ∪ sub(Φ2)

where Æ ranges over both A and E. The expansion exp(Φ) is defined as:

Φ = Æ(Φ1UΦ2) : exp(Φ) = {Φ,Φ2 ∨ (Φ1 ∧Æ© Φ), Φ1 ∧Æ© Φ,Æ© Φ}
Φ = Æ(Φ1VΦ2) : exp(Φ) = {Φ,Φ2 ∧ (Φ1 ∨Æ© Φ), Φ1 ∨Æ© Φ,Æ© Φ}

A single play from (s, Φ) is a possibly infinite sequence of configurations
C0 →p0 C1 →p1 C2 →p2 . . ., where C0 = (s, Φ), Ci ∈ S × sub(Φ), and pi ∈
{Player ∀,Player ∃}. The subformula in Ci determines which player pi makes
the next move. The possible moves at each configuration are:

(1) Ci = (s, false), Ci = (s, true), Ci = (s, l): the play is finished. Such configu-
rations are called terminal.

(2) if Ci=(s,A© Φ), Player ∀ chooses a must-transition s−→ s′ (for refutation)
or a may-transition s−→ s′ of M (to prevent satisfaction), and Ci+1 =(s′, Φ).

(3) if Ci=(s, E©Φ), Player ∃ chooses a must-transition s−→ s′ (for satisfaction)
or a may-transition s−→ s′ of M (to prevent refutation), and Ci+1 =(s′, Φ).

(4) if Ci = (s, Φ1 ∧ Φ2), then Player ∀ chooses j ∈ {1, 2} and Ci+1 = (s, Φj).
(5) if Ci = (s, Φ1 ∨ Φ2), then Player ∃ chooses j ∈ {1, 2} and Ci+1 = (s, Φj).
(6),(7) if Ci = (s,Æ(Φ1UΦ2)), then Ci+1 = (s, Φ2 ∨ (Φ1 ∧Æ©Æ(Φ1UΦ2))).
(8),(9) if Ci = (s,Æ(Φ1VΦ2)), then Ci+1 = (s, Φ2 ∧ (Φ1 ∨Æ©Æ(Φ1VΦ2))).

The moves (6)− (9) are deterministic, thus any player can make them.
A play is a maximal play iff it is infinite or ends in a terminal configuration.

A play is infinite [26] iff there is exactly one subformula of the form AU, AV,
EU, or EV that occurs infinitely often in the play. Such a subformula is called a
witness. We have the following winning criteria:

8

– Player ∀ wins a (maximal) play iff in each configuration of the form Ci =
(s,A©Φ), Player ∀ chooses a move based on must-transitions and one of the
following holds: (1) the play is finite and ends in a terminal configuration of
the form Ci = (s, false) or Ci = (s, a) where a 6∈ L(s) or Ci = (s,¬a) where
a ∈ L(s); (2) the play is infinite and the witness is of the form AU or EU.

– Player ∃ wins a (maximal) play iff in each configuration of the form Ci =
(s, E©Φ), Player ∃ chooses a move based on must-transitions and one of the
following holds: (1) the play is finite and ends in a terminal configuration of
the form Ci = (s, true) or Ci = (s, a) where a ∈ L(s) or Ci = (s,¬a) where
a 6∈ L(s); (2) the play is infinite and the witness is of the form AV or EV.

– Otherwise, the play ends in a tie.

A strategy is a set of rules for a player, telling the player which move to
choose in the current configuration. A winning strategy from (s, Φ) is a set of
rules allowing the player to win every play that starts at (s, Φ) if he plays by
the rules. It was shown in [24,25] that the model checking problem of evaluating
[M, s |=3 Φ] can be reduced to the problem of finding which player has a winning
strategy from (s, Φ) (i.e. to solving the given 3-valued model checking game).

The algorithm proposed in [24,25] for solving the given 3-valued model
checking game consists of two parts. First, it constructs a game-graph, then it runs
an algorithm for coloring the game-graph. The game-graph is GM×Φ = (N,E)
where N ⊆ S × sub(Φ) is the set of nodes and E ⊆ N ×N is the set of edges. N
contains a node for each configuration that was reached during the construction
of the game-graph that starts from initial configurations I×{Φ} in a BFS manner,
and E contains an edge for each possible move that was applied. The nodes
of the game-graph can be classified as: terminal nodes, ∧-nodes, ∨-nodes, A©-
nodes, and E©-nodes. Similarly, the edges can be classified as: progress edges,
which originate in A© or E© nodes and reflect real transitions of the MTS
M, and auxiliary nodes, which are all other edges. We distinguish two types of
progress edges, two types of children, and two types of SCCs (Strongly Connected
Components). Must-edges (may-edges) are edges based on must-transitions (may-
transitions) of MTSs. A node n′ is a must-child (may-child) of the node n if
there exists a must-edge (may-edge) (n, n′). A must-SCC (may-SCC) is an SCC
in which all progress edges are must-edges (may-edges).

The game-graph is partitioned into its may-Maximal SCCs (may-MSCCs),
denoted Qi’s. This partition induces a partial order ≤ on the Qi’s, such that
edges go out of a set Qi only to itself or to a smaller set Qj . The partial order is
extended to a total order ≤ arbitrarily. The coloring algorithm processes the Qi’s
according to ≤, bottom-up. Let Qi be the smallest set that is not fully colored.
The nodes of Qi are colored in two phases, as follows.
Phase 1. Apply these rules to all nodes in Qi until none of them is applicable.

– A terminal node C is colored: by T if Player ∃ wins in it (when C = (s, true)
or C = (s, a) with a ∈ L(s) or C = (s,¬a) with a 6∈ L(s)); and by F if Player
∀ wins in it (when C = (s, false) or C = (s, a) with a 6∈ L(s) or C = (s,¬a)
with a ∈ L(s)).

9

– An A© node is colored: by T if all its may-children are colored by T ; by F
if it has a must-child colored by F ; by ? if all its must-children are colored
by T or ?, and it has a may-child colored by F or ?.

– An E© node is colored: by T if it has a must-child colored by T ; by F if all
its may-children are colored by F ; by ? if it has a may-child colored by T or
?, and all its must-children are colored by F or ?.

– An ∧-node (∨-node) is colored: by T (F) if both its children are colored by
T (F); by F (T) if it has a child that is colored by F (T); by ? if it has a
child colored by ? and the other child is colored by ? or T (F).

Phase 2. If after propagation of the rules of Phase 1, there are still nodes in
Qi that remain uncolored, then Qi must be a non-trivial may-MSCC that has
exactly one witness. We consider two cases.

Case U. The witness is of the form A(Φ1UΦ2) or E(Φ1UΦ2).
Phase 2a. Repeatedly color by ? each node in Qi that satisfies one of the
following conditions, until there is no change:
(1) An A© node that all its must-children are colored by T or ?; (2) An E©
node that has a may-child colored by T or ?; (3) An ∧ node that both its
children are colored T or ?; (4) An ∨ node that has a child colored by T or ?.
In fact, each node for which the F option is no longer possible according to
the rules of Phase 1 is colored by ?.
Phase 2b. Color the remaining nodes in Qi by F .

Case V. The witness is of the form A(Φ1VΦ2) or E(Φ1VΦ2) (see [16, Ap-
pendix B]).

The result of the coloring is a 3-valued coloring function χ : N → {T, F, ?}.

Theorem 2 ([24]). For each n = (s, Φ′) ∈ GM×Φ:

(1) [(M, s) |=3 Φ′] = tt iff χ(n) = T iff Player ∃ has a winning strategy at n.
(2) [(M, s) |=3 Φ′] = ff iff χ(n) = F iff Player ∀ has a winning strategy at n.
(3) [(M, s) |=3Φ′]=⊥ iff χ(n)=? iff none of players has a winning strategy at n.

Using Theorem 1 and Theorem 2, given the colored game-graph of the MTS
αjoin(F), if all its initial nodes are colored by T then [F |= Φ] = tt, if at least
one of them is colored by F then [F |= Φ] = ff. Otherwise, we do not know.

Example 4. The colored game-graph for the MTS αjoin(VendMach) and Φ1 =
A(¬rUr) is shown in Fig. 4. Green, red (with dashed borders), and white nodes
denote nodes colored by T , F , and ?, respectively. The partitions from Q1 to Q6
consist of a single node shown in Fig. 4, while Q7 contains all the other nodes.
The initial node (s0, Φ1) is colored by ?, so we obtain an indefinite answer. ut

5 Incremental Refinement Framework

Given an FTS πK′(F) with a configuration set K′ ⊆ K, we show how to exploit the
game-graph of the abstract MTS M = αjoin(πK′(F)) in order to do refinement

10

(s0, A(¬rUr))

(s0, r ∨ (¬r ∧ A© A(¬rUr)))

(s0, r)Q1 (s0,¬r ∧ A© A(¬rUr))

(s0,¬r)Q2 (s0, A© A(¬rUr))

(s1, A(¬rUr))

pay

(s1, r ∨ (¬r ∧ A© A(¬rUr)))

(s1, r)Q3 (s1,¬r ∧ A© A(¬rUr))

(s1,¬r)

Q4

(s1, A© A(¬rUr))

failure node

(s2, A(¬rUr))

free

(s2, r ∨ (¬r ∧ A© A(¬rUr)))

(s2, r)

Q5

(s2,¬r ∧ A© A(¬rUr))

(s2,¬r)

Q6

(s2, A© A(¬rUr))

cancel

drink

take

Fig. 4: The colored game-graph for αjoin(VendMach) and Φ1 = A(¬rUr).

in case that the model checking resulted in an indefinite answer. The refinement
consists of two parts. First, we use the information gained by the coloring
algorithm of GM×Φ in order to split the single abstract configuration true ∈
αjoin(K′) that represents the whole concrete configuration set K′. We then
construct the refined abstract models, using the refined abstract configurations.

There are a failure node and a failure reason associated with an indefinite
answer. The goal in the refinement is to find and eliminate at least one of the
failure reasons.

Definition 5. A node n is a failure node if it is colored by ?, whereas none of
its children was colored by ? at the time n got colored by the coloring algorithm.

Such failure node can be seen as the point where the loss of information occurred,
so we can use it in the refinement step to change the final model checking result.

Lemma 1 ([24]). A failure node is one of the following.

– An A©-node (E©-node) that has a may-child colored by F (T).
– An A©-node (E©-node) that was colored during Phase 2a based on an AU

(AV) witness, and has a may-child colored by ?.

Given a failure node n = (s, Φ), suppose that its may-child is n′ = (s′, Φ′1)
as identified in Lemma 1. Then the may-edge from n to n′ is considered as

11

Algorithm. Verify(F ,K, Φ)

1 Check by game-based model checking algorithm [αjoin(F) |=3 Φ]?
2 If the result is tt, then return that Φ is satisfied for all variants in K. If the result

is ff, then return that Φ is violated for all variants in K.
3 Otherwise, an indefinite result is returned. Let the may-edge from n = (s, Φ1) to
n′ = (s′, Φ′

1) be the reason for failure, and let ψ be the feature expression guarding
the transition from s to s′ in F . We generate F1 = π[[ψ]](F) and F2 = π[[¬ψ]](F),
and call Verify(F1,K ∩ [[ψ]], Φ) and Verify(F2,K ∩ [[¬ψ]], Φ).

Fig. 5: The Refinement Procedure that checks [F |= Φ].

the failure reason. Since the failure reason is a may-transition in the abstract
MTS αjoin(πK′(F)), it needs to be refined in order to result either in a must
transition or no transition at all. Let sα/ψ−−→s′ be the transition in the concrete
model πK′(F) corresponding to the above (failure) may-transition. We split the
configuration space K′ into [[ψ]] and [[¬ψ]] subsets, and we partition πK′(F) in
π[[ψ]]∩K′(F) and π[[¬ψ]]∩K′(F). Then, we repeat the verification process based on
abstract models αjoin(π[[ψ]]∩K′(F)) and αjoin(π[[¬ψ]]∩K′(F)). Note that, in the
former, αjoin(π[[ψ]]∩K′(F)), sα−→s′ becomes a must-transition, while in the latter,
αjoin(π[[¬ψ]]∩K′(F)), sα−→s′ is removed. The complete refinement procedure is
shown in Fig. 5. We prove that (see [16, Appendix A]):

Theorem 3. The procedure Verify(F ,K, Φ) terminates and is correct.

Example 5. We can do a failure analysis on the game-graph of αjoin(VendMach)
in Fig. 4. The failure node is (s1, A©A(¬rUr)) and the reason is the may-edge
(s1, A© A(¬rUr))cancel−−−→(s0, A(¬rUr)). The corresponding concrete transition
in VendMach is s1

cancel/c−−−−−→s0. So, we partition the configuration space KVM

into subsets [[c]] and [[¬c]], and in the next second iteration we consider FTSs
π[[c]](VendMach) and π[[¬c]](VendMach). ut

The game-based model checking algorithm provides us with a convenient
framework to use results from previous iterations and avoid unnecessary calcula-
tions. At the end of the i-th iteration of abstraction-refinement, we remember
those nodes that were colored by definite colors. Let D denote the set of such
nodes. Let χD : D → {T, F} be the coloring function that maps each node in D
to its definite color. The incremental approach uses this information both in the
construction of the game-graph and its coloring. During the construction of a new
refined game-graph performed in a BFS manner in the next i+ 1-th iteration,
we prune the game-graph in nodes that are from D. When a node n ∈ D is
encountered, we add n to the game-graph and do not continue to construct the
game-graph from n onwards. That is, n ∈ D is considered as terminal node and
colored by its previous color. As a result of this pruning, only the reachable
sub-graph that was previously colored by ? is refined.

Example 6. The property Φ1 holds for π[[¬c]](VendMach). The initial node of the
game-graph Gαjoin(π[[¬c]](VendMach))×Φ1 (see [16, Fig. 13, Appendix C]), is colored

12

(s0, A(¬rUr))

(s0, r ∨ (¬r ∧ A© A(¬rUr)))

(s0, r)Q1 (s0,¬r ∧ A© A(¬rUr))

(s0,¬r)Q2 (s0, A© A(¬rUr))

failure node

(s1, A(¬rUr))

pay

(s1, r ∨ (¬r ∧ A© A(¬rUr)))

(s1, r)

Q3

(s1,¬r ∧ A© A(¬rUr))

(s1,¬r)

Q4

(s1, A© A(¬rUr))

(s2, A(¬rUr))

free

cancel

drink

Fig. 6: Gαjoin(π[[c]](VendMach))×Φ1 .

s0 s1 s2
drink

take

cancel

pay

free

Fig. 7: αjoin(π[[c]](VendMach))

by T . On the other hand, we obtain an indefinite answer for π[[c]](VendMach).
The model αjoin(π[[c]](VendMach)) is shown in Fig. 7, whereas the final col-
ored game-graph Gαjoin(π[[c]](VendMach))×Φ1 is given in Fig. 6. The failure node is
(s0, A©A(¬rUr)), and the reason is the may-edge (s0, A©A(¬rUr))pay−−→(s1, A(¬rUr)).
The corresponding concrete transition in π[[c]](VendMach) is s0

pay/¬f−−−−→s1. So, in
the next third iteration we consider FTSs π[[c∧¬f]](VendMach) and π[[c∧f]](VendMach).

The initial node of the graph Gαjoin(π[[c∧¬f]](VendMach))×Φ1 (see [16, Fig. 16, Ap-
pendix C]) is colored by F in Phase 2b. The initial node ofGαjoin(π[[c∧f]](VendMach))×Φ1

(see [16, Fig. 17, Appendix C]) is colored by T .
In the end, we conclude that Φ1 is satisfied by the variants {¬c ∧ ¬f,¬c ∧

f, c ∧ f}, and Φ is violated by the variant {c ∧ ¬f}.
On the other hand, we need two iterations to conclude that Φ2 = E(¬rUr) is

satisfied by all variants in KVM (see [16, Appendix D] for details). ut

6 Evaluation

To evaluate our approach, we use a synthetic example to demonstrate specific
characteristics of our approach, and the Elevator model which is often used as
benchmark in SPL community [23,4,15,12,20]. We compare (1) our abstraction-
refinement procedure Verify with the game-based model checking algorithm im-
plemented in Java from scratch vs. (2) family-based version of the NuSMVmodel
checker, denoted fNuSMV, which implements the standard lifted model checking
algorithm [5]. For each experiment, we measure T(ime) to perform an analysis
task, and Call which is the number of times an approach calls the model checking

13

0

1

0

3

1

2

0

τ
/A

1

τ
/¬
A

1

τ
/A

2

τ/¬A2

τ
/A

2

τ/¬A2

τ

τ

τ

τ

Fig. 8: The model M2.

Φ Φ′

n fNuSMV Verify fNuSMV Verify
Call T Call T Call T Call T

2 1 0.08 1 0.07 1 0.08 5 0.83
7 1 1.64 1 0.16 1 1.68 15 2.68
10 1 992.80 1 0.68 1 1019.27 21 4.57
11 1 infeasible 1 1.42 1 infeasible 23 5.98
15 1 infeasible 1 26.55 1 infeasible 31 41.64

Fig. 9: Verification of Mn (T in seconds).

engine. All experiments were executed on a 64-bit IntelrCoreTM i5-3337U CPU
running at 1.80 GHz with 8 GB memory. All experimental data is available from:
https://aleksdimovski.github.io/automatic-ctl.html.

Synthetic example. The FTS Mn (where n > 0) consists of n features A1, . . . , An
and an integer data variable x, such that the set AP consists of all evaluations
of x which assign nonnegative integer values to x. The set of valid configurations
is Kn = 2{A1,...,An}. Mn has a tree-like structure, where in the root is the initial
state with x = 0. In each level k (k ≥ 1), there are two states that can be reached
with two transitions leading from a state from a previous level. One transition is
allowable for variants with the feature Ak enabled, so that in the target state
the variable’s value is x+ 2k−1 where x is its value in the source state, whereas
the other transition is allowable for variants with Ak disabled, so that the value
of x does not change. For example, M2 is shown in Fig. 8, where in each state
we show the current value of x and all transitions have the silent action τ .

We consider two properties: Φ = A(true U(x≥0)) and Φ′ = A(true U(x≥1)).
The property Φ is satisfied by all variants in K, whereas Φ′ is violated only by
one configuration ¬A1∧ . . .∧¬An (where all features are disabled). We have
verified Mn against Φ and Φ′ using fNuSMV(e.g. see fNuSMVmodels for M1
and M2 in [16, Fig. 23, Appendix E]). We have also checked Mn using our
Verify procedure. For Φ, Verify terminates in one iteration since αjoin(Mn)
satisfies Φ (see Gαjoin(M1)×Φ in [16, Fig. 24, Appendix E]). For Φ′, Verify needs
n + 1 iterations. First, an indefinite result is reported for αjoin(Mn) (e.g. see
Gαjoin(M1)×Φ′ in [16, Fig. 27, Appendix E]), and the configuration space is split
into [[¬A1]] and [[A1]] subsets. The refinement procedure proceeds in this way until
we obtain definite results for all variants. The performance results are shown
in Fig. 9. Notice that, fNuSMV reports all results in only one iteration. As n
grows, Verify becomes faster than fNuSMV. For n = 11 (|K| = 211), fNuSMV
timeouts after 2 hours. In contrast, Verify is feasible even for large values of n.

Elevator. We have experimented with the Elevator model with four floors,
designed by Plath and Ryan [23]. It contains about 300 LOC of fNuSMV
code and 9 independent optional features that modify the basic behaviour of
the elevator, thus yielding 29 = 512 variants. To use our Verify procedure,
we have manually translated the fNuSMV model into an FTS and then we

14

https://aleksdimovski.github.io/automatic-ctl.html

prop- fNuSMV Verify Improvement
-erty Call T Call T Time
Φ1 1 15.22 s 1 0.55 s 28 ×
Φ2 1 1.59 s 1 0.59 s 2.7 ×
Φ3 1 1.76 s 1 0.67 s 2.6 ×

Fig. 10: Verification of Elevator properties (T in seconds).

have called Verify on it. The basic Elevator system consists of a single
lift that travels between four floors. There are four platform buttons and a
single lift, which declares variables floor, door, direction, and a further four
cabin buttons. When serving a floor, the lift door opens and closes again. We
consider three properties “Φ1 = E(tt U(floor = 1 ∧ idle ∧ door = closed))”,
“Φ2 = A(tt U(floor = 1 ∧ idle ∧ door = closed))”, and “Φ3 = E(tt U((floor =
3 ∧ ¬liftBut3.pressed ∧ direction=up) =⇒ door=closed))”. The performance
results are shown in Fig. 10. The properties Φ1 and Φ2 are satisfied by all variants,
so Verify achieves speed-ups of 28 times for Φ1 and 2.7 times for Φ2 compared
to the fNuSMV approach. fNuSMV takes 1.76 sec to check Φ3, whereas Verify
ends in 0.67 sec thus giving 2.6 times performance speed-up.

7 Related Work and Conclusion

There are different formalisms for representing variability models [21,2]. Classen
et al. [4] present Featured Transition Systems (FTSs). They show how specifically
designed lifted model checking algorithms [7,5] can be used for verifying FTSs
against LTL and CTL properties. The variability abstractions that preserve LTL
are introduced in [14,15,17], and subsequently automatic abstraction refinement
procedures [8,18] for lifted model checking of LTL are proposed, by using Craig
interpolation to define the refinement. The variability abstractions that preserve
the full CTL are introduced in [12], but they are constructed manually and
no notion of refinement is defined there. In this paper, we define an automatic
abstraction refinement procedure for lifted model checking of full CTL by using
games to define the refinement. To the best of our knowledge, this is the first
such procedure in lifted model checking.

One of the earliest attempts for using games for CTL model checking has
been proposed by Stirling [26]. Shoham and Grumberg [24,25,19,3] have extended
this game-based approach for CTL over 3-valued semantics. In this work, we
exploit and apply the game-based approach in a completely new direction, for
automatic CTL verification of variability models.

The works [11,13] present an approach for software lifted model checking of
#ifdef-based program families using symbolic game semantics models [10].

To conclude, in this work we present a game-based lifted model checking for
abstract variability models with respect to the full CTL. We also suggest an
automatic refinement procedure, in case the model checking result is indefinite.

15

References
1. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
2. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing

variability in product families: Model checking of modal transition systems with
variability constraints. J. Log. Algebr. Meth. Program. 85(2), 287–315 (2016),
http://dx.doi.org/10.1016/j.jlamp.2015.09.004

3. Campetelli, A., Gruler, A., Leucker, M., Thoma, D.: Don’t Know for multi-valued
systems. In: Automated Technology for Verification and Analysis, 7th International
Symposium, ATVA 2009. Proceedings. LNCS, vol. 5799, pp. 289–305. Springer
(2009), https://doi.org/10.1007/978-3-642-04761-9_22

4. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
transition systems: Foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Trans. Software Eng. 39(8), 1069–1089
(2013), http://doi.ieeecomputersociety.org/10.1109/TSE.2012.86

5. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking
of software product lines. In: Proceedings of the 33rd International Conference
on Software Engineering, ICSE 2011. pp. 321–330. ACM (2011), http://doi.acm.
org/10.1145/1985793.1985838

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley (2001)

7. Cordy, M., Classen, A., Heymans, P., Schobbens, P., Legay, A.: Provelines: a product
line of verifiers for software product lines. In: 17th International SPLC 2013 work-
shops. pp. 141–146. ACM (2013), http://doi.acm.org/10.1145/2499777.2499781

8. Cordy, M., Heymans, P., Legay, A., Schobbens, P., Dawagne, B., Leucker, M.:
Counterexample guided abstraction refinement of product-line behavioural mod-
els. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, (FSE-22). pp. 190–201. ACM (2014),
http://doi.acm.org/10.1145/2635868.2635919

9. Cousot, P.: Partial completeness of abstract fixpoint checking. In: Abstraction,
Reformulation, and Approximation, 4th International Symposium, SARA 2000,
Proceedings. LNCS, vol. 1864, pp. 1–25. Springer (2000)

10. Dimovski, A.S.: Program verification using symbolic game semantics. Theor. Com-
put. Sci. 560, 364–379 (2014), http://dx.doi.org/10.1016/j.tcs.2014.01.016

11. Dimovski, A.S.: Symbolic game semantics for model checking program families. In:
Model Checking Software - 23nd International Symposium, SPIN 2016, Proceedings.
LNCS, vol. 9641, pp. 19–37. Springer (2016)

12. Dimovski, A.S.: Abstract family-based model checking using modal featured tran-
sition systems: Preservation of ctl*. In: Fundamental Approaches to Software
Engineering - 21st International Conference, FASE 2018, Proceedings. LNCS, vol.
10802, pp. 301–318. Springer (2018)

13. Dimovski, A.S.: Verifying annotated program families using symbolic game seman-
tics. Theor. Comput. Sci. 706, 35–53 (2018), https://doi.org/10.1016/j.tcs.
2017.09.029

14. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., Wasowski, A.: Family-based model
checking without a family-based model checker. In: Model Checking Software - 22nd
International Symposium, SPIN 2015, Proceedings. LNCS, vol. 9232, pp. 282–299.
Springer (2015), http://dx.doi.org/10.1007/978-3-319-23404-5_18

15. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., Wasowski, A.: Efficient family-
based model checking via variability abstractions. STTT 19(5), 585–603 (2017),
https://doi.org/10.1007/s10009-016-0425-2

16

http://dx.doi.org/10.1016/j.jlamp.2015.09.004
https://doi.org/10.1007/978-3-642-04761-9_22
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.86
http://doi.acm.org/10.1145/1985793.1985838
http://doi.acm.org/10.1145/1985793.1985838
http://doi.acm.org/10.1145/2499777.2499781
http://doi.acm.org/10.1145/2635868.2635919
http://dx.doi.org/10.1016/j.tcs.2014.01.016
https://doi.org/10.1016/j.tcs.2017.09.029
https://doi.org/10.1016/j.tcs.2017.09.029
http://dx.doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/s10009-016-0425-2

16. Dimovski, A.S., Legay, A., Wasowski, A.: Variability abstraction and refine-
ment for game-based lifted model checking of full ctl (extended version). CoRR
abs/1902.05594 (2019), http://arxiv.org/abs/1902.05594

17. Dimovski, A.S., Wasowski, A.: From transition systems to variability models and
from lifted model checking back to UPPAAL. In: Models, Algorithms, Logics and
Tools - Essays Dedicated to Kim Guldstrand Larsen on the Occasion of His 60th
Birthday. LNCS, vol. 10460, pp. 249–268. Springer (2017), https://doi.org/10.
1007/978-3-319-63121-9_13

18. Dimovski, A.S., Wasowski, A.: Variability-specific abstraction refinement for family-
based model checking. In: Fundamental Approaches to Software Engineering - 20th
International Conference, FASE 2017, Proceedings. LNCS, vol. 10202, pp. 406–423.
Springer (2017), http://dx.doi.org/10.1007/978-3-662-54494-5_24

19. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than
winning: Abstraction and refinement for the full mu-calculus. Inf. Comput. 205(8),
1130–1148 (2007), https://doi.org/10.1016/j.ic.2006.10.009

20. Iosif-Lazar, A.F., Melo, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Effective
analysis of c programs by rewriting variability. Programming Journal 1(1), 1 (2017),
https://doi.org/10.22152/programming-journal.org/2017/1/1

21. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: Programming Languages and Systems, 16th European
Symposium on Programming, ESOP 2007, Proceedings. LNCS, vol. 4421, pp. 64–79.
Springer (2007), http://dx.doi.org/10.1007/978-3-540-71316-6_6

22. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of the Third
Annual Symposium on Logic in Computer Science (LICS ’88). pp. 203–210. IEEE
Computer Society (1988), http://dx.doi.org/10.1109/LICS.1988.5119

23. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput. Pro-
gram. 41(1), 53–84 (2001), https://doi.org/10.1016/S0167-6423(00)00018-6

24. Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. ACM Trans. Comput. Log. 9(1), 1 (2007),
http://doi.acm.org/10.1145/1297658.1297659

25. Shoham, S., Grumberg, O.: Compositional verification and 3-valued abstractions
join forces. Inf. Comput. 208(2), 178–202 (2010), https://doi.org/10.1016/j.ic.
2009.10.002

26. Stirling, C.: Modal and Temporal Properties of Processes. Texts in Computer
Science, Springer (2001), https://doi.org/10.1007/978-1-4757-3550-5

17

http://arxiv.org/abs/1902.05594
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-319-63121-9_13
http://dx.doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1016/j.ic.2006.10.009
https://doi.org/10.22152/programming-journal.org/2017/1/1
http://dx.doi.org/10.1007/978-3-540-71316-6_6
http://dx.doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1016/S0167-6423(00)00018-6
http://doi.acm.org/10.1145/1297658.1297659
https://doi.org/10.1016/j.ic.2009.10.002
https://doi.org/10.1016/j.ic.2009.10.002
https://doi.org/10.1007/978-1-4757-3550-5

