
A Compositional Method for Deciding
Equivalence and Termination of

Nondeterministic Programs

Aleksandar Dimovski

Faculty of Information-Communication Tech., FON University, Skopje, 1000, MKD

Abstract. In this paper we address the problem of deciding may- and
must-equivalence and termination of nondeterministic finite programs
from second-order recursion-free Erratic Idealized Algol. We use game
semantics to compositionally extract finite models of programs, and the
CSP process algebra as a concrete formalism for representation of models
and their efficient verification. Observational may- and must-equivalence
and liveness properties, such as divergence and termination, are decided
by checking traces refinements and divergence-freedom of CSP processes
using the FDR tool. The practicality of the approach is evaluated on
several examples.

1 Introduction

Game semantics is a syntax-independent approach of modeling open programs
by looking at the ways in which a program can observably interact with its en-
vironment (context). Types are modeled by games (or arenas) between a Player
(i.e. program) and an Opponent (i.e. environment), and programs are modeled by
strategies on games. It was shown that, for several interesting programming lan-
guage fragments, their game semantics yield algorithms for model checking. The
focus has been on Idealized Algol (IA) [1, 12], which represents a metalanguage
combining imperative with higher-order functional features. Game semantics is
compositional, i.e. defined recursively on the syntax, which is essential for the
modular analysis of larger programs. Previous work on model checking using
game semantic models has been mainly concerned with verification of safety
properties of sequential, concurrent, and probabilistic programs [9, 10, 13]. All
these models say about what a program may do, but nothing about what it
must do. This reflects the deficiencies of the models for reasoning about any-
thing other than safety properties.

In order to take account of liveness properties of nondeterministic programs,
the requested model must make distinctions between a reliable program, such
as skip, and an unreliable program, such as skip or divergecom. This means that
the model must capture two complementary notions of program equivalence: the
possibility of termination (may-termination) and the guarantee of termination
(must-termination). To address this issue, the strategy of a program, apart from
containing the potential convergent behaviours of the program, must be enriched

with an extra information about the possible divergent behaviours of the pro-
gram. In [11, 12], it is given a game semantic model for Erratic IA (EIA) which
is fully abstract with respect to may&must-termination equivalence. EIA rep-
resents a nondeterministic extension of IA, i.e. it is IA enriched with an erratic
choice ‘or’ operator. The full abstraction result means that the model validates all
and only correct (may&must-termination) equivalences between programs, i.e.
it is sound and complete. Although this model is appropriate for verifying both,
safety and liveness, properties, it is complicated and so equivalence and a range
of properties are not decidable within it. However, it has been shown in [14] that
the game models of second- (resp., third-) order recursion-free finitary EIA can
be represented by finite (resp., visibly pushdown) automata. This gives a decision
procedure for a range of verification problems to be solved algorithmically, such
as: may-equivalence, must-equivalence, may&must-equivalence, termination and
other properties.

In this work we propose a verification tool for analyzing nondeterministic
programs. We show how for second-order recursion-free EIA with finite data
types game semantic models can be represented as CSP processes, i.e. any pro-
gram is compositionally modeled as a CSP process whose terminated traces and
minimal divergences are exactly all the complete plays and divergences of the
strategy for the program. This enables observational may- and must-equivalence
between any two programs and a range of (safety and) liveness properties, such
as termination and divergence, of programs to be decided by checking traces
refinements and divergence-freedom of CSP processes by using the FDR tool.

CSP [15] is a particulary convenient formalism for encoding game semantic
models. The FDR model checker can be used to automatically check refinements
between two processes and a variety of properties of a process, and to debug inter-
actively when a refinement or a property does not hold. FDR has direct support
for three different forms of refinement: traces (vT), failures (vF), and failures-
divergences (vFD); and for the following properties: deadlock, divergence, and
determinism. Then, composition of strategies, which is used in game semantics
to obtain the strategy for a program from strategies for its subprograms, is rep-
resented in CSP by renaming, parallel composition and hiding operators, and
FDR is highly optimised for verification of such networks of processes. Finally,
FDR builds the models gradually, at each stage compressing the submodels to
produce an equivalent process with many fewer states. A number of hierarchical
compression algorithms are available in FDR, which can be applied during either
model generation or refinement checking.

The paper is organised in the following way. Section 2 introduces the language
considered in this paper. The game semantic model of the language is defined in
Section 3, and its CSP representation is presented in Section 4. Correctness of
the CSP representation, decidability of observational may- and must-equivalence
and termination are shown in Section 5. The effectiveness of this approach is
evaluated in Section 6. In the end, we conclude and present some ideas for
future work.

Related work. Automated verification of liveness properties of programs is an
active research topic. The work in [5] presents an abstraction refinement proce-
dure for proving termination of programs. The procedure successively weakens
candidate transition invariants and successively refines transition predicate ab-
stractions of the given program. The approach taken in [3, 4] proves termination
of programs by generating linear ranking functions, which assign a value from a
well-founded domain to each program state. The method represents program in-
variants and transition relations as polyhedral cones and constructs linear rank-
ing functions by manipulating these cones. Compared to the aforementioned
approaches, the main focus of our method is compositionality which is reached
in a clean and theoretically firm semantics-based way. Namely, the model of a
program is constructed out of the models of its subprograms, which facilitates
breaking down the verification of a larger program into verifications of its sub-
programs. By applying various program analysis techniques, such as predicate
abstraction and counter-example guided abstraction refinement [2, 7], the effi-
ciency of our method and its applicability to a broader class of programs can be
significantly improved.

2 Programming Language

Erractic Idealized Algol [12] is a nondeterministic imperative-functional language
which combines the fundamental imperative features, locally-scoped variables,
and full higher-order function mechanism based on a typed call-by-name λ-
calculus.

The data types D are a finite subset of the integers (from 0 to n − 1, where
n > 0) and the Booleans (D ::= intn | bool). The phrase types consists of
base types (expressions, commands, variables) and function types (B ::= expD |
varD | com, T ::= B | T → T). Terms are formed by the following grammar:

M ::=x | v | skip | divergeB | M opM | M ;M | if M thenM elseM | whileM doM
| M := M |!M | newvarD x :=v in M | mkvarMM |M or M | λ x .M | MM | YM

where v ranges over constants of type D . The language constants are a “do
nothing” command skip which always terminates successfully, and for each base
type there is a constant divergeB which causes a program to enter an unre-
sponsive state similar to that caused by an infinite loop. The usual imperative
constructs are employed: sequential composition (;), conditional (if), iteration
(while), assignment (:=), and de-referencing (!). Block-allocated local variables
are introduced by a new construct, which initializes a variable and makes it local
to a given block. There are constructs for nondeterminism, function creation and
application, as well as recursion.

Well-typed terms are given by typing judgements of the form Γ ` M : T ,
where Γ is a type context consisting of a finite number of typed free identifiers.
Typing rules of the language are those of EIA (e.g. [1, 12]), extended with a rule
for the divergeB constant: Γ ` divergeB : B .

The operational semantics of our language is given in terms of states. Given
a type context Γ = x1 : varD1, . . . , xk : varDk where all identifiers are variables,
which is called var-context, we define a Γ -state s as a (partial) function assigning
data values to the variables {x1, . . . , xk}. The canonical forms are defined by
V ::= x | v | λ x : T .M | skip | mkvarMN . The operational semantics is
defined by a big-step reduction relation:

Γ ` M , s =⇒ V , s′

where Γ ` M : T is a term, Γ is a var-context, s, s′ are Γ -states, and V is a
canonical form. Reduction rules are those of EIA (see [1, 12] for details). The
divergeB constant is not reducible.

Since the language is nondeterministic, it is possible that a term may reduce
to more than one value. Given a term Γ ` M : com where Γ is a var-context,
we say that M may terminate in state s, written M , s ⇓may , if there exists a
reduction Γ ` M , s =⇒ skip, s′ for some state s′. We say that M must termi-
nate in a state s, written M , s ⇓must , if all reductions at start state s end with
the term skip. If M is a closed term then we abbreviate the relation M , ∅ ⇓may

(resp., M , ∅ ⇓must) with M ⇓may (resp., M ⇓must). Next, we define a program
context C [−] : com with hole to be a term with (possibly several occurrences
of) a hole in it, such that if Γ ` M : T is a term of the same type as the hole
then C [M] is a well-typed closed term of type com, i.e. ` C [M] : com. Then, we
say that a term Γ ` M : T is a may-approximate (resp., must-approximate) of
a term Γ ` N : T , denoted by Γ ` M @∼ mayN (resp., Γ ` M @∼ mustN), if and
only if for all program contexts C [−] : com, if C [M] ⇓may (resp., C [M] ⇓must)
then C [N] ⇓may (resp., C [N] ⇓must). If two terms may-approximate (resp.,
must-approximate) each other they are considered may-equivalent (resp., must-
equivalent), denoted by Γ ` M ∼=may N (resp., Γ ` M ∼=must N). Combining
may- and must-approximation (resp., equivalence) gives rise to may&must ap-
proximation (resp., equivalence). For instance, the following facts hold:
skip or divergecom

∼=may skip skip or divergecom
∼=must divergecom

skip or divergecom �may&must skip skip or divergecom �may&must divergecom

Example 1. Consider the term from [14]:

f : com → com ` newint2 x := 0 in
(
f (x := 1) ; if (x = 1) then divergecom

)
or

(
f (x := 1) ; if (x = 0) then divergecom

)
: com

in which f is a non-local function. The function-call mechanism is by-name, so
every call to the argument of f sets x to 1. In what follows, we will see that this
term is may-equivalent to f (skip), must-equivalent to divergecom, and may&must-
equivalent to f (skip) or divergecom. ut

3 Game Semantics

In this section we give an overview of game semantics for EIA, which is fully
abstract with respect to may&must-equivalence. A complete definition can be
found in [12, pp. 99–138].

An arena A is a triple 〈MA, λA,`A〉, where MA is a countable set of moves,
λA : MA → {O, P} × {Q,A} is a labeling function which indicates whether a
move is by Opponent (O) or Player (P), and whether it is a question (Q) or an
answer (A). Then, `A is a binary relation between MA +{∗} (∗ 6∈ MA) and MA,
called enabling (if m `A n we say that m enables move n), which satisfies the
following conditions: (i) Initial moves (a move enabled by ∗ is called initial) are
Opponent questions, and they are not enabled by any other moves besides ∗;
(ii) Answer moves can only be enabled by question moves; (iii) Two participants
always enable each others moves, never their own.

We denote the set of all initial moves in A as IA. The simplest arena is the
empty arena I = 〈∅, ∅, ∅〉. The base types are interpreted by arenas where all
questions are initial and P-moves answer them.

[[expD]] = 〈 {q , v | v ∈ D}, {λ(q) = OQ, λ(v) = PA}, {(∗, q), (q , v) | v ∈ D} 〉
[[com]] = 〈 {run, done}, {λ(run) = OQ, λ(done) = PA}, {(∗, run), (run, done)}〉
[[varD]] = 〈 {read , v ,write(v), ok | v ∈ D}, {λ(read ,write(v)) = OQ,

λ(v , ok) = PA}, {(∗, read), (∗,write(v)), (read , v), (write(v), ok) | v ∈ D} 〉
Given arenas A and B , we define new arenas A× B , A ⇒ B as follows1:

A× B = 〈MA + MB , [λA, λB], `A + `B 〉
A ⇒ B = 〈MA + MB , [λA, λB],`B +

(
IB × IA

)
+

(`A ∩ (MA ×MA)
)〉

A justified sequence s in arena A is a finite sequence of moves of A together
with a pointer from each non-initial move n to an earlier move m such that
m `A n. We say that n is (explicitly) justified by m. A legal play (or just a play)
is a justified sequence with some additional constraints: alternation (Opponent
and Player moves strictly alternate), well-bracketed condition (when an answer
is given, it is always to the most recent question which has not been answered),
and visibility condition (a move to be played depends upon a certain subsequence
of the play so far, rather than on all of it). The set of all legal plays in arena A is
denoted by LA. We use meta-variables m,n to range over moves, and s to range
over sequences of moves. We also write s m or s ·m for the concatenation of s
and m. The empty sequence is written as ε, and v denotes the prefix ordering
on sequences.

A strategy σ on an arena A (written as σ : A) is a pair (Tσ,Dσ), where:

– Tσ is a non-empty set of even-length plays of A, known as the traces of σ,
satisfying: if s ·m · n ∈ Tσ then s ∈ Tσ.

– Dσ is a set of odd-length plays of A, known as the divergences of σ, satisfying:
if s ·m ∈ Dσ then s ∈ Tσ; and if s ∈ Tσ, s ·m ∈ LA, and s ·m · n 6∈ Tσ for
∀n then ∃ d ∈ Dσ.d v s ·m.

A strategy specifies what options Player has at any given point of a play
and it does not restrict the Opponent moves. If Player can not respond at some
point of a play then this is reflected by an appropriate divergence sequence in

1 λA is like λA except that it reverses O/P part, and + is a disjoint union.

the strategy. Note that, here we choose a “minimal” representation of diver-
gence, where only the minimal divergences of a strategy, denoted by div(σ), are
recorded. An alternative “maximal” representation, as is done in CSP, is also
possible. It considers the divergences as extension-closed set, which forces the
traces set to include all possible sequences after a divergence has been reached.
These two representations are equivalent.

Given strategies σ : A ⇒ B and τ : B ⇒ C , the composition σ o
9 τ =

(Tσo
9τ ,Dσo

9τ) : A ⇒ C is defined in the following way. Let u be a sequence
of moves from A, B , and C . We define u ¹ B ,C to be the subsequence of u
consisting of all moves from B and C as well as pointers between them (pointers
from/to moves of A are deleted). Similarly define u ¹ A,B . Define u ¹ A,C
to be the subsequence of u consisting of all moves from A and C , but where
there was a pointer from a move mA ∈ MA to an initial move m ∈ IB extend
the pointer to the initial move in C which was pointed to from m. We say that
u is an interaction of A, B , C if u ¹ A,B ∈ LA⇒B , u ¹ B ,C ∈ LB⇒C , and
u ¹ A,C ∈ LA⇒C . The set of all such sequences is written as int(A,B ,C).

Tσo
9τ = {u ¹ A,C | u ∈ int(A,B ,C) ∧ u ¹ A,B ∈ Tσ ∧ u ¹ B ,C ∈ Tτ}

So Tσo
9τ consists of sequences generated by playing Tσ and Tτ in parallel, making

them synchronize on moves in B , which are afterwards hidden.
We define an infinite interaction of A,B ,C to be a sequence u ∈ (MA +

MB +MC)∞ such that u ¹ A,C ∈ LA⇒C , and for all i ∈ N0, u<i ¹ A,B ∈ LA⇒B

and u<i ¹ B ,C ∈ LB⇒C , where u≤i denotes the finite prefix of u with length i .
The set of all such sequences is written as int∞(A,B ,C). Then, a set of finitely
generated divergences is defined as:

Dσ ↙ Dτ = {u ∈ int(A,B ,C) | (u ¹ A,B ∈ Tσ ∧ u ¹ B ,C ∈ Dτ

)
∨ (

u ¹ A,B ∈ Dσ ∧ u ¹ B ,C ∈ Tτ

)}
Dσ ↙ Dτ consists of sequences containing a trace from σ and a divergence from
τ , or vice versa. A set of infinitely generated divergences is defined as 2:

Tσ ↙ Tτ = {u ∈ int∞(A,B ,C) | ∀ i ∈ N0.u≤i ¹ A,B ∈ Tσ ∪ dom(σ)
∧ u≤i ¹ B ,C ∈ Tτ ∪ dom(τ)}

Tσ ↙ Tτ consists of sequences that have an infinite tail in B . This situation is
called livelock. We have that: Dσo

9τ = {u ¹ A,C | u ∈ Dσ ↙ Dτ ∨ u ∈ Tσ ↙ Tτ}.
The identity strategy, which is also called copy-cat, for an arena A is IdA =

(idA, ∅), where idA = {s ∈ PA⇒A | ∀ s ′ veven s. s ′ ¹ Al = s ′ ¹ Ar}. We use
the l and r tags to distinguish between the two occurrences of A and s ′ veven s
means that s ′ is an even-length prefix of s. So in idA, a move by Opponent in
either occurrence of A is immediately copied by Player to the other occurrence.

In general, plays in a strategy may contain several occurrences of initial
moves, which define several different threads of the play in the following way:
two moves are in the same thread if they are connected via chains of pointers to
2 The domain of a strategy σ is the set dom(σ) = {s ·m | ∃n.s ·m · n ∈ Tσ}.

the same occurrence of an initial move. We consider the class of single-threaded
strategies whose behaviour depends only on one thread at a time, i.e. any Player
response depends solely on the current thread of the play and any divergence
is caused by the play in a single thread. We say that a strategy is well-opened
if all its plays have exactly one initial move. It can be established one-to-one
correspondence between single-threaded and well-opened strategies. It is shown
in [12] that arenas as objects and single-threaded (well-opened) strategies as
arrows constitute a cpo-enriched cartesian closed category, which can be used
for construction of semantic models of programming languages. From now on,
we proceed to work only with well-opened strategies and plays with exactly one
initial move.

A term Γ ` M : T , where Γ = x1 : T1, . . . , xn : Tn , is interpreted by a
strategy [[Γ ` M : T]] for the arena [[Γ ` T]] = [[T1]] × . . . × [[Tn]] ⇒ [[T]].
Language constants and constructs are interpreted by strategies and compound
terms are modelled by composition of the strategies that interpret their con-
stituents. For example, some of the strategies are [12]: [[n : expint]] = ({ε, q n}, ∅),
[[skip : com]] = ({ε, run done}, ∅), [[divergecom : com]] = ({ε}, {run}), [[or : expD0 ×
expD1 → expD2]] 3 = ({ε, q2 q0, q2 q1, q2 q0 v0 v2, q2 q1 v1 v2 | v ∈ D}, ∅), free iden-
tifiers are interpreted by identity strategies, etc. Using standard game-semantic
techniques, it has been shown in [12] that the quotient of this model with respect
to the so-called intrinsic preorder is fully abstract for may&must-equivalence.
However, the model itself is sound [12], so the must-termination of terms follows
from this result.

Proposition 1. Γ ` M must terminate iff D[[Γ`M]] = ∅.
More explicit characterizations of may- and must-approximation (resp., equiv-

alence) are given in [14]. A play is complete if all questions occurring in it have
been answered. Given a strategy σ, we write comp(σ) for the set of its non-empty
complete plays.

Proposition 2. Γ ` M @∼ mayN iff comp([[Γ ` M]]) ⊆ comp([[Γ ` N]]).

In order to capture must-approximation, we define a new relation ≤must on
strategies over any arena A: σ ≤must τ iff for any s ∈ (Tτ ∪Dτ)\(Tσ ∪Dσ) there
exists s ′ vodd s such that s ′ v d for some d ∈ Dσ.

Proposition 3. Γ ` M @∼ mustN iff [[Γ ` M]] ≤must [[Γ ` N]].

4 CSP Representation

In the rest of the paper, we work with the 2nd-order recursion-free fragment of
EIA. In particular, function types are restricted to T ::= B | B → T . Without
loss of generality, we consider only terms in β-normal form. We now show how
the game semantic model of this fragment of EIA can be given a concrete repre-
sentation using the CSP process algebra. This translation is an extension of the
3 Every move is tagged with the index of type component where it occurs.

one presented in [6, 9], where the considered language is IA and the model takes
account of only safety properties.

CSP (Communicating Sequential Processes) [15] is a language for modelling
systems which consist of interacting components. Each component is specified
through its behaviour which is given as a process. Processes are defined in terms
of the events that they can perform. The set of all possible events is denoted Σ.

Processes can be given denotational semantics by the following sets of their
possible behaviours. The set traces(P) contains all possible finite sequences of
events that the process P can perform. The set failures(P) consists of all pairs
(s,X), where s ∈ traces(P) and X is a set of events that P can refuse to do in
some stable state after the trace s. And, we define divergences(P) as the set of
traces after which the process can perform an infinite sequence of consecutive
internal events called τ . We consider here two semantic models of CSP processes:
traces semantics, denoted as PT , and failures-divergences semantics, denoted
as PFD . We omit the subscripts when they are clear from the context. Traces
semantics of a process P is given by the set traces(P), while failures-divergences
semantics of P is given by the pair (failures(P),divergences(P)). Divergences of
a process are not modeled in its traces semantics, but they have “maximal”
representation in its failures-divergences semantics. For example, let consider
the div process. It represents a special divergent process in CSP which does
nothing but diverge. It is equivalent to the recursive process µ p.p. We have that
divT = {ε}, but divFD = (Σ∗X × P(ΣX), Σ∗X), where ΣX = Σ ∪ {X} 4, and
Σ∗X = Σ ∪ {s ·X | s ∈ Σ∗}. Traces refinement between processes is defined as:

P1 vT P2 ⇔ traces(P2) ⊆ traces(P1)

CSP processes can also be given operational semantics using labelled tran-
sition systems (LTS). The LTS of a process is a directed graph whose nodes
represent process states and whose edges are labelled by events representing
what happens when the given event is performed. LTSs have a distinguished
start state, and any edge whose label is X leads to a special terminated state Ω.

With each type T , we associate a set of possible events: an alphabet A[[T]].
It contains a set of events q ∈ Q[[T]], called questions, which are appended to a
channel with name Q , and for each question q, there is a set of events a ∈ Aq

[[T]],
called answers, which are appended to a channel with name A.

A[[intn]] = {0, . . . ,n − 1} A[[bool]] = {tt ,ff }
Q[[expD]] = {q} Aq

[[expD]] = A[[D]] Q[[com]] = {run} Arun
[[com]] = {done}

Q[[varD]] = {read,write.v | v ∈ A[[D]]} Aread
[[varD]] = A[[D]] Awrite.v

[[varD]] = {ok}
Q[[B1→...→Bk→B]] =

⋃

1≤i≤k

{i .q | q ∈ Q[[Bi]]} ∪Q[[B]]

Ai.q
[[B1→...→Bk→B]] = {i .a | a ∈ Aq

[[Bi]]
}, q ∈ Q[[Bi]], 1 ≤ i ≤ k

Aq
[[B1→...→Bk→B]] = Aq

[[B]], q ∈ Q[[B]]

4 SKIP is a process that successfully terminates causing the special event X (X 6∈ Σ).

A[[T]] = Q .Q[[T]] ∪A.
⋃

q∈Q[[T]]

Aq
[[T]]

For any term Γ ` M : T , we define a CSP process [[Γ ` M : T]] which
represents the strategy for the term. Events of this process are from the alphabet
A[[Γ`T]] defined as follows: A[[x :T]] = x .A[[T]], A[[Γ]] =

⋃

x :T∈Γ

A[[x :T]], and A[[Γ`T]] =

A[[Γ]] ∪ A[[T]].
Processes for constants and free identifiers x : T ` x : T are defined in

Table 1. The process for divergeB performs the div process after communicating
the initial question event.

[[Γ ` v : expD]] = Q .q → A.v → SKIP , v ∈ A[[D]]

[[Γ ` skip : com]] = Q .run → A.done → SKIP
[[Γ ` divergeB : B]] = Q?q : Q[[B]] → div
[[x : expD ` x : expD]] = Q .q → x .Q .q → x .A?a : Aq

[[expD]] → A.a → SKIP

[[x : com ` x : com]] = Q .run → x .Q .run → x .A.done → A.done → SKIP

[[x : varD ` x : varD]]=(Q .read → x .Q .read → x .A?a : Aread
[[varD]] → A.a → SKIP)

2 (Q .write?v : A[[D]] → x .Q .write.v → x .A.ok → A.ok → SKIP)
[[x : B1 → . . . → Bk → B ` x : B1 → . . . → Bk → B]] = Q?q : Q[[B]] → x .Q .q →

µL ¦
(

SKIP 2

(
2

k

j=1

(
x .Q .j ?qj : Q[[Bj]] → Q .j .qj → A.j?aj : A

qj

[[Bj]]
→

x .A.j .aj → SKIP) o
9 L

))
o
9 x .A?a : Aq

[[B]] → A.a → SKIP

Table 1. Processes for constants and free identifiers

For each language construct ‘c’, a process Pc which corresponds to its strat-
egy is defined in Table 2. For example, Por nondeterministically runs either its
first or its second argument. Events of the first (resp., second) argument of ‘or’
occur on channels tagged with index 1 (resp., 2). Then, for each composite term
c(M1, . . . ,Mn) consisting of a language construct ‘c’ and subterms M1, . . . ,Mn ,
we define [[c(M1, . . . ,Mn)]] from the process Pc and processes [[Mi]] and [[Mi]]∗ 5,
using only the CSP operators of renaming, parallel composition and hiding. For
example, the process for ‘or’ is defined as:

[[Γ ` M1 orM2 : B]] = ([[Γ ` M1 : B]][Q1/Q ,A1/A] 2 SKIP) ‖
{|Q1,A1|}(

([[Γ ` M2 : B]][Q2/Q ,A2/A] 2 SKIP) ‖
{|Q2,A2|}

Por \ {| Q2,A2 |}
) \ {| Q1,A1 |}

After renaming the channels Q ,A to Q1,A1 in the process for M1, and to Q2,A2

in the process for M2 respectively, the processes for M1 and M2 are composed
5 P∗ is a process which performs the process P arbitrary many times.

with Por. The composition is performed by synchronising the component pro-
cesses on events occurring on channels Q1,A1,Q2,A2, which are then hidden.
Since one of the processes for M1 and M2 will not be run in the composition,
SKIP is used to enable such empty termination.

Pop = Q .q → Q1.q → A1?a1 : Aq
[[expD]] → Q2.q → A2?a2 : Aq

[[expD]]

→ A.a1 op a2 → SKIP
P; = Q?q : Q[[B]] → Q1.run → A1.done → Q2.q → A2?a : Aq

[[B]] → A.a → SKIP

Pif = Q .q : Q[[B]] → Q0.q → A0?a0 : Aq
[[expbool]] → if (a0) then

(
Q1.q →

A1?a1 : Aq
[[B]] → A.a1 → SKIP

)
else

(
Q2.q → A2?a2 : Aq

[[B]] → A.a2 → SKIP
)

Pwhile = Q .run → µ p ¦ Q1.q → A1?a1 : Aq
[[expbool]] →

(
if (a1) then

(
Q2.run → A2.done → p

)
else

(
A.done → SKIP

))

P:= = Q .run → Q1.q → A1?a : Aq
[[expD]] → Q2.write.a → A2.ok → A.done → SKIP

P! = Q .q → Q1.read → A1?a : Aread
[[varD]] → A.a → SKIP

Por = (Q .q : Q[[B]] → Q1.q → A1?a1 : Aq
[[B]] → A.a1 → SKIP) 2

(Q .q : Q[[B]] → Q2.q → A2?a2 : Aq
[[B]] → A.a2 → SKIP)

Pnew(x , v) = Q .run → Q1.run → UD(x , v)
UD(x , v) =

(
x .Q .read → x .A.v → UD(x , v)

)
2(

x .Q .write?v ′ : A[[D]] → x .A.ok → UD(x , v ′)
)
2

(
A1.done → A.done → SKIP

)

Table 2. Processes for constructs

Example 2. Consider the term from Example 1:

f : com → com ` newint2 x := 0 in
(
f (x := 1) ; if (x = 1) then divergecom

)
or

(
f (x := 1) ; if (x = 0) then divergecom

)
: com

Q.run f.Q.run f.A.done A.done Ö
W

t

f.Q.1.run f.A.1.done

Fig. 1. A strategy as a LTS

The LTS of the CSP process representing this term is shown in Fig. 1. The
first argument of ‘or’ terminates successfully when f does not call its argument;
otherwise it diverges. The second argument of ‘or’ terminates successfully when

f calls its argument, one or more times; otherwise it diverges. The set of diver-
gences is Q .run · f .Q .run · (f .Q .1.run · f .A.1.done)∗ · f .A.done, while the set of
traces that end with X is Q .run · f .Q .run · (f .Q .1.run · f .A.1.done)∗ · f .A.done ·
A.done · X. Notice that no references to the variable x appear in the model
because it is locally defined. 2

5 Correctness and Formal Properties

We now show that for any term from 2nd-order recursion-free EIA with finite
data types, the sets of all terminated traces and divergences of its CSP inter-
pretation are isomorphic to the sets of all complete plays and divergences of
its fully abstract game semantic model. Given a term Γ ` M : T , we denote
by [[Γ ` M : T]]GS its game semantic model as described in Section 3, and we
denote by [[Γ ` M : T]]CSP its CSP interpretation as described in Section 4.

Theorem 1. For any term Γ ` M : T, we have:

tracesX([[Γ ` M : T]]CSP
T)

φ≡ comp([[Γ ` M : T]]GS)

div(divergences([[Γ ` M : T]]CSP
FD))

φ≡ D[[Γ`M :T]]GS

where tracesX(PT) is the set of all terminated traces of process P that end with
X in its traces semantics, div(divergences(PFD)) is the set of all minimal di-
vergences of P in its failures-divergences semantics, and φ is an isomorphism
defined by:

– For a type T of the form B1 → . . . → Bk → B:
φ(a) = L.j .a , for a ∈ M[[Bj]]GS , λ

QA(a) = L, 1 ≤ j ≤ k
φ(a) = L.a , for a ∈ M[[B]]GS , λ

QA(a) = L
– For any x : B ′

1 → . . . → B ′
kx
→ B ′ ∈ Γ :

φ(a) = x .L.i .a , for a ∈ M[[B ′i]]GS , λ
QA(a) = L, 1 ≤ i ≤ kx

φ(a) = x .L.a , for a ∈ M[[B ′]]GS , λ
QA(a) = L

Proof. The proof is by a routine induction on the typing rules. 2

Corollary 1.

Γ ` M @∼ mayN ⇔ [[Γ ` N : T]]CSP 2RUNA[[Γ`T]] vT [[Γ ` M : T]]CSP

where RUNA = µ p¦?x : A → p, i.e. it is a process which can perform any event
from the set A, but it cannot perform X or any other event not in A.

Proof. It follows from Proposition 2, Theorem 1, and the traces semantics of the
2 operator and the RUNA[[Γ`T]] process. 2

The checks performed by FDR terminate only for finite-state processes, i.e.
those whose labelled transition systems are finite. It is easy to show that this is
the case for the processes interpreting the EIA terms by extending the same
result for IA terms in [9]. As a corollary, we have that observational may-
approximation is decidable using FDR.

Corollary 2. Observational may-approximation and may-equivalence of EIA
terms are decidable by using FDR tool.

Example 3. Consider the process for the term M from Examples 1 and 2. As
shown in Fig. 1, we have that tracesX([[M]]CSP

T) = Q .run · f .Q .run · (f .Q .1.run ·
f .A.1.done)∗ · f .A.done · A.done · X. But, this is the same as the set of all ter-
minated traces of the process for f : com → com ` f (skip) : com. So, these two
terms are may-equivalent. 2

By Proposition 3 and Theorem 1, we have that must-approximation Γ `
M @∼ mustN can be determined by the following procedure:

(1) Check: [[Γ ` M]]CSP vT [[Γ ` N]]CSP , [[Γ ` N]]CSP is divergence-free, and
[[Γ ` M]]CSP is divergence-free. If all three checks hold, then terminate with
answer Γ ` M @∼ mustN , else go to (2).

(2) Let C1, C2, and C3 be the sets of all minimal counterexamples returned by
the above three checks respectively. Set C := C1 ∪ (C2\C3). If C3 = ∅, then
terminate with answer Γ ` M @∼/mustN , else go to (3).

(3) For each c ∈ C , check whether there exists s ′ vodd c, such that s ′ v d
for some d ∈ C3. If this is correct, then terminate with Γ ` M @∼ mustN ,
otherwise with Γ ` M @∼/mustN .

Proposition 4. The procedure for determining must-approximation is correct.

Proof. We can check by inspection that all answers returned by the procedure are
correct. Let the procedure terminate in Step (1). Then, traces([[Γ ` N]]CSP) ⊆
traces([[Γ ` M]]CSP), divergences([[Γ ` N]]CSP) = ∅, and divergences([[Γ `
M]]CSP) = ∅. So, we have that (T[[Γ`N]]GS ∪D[[Γ`N]]GS)\(T[[Γ`M]]GS ∪D[[Γ`M]]GS) =
∅, which implies that Γ ` M @∼ mustN . The other cases are similar. 2

Corollary 3. Observational must-approximation and must-equivalence of EIA
terms are decidable by using FDR tool.

Example 4. We can verify that the term M from Examples 1 and 2 is must-
equivalent with ` divergecom. Let C1, C2, C3, and C4 be the minimal coun-
terexamples associated with the following checks: [[divergecom]]CSP vT [[M]]CSP ,
[[M]]CSP vT [[divergecom]]CSP , [[M]]CSP and [[divergecom]]CSP are divergence-free,
respectively. Then, C1 = {Q .run · f .Q .run}, C2 = ∅, C3 = {Q .run · f .Q .run ·
f .A.done}, C4 = {Q .run}. By following the previously described procedure for
determining must-approximation, it is easy to check that these two terms are
must-equivalent. 2

In addition to checking observational equivalence of two terms, it is desirable
to be able to check properties, safety (see [9, 8] for details) and liveness, of terms.
By Proposition 1 and Theorem 1, we have that:

Corollary 4. Must-termination of a term Γ ` M is decidable using FDR tool
by checking one divergence-freedom test:

[[Γ ` M]]CSP is divergence-free (1)

If the test (1) does not hold, then the term diverges and one or more counter-
examples reported by the FDR debugger can be used to explore the reasons why.
Otherwise, the term does not diverge, i.e. it terminates.

Example 5. By testing the process for the term while (true) do skip for divergence-
freedom, we can verify that the term diverges. The counter-example is: Q .run.

We can also verify that the term from Examples 1 and 2 diverges. The ob-
tained counter-example is:

Q .run f .Q .run f .A.done 2

6 Applications

We have implemented a tool, which automatically converts a term into a CSP
process which represents its game semantics. The resulting CSP process is de-
fined by a script in machine readable CSP [15] which the tool outputs. In the
input syntax, we use simple type annotations to indicate what finite sets of inte-
gers will be used to model integer free identifiers and local variables. An integer
constant n is implicitly defined of type intn+1. An operation between values of
types intn1 and intn2 produces a value of type intmax{n1,n2}. The operation is
performed modulo max{n1,n2}.

Q.run x[0].Q.read
x[0].A.1

x[0].A.0

x[1].Q.read

x[1].Q.read

x[1].A.1

x[1].A.0

x[1].A.0

x[1].A.1

y.Q.q

y.Q.q

y.Q.q

y.A.1

y.A.1
y.A.0

y.A.0

y.A.1

t

y.A.0

A.done p
W

Fig. 2. Model for linear search with k=2.

We now analyse an implementation of the linear search algorithm:

x [k] : varint2, y : expint2 `
newint2 a[k] := 0 in
newintk+1 i := 0 in
while (i < k) do {a[i] := x [i]; i := i + 1; }
newint2 z := y in
newbool present := false in
while (not present) do {

if (i < k) then if (a[i] = z) then present := true;
i := i + 1; } : com

The code includes a meta variable k > 0, representing array size, which will
be replaced by several different values. The data stored in the arrays and the

expression y is of type int2, i.e. two distinct values 0 and 1 can be stored, and the
type of index i is intk+1, i.e. one more than the size of the array. The program
first copies the input array x into a local array a, and the input expression y
into a local variable z . Then, the local array is searched for an occurrence of the
value y . The array being effectively searched, a[], and the variable z , are not
visible from the outside of the term because they are locally defined, so only
reads from the non-local identifiers x and y are seen in the model of this term.

A labelled transition system of the CSP process for the term with k = 2 is
shown in Fig. 2. It illustrates the possible behaviours of this term: if the value
read from y has occurred in x [] then the term terminates successfully; otherwise
the term diverges. If we test this process for divergence-freedom, we obtain the
following counter-example:

Q .run x [0].Q .read x [0].A.1 x [1].Q .read x [1].A.1 y .Q .q y .A.0

So the linear search term diverges when the value read from y does not occur in
the array x [] making the while loop forever.

Table 3 shows some experimental results for checking divergence-freedom.
The experiment consisted of running the tool on the linear search term with
different values of k , and then letting FDR generate its model and test its
divergence-freedom. The latter stage involved a number of hierarchical com-
pressions, as described in [9]. For different values of k , we list the execution time
in seconds, and the size of the final model. We ran FDR on a Machine AMD
Sempron Processor 3500+ with 2GB RAM.

Arr size k Time (sec) Model states

5 2 35

10 5 65

20 39 125

30 145 185
Table 3. Model generation of linear search

7 Conclusion

We presented a compositional approach for verifying equivalence and liveness
properties of nondeterministic sequential programs with finite data types. An
interesting direction for extension is to consider infinite integers with all the usual
operators. Counter-example guided abstraction refinement procedures [7, 8] for
verifying safety properties can be adopted to the specific setting for verifying
liveness properties. It is also important to extend the proposed approach to
programs with concurrency [10], probabilistic constructs [13], and other features.

References

1. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions. In P.W.O’Hearn and
R.D.Tennent, editors, Algol-like languages. (Birkhaüser, 1997).

2. A. Bakewell and D. R. Ghica. On-the-fly techniques for game-based software model
checking. In Proceedings of TACAS, LNCS 4693, (2008), 78–92.

3. M. A. Colon and H. B. Sipma. Practical Methods for Proving Program Termina-
tion. In Proceedings of CAV, LNCS 2404, (2002), 442–454.

4. M. A. Colon and H. B. Sipma. Synthesis of linear ranking functions. In Proceedings
of TACAS, LNCS 2031, (2001), 67–81.

5. B. Cook, A. Podelski, and A. Rybalchenko. Abstraction Refinement for Termina-
tion. In Proceedings of SAS, LNCS 3672, (2005), 86–101.

6. A. Dimovski and R. Lazić. CSP Representation of Game Semantics for Second-
order Idealized Algol. In Proceedings of ICFEM, LNCS 3308, (2004), 146–161.

7. A. Dimovski, D. R. Ghica, and R. Lazić. Data-Abstraction Refinement: A Game
Semantic Approach. In Proceedings of SAS, LNCS 3672, (2005), 102–117.

8. A. Dimovski, D. R. Ghica, R. Lazić. A Counterexample-Guided Refinement Tool
for Open Procedural Programs. In Proc. of SPIN, LNCS 3925, (2006), 288–292.

9. A. Dimovski and R. Lazić. Compositional Software Verification Based on Game
Semantics and Process Algebras. In Int. Journal on STTT 9(1), (2007), 37–51.

10. D. R. Ghica and A. S. Murawski. Angelic semantics of fine-grained concurrency.
In Proceedings of FoSSaCS, LNCS 2987, (2004), 211-255.

11. R. Harmer and G. McCusker. A fully abstract game semantics for finite nondeter-
minism. In Proceedings of LICS, IEEE, (1999). 422–430.

12. R. Harmer. Games and Full Abstraction for Nondeterministic Languages. Ph. D.
Thesis Imperial College, 1999.

13. A. Legay, A. Murawski, J. Ouaknine, and J. Worrell. On Automated Verification of
Probabilistic Programs. In Proceedings of TACAS, LNCS 4693, (2008), 173–187.

14. A. Murawski. Reachability Games and Game Semantics: Comparing Nondeter-
ministic Programs. In Proceedings of LICS, IEEE, (2008), 173–183.

15. W. A. Roscoe. Theory and Practice of Concurrency. Prentice-Hall, 1998.

