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Abstract. Many software systems are variational: they can be config-
ured to meet diverse sets of requirements. Variability is found in both
communication protocols and discrete controllers of embedded systems.
In these areas, model checking is an important verification technique. For
variational models (systems with variability), specialized family-based
model checking algorithms allow efficient verification of multiple variants,
simultaneously. These algorithms scale much better than “brute force”
verification of individual systems, one-by-one. Nevertheless, they can deal
with only very small variational models.
We address two key problems of family-based model checking. First, we
improve scalability by introducing abstractions that simplify variability.
Second, we reduce the burden of maintaining specialized family-based
model checkers, by showing how the presented variability abstractions
can be used to model-check variational models using the standard version
of (single system) SPIN. The abstractions are first defined as Galois
connections on semantic domains. We then show how to translate them
into syntactic source-to-source transformations on variational models.
This allows the use of SPIN with all its accumulated optimizations for
efficient verification of variational models without any knowledge about
variability. We demonstrate the practicality of this method on several
examples using both the SNIP (family based) and SPIN (single system)
model checkers.

1 Introduction

Variability is an increasingly frequent phenomenon in software systems. A growing
number of projects follow the Software Product Line (SPL) methodology [8] for
building a family of related systems. Implementations of such systems usually
[1] contain statically configured options (variation points) governed by a feature
configuration. A feature configuration determines a single variant (product) of
the system family, which can be derived, built, tested, and deployed. The SPL
methodology is particularly popular in the embedded systems domain, where
development and production in lines is very common (e.g., cars, phones) [8].

Variability plays a significant role outside of the SPL methodology as well.
Many communication protocols, components and system-level programs are
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highly configurable: a set of parameters is decided/implemented statically and
then never changes during execution.

These systems interpret decisions over variation point at runtime, instead of
statically configuring them. Nevertheless, since the configurations do not normally
change during the time of execution, the abstract semantics of highly configurable
systems is similar to static SPLs. Thus, systems with variability, i.e. system
families, can be conceptually specified using variational models.

Since embedded systems, system-level software and communication protocols
frequently are safety critical, they require rigorous validation of models, where
model-checking is a primary validation technique. Performance of single-variant
(single-system) model checking algorithms depends on the size of the model
and the size of the specification property [2]. Classical model-checking research
provides abstraction and reduction techniques to address the complexity stemming
from both the model and the specification [4,13,15]. In most of these works, the
generation of the abstract model is based on abstract interpretation theory [11]:
the semantics of the concrete model is related with the semantics of its abstract
version by using Galois connections. Provided the abstraction preserves the
property we want to check, the analysis of the smaller abstract model suffices to
decide the satisfaction of the property on the concrete model.

Unfortunately, model checking families of systems is harder than model-
checking single systems because, combinatorically, the number of possible vari-
ants is exponential in the number of features (aka, configuration parameters).
Hence, the “brute force” approach, that applies single-system model checking
to each individual variant of a family-based system, one-by-one, is inefficient.
To circumvent this problem, family-based model checking algorithms have been
proposed [6,7]. However, efficiency of these algorithms still depend on the size
of the configuration space (still inherently exponential in the number of config-
uration parameters). In order to handle variational models efficiently we need
abstraction and reduction techniques that address the third issue—the size of
the configuration space.

In this paper, we use abstract interpretation to define a calculus of property
preserving variability abstractions for variational models. Thus, we lay the foun-
dations for abstract family-based model checking of variational models. Then,
we define source-to-source transformations on the source level of input models,
which enable an effective computation of abstract models syntactically from
high-level modelling languages. This makes it easier to implement than using
the semantic-based abstractions defined for (featured) transition systems [7].
We avoid the need for intermediate storage in memory of the semantics of the
concrete variational model. It also opens up a possibility of verifying properties of
variational models, so of multiple model variants simultanously, without using a
dedicated family-based model checker such as SNIP [6] (overlined purely to avoid
confusion with SPIN). We can use variability abstraction to obtain an abstracted
family-of-models (with a low number of variants) that can then be model checked
via brute force using a single-system model checker (e.g., SPIN [16]).

We make the following contributions:
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– Variability abstractions: A class of variability abstractions for featured
transition systems, defined inductively using a simple compositional calculus
of Galois connections.

– Soundness of abstraction: A soundness result for the proposed abstrac-
tions, with respect to LTL properties.

– Abstraction via syntactic transformation: A syntactic definition of
the abstraction operators as source-to-source transformations on variational
models. The transformations are shown to have the same effect as applying
the abstractions to the semantics of models (featured transitions systems).
This allows the application of abstractions in a preprocessing step, without
any modifications to the model checking tools.

– Family-based model-checking w/o a family-based model checker: A
method for Family-based model-checking using an off-the-shelf model-checker.
This method relies on partitioning and abstracting the variational models
until the point when they contain no variability. The default highly-optimized
implementation of SPIN can be used to verify the resulting abstracted models.

– Experimental evaluation: An experimental evaluation exploring the effec-
tiveness of the above method of family-based model checking with SPIN, as
well as the impact of abstractions on the scalability of the state of the art
family-based model checker SNIP.

This paper targets researchers and practitioners who already use model checking in
their projects, but, so far, have only been analyzing one variant at a time. Although
designed for SPIN, the proposed rewrite techniques shall be easily extensible
to other model checkers, including probabilistic and real-time models. Also the
designers of efficient family-based model checkers may find the methodology of
applying abstractions ahead of analysis interesting, as it is much more lightweight
to implement, yet very effective, as shown in our experiments.

2 Background: Variational Models of Behavior

A common way of introducing variability into modeling languages is superimpos-
ing multiple variants in a single model [12]. Following this, Classen et al. present
fPromela [6], an extension of Promela with a static configuration-time branch-
ing capable of enabling/disabling model code in variants. They generalize the
semantic model of Promela (transition systems) accordingly, including static
guard conditions over features on transitions, creating featured transition systems
(FTS). The guards determine in which variants the transitions appear. The set
of legal configurations is encoded in a separate so-called feature model [17]. They
have also proposed model-checking algorithms for verification of FTSs against
LTL properties and implemented them in the SNIP tool1.

Featured Transition Systems (FTS). Let F = {A1, . . . , An} be a finite set
of Boolean variables representing the features available in a variational model. A
1 https://projects.info.unamur.be/fts/
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configuration is a specific subset of features k ⊆ F. Each configuration defines a
variant of a model. Only a subset K ⊆ 2F of configurations are valid. Equivalently,
configurations can be represented as formulae (minterms). Each configuration
k ∈ K can be represented by the term

∧
i=1..n ν(Ai) where ν(Ai) = Ai if Ai ∈ k,

and ν(Ai) = ¬Ai if Ai 6∈ k. (Since minterms can be bijectively translated into sets
of features, we use both representations interchangeably.) In software engineering
the set of valid configurations is typically described by a feature model [17], but
we disregard syntactic representations of the set K in this paper.

Example 1. Throughout this paper, we use the beverage VendingMachine
example [7]. It contains the following features: VendingMachine, denoted v, for
purchasing a drink which represents a mandatory root feature enabled in all
variants; Tea (t), for serving tea; Soda (s), for serving soda; CancelPurchase (c),
for canceling a purchase after a coin is entered; and FreeDrinks (f) for offering
free drinks. Hence, F = {v, t, s, c, f}. In this example, we assume that only
configurations in the set K = {{v, s}, {v, s, t, c, f}, {v, s, c}, {v, t, c, f}} are valid.
The valid configuration {v, s} can be expressed as the formula v∧s∧¬t∧¬c∧¬f .

The behaviour of individual variants is given as transition systems.

Definition 1. A transition system is a tuple T = (S,Act, trans, I,AP, L), where
S is a set of states, Act is a set of actions, trans ⊆ S ×Act× S is a transition
relation, I ⊆ S is a set of initial states, AP is a set of atomic propositions, and
L : S → 2AP is a labeling function. We write s1

λ−→ s2 when (s1, λ, s2) ∈ trans.

An execution of a transition system T is a nonempty, potentially infinite sequence
ρ = s0λ1s1λ2 . . . such that s0 ∈ I and si

λi+1−→ si+1 for all i ≥ 0. The semantics of
T , written [[T ]]TS, is the set of all executions of T .

Let FeatExp(F), denote the set of all Boolean constraints over F generated
using the grammar: ψ ::= true | A ∈ F | ¬ψ | ψ1 ∧ ψ2. For a condition ψ ∈
FeatExp(F) we write [[ψ]] meaning the set of valid variants that satisfy ψ, i.e.
k ∈ [[ψ]] iff k |= ψ and k ∈ K, where |= denotes the standard satisfaction of
propositional logic. Feature transition systems are basically transition systems
appropriately decorated with feature expressions:

Definition 2. A tuple F = (S,Act, trans, I,AP, L,F,K, δ) is a feature transition
system (FTS) if (S,Act, trans, I,AP, L) is a transition system, F is the set of
available features, K is a set of valid configurations, and δ : trans→ FeatExp(F)
is a total function labeling transitions with feature expressions.

The projection of an FTS F onto a variant k ∈ K, written πk(F), is a transition
system (S,Act, trans′, I,AP, L), where trans′ = {t ∈ trans | k |= δ(t)}. Projection
is analogous to preprocessing of #ifdef statements in C/CPP family-based SPLs
and is naturally lifted to sets of variants. Given K′ ⊆ K, the projection πK′(F)
is the FTS (S,Act, trans′, I,AP, L,F,K′, δ), where trans′ = {t ∈ trans | ∃k ∈
K′.k |= δ(t)}. The semantics of the FTS F , written [[F ]]FTS, is the union of
the behavior of the projections onto all valid variants k ∈ K, i.e. [[F ]]FTS =⋃
k∈K[[πk(F)]]TS. The size of an FTS [7] is defined as: |F| = |S|+ |trans|+ |expr|+
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Fig. 1: The FTS of the VendingMachine.

|K|, where |expr| is the size of all feature expressions bounded by O(2|F| · |trans|).
In these terms, our abstractions aim to reduce the |expr| and |K| components of
the size |F|.

Example 2. Figure 1 presents an FTS describing the behavior of the Vending-
Machine. Each transition is labeled first by an action, and then by the feature
expression following a slash. For readability, the transitions included by the same
feature have the same color. The transition 3© soda/s−→ 5© is enabled by feature s.
A basic variant of this machine that only serves soda is defined by the configura-
tion {v, s}. It accepts payment, returns change, serves a soda, opens the access
compartment, so that the customer can take the soda, and closes it again.

The fLTL Logics and Properties. An LTL formula is defined as: φ ::= true |
a ∈ AP | φ1 ∧ φ2 | ¬φ | Xφ | φ1Uφ2, with the following standard satisfaction
semantics defined over an execution ρ = s0λ1s1λ2 . . . (we write ρi = siλisi+1 . . .
for the i-th suffix of ρ):

ρ |= true always (for any ρ)
ρ |= a iff a ∈ L(s0),
ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2,

ρ |= ¬φ iff not ρ |= φ,

ρ |= Xφ iff ρ1 |= φ,

ρ |= φ1Uφ2 iff ∃k ≥ 0 : ρk |= φ2 and ∀j ∈ {0, . . . , k − 1} : ρj |= φ1

A TS T satisfies a formula φ, written T |= φ, iff ∀ρ ∈ [[T ]]TS : ρ |= φ. Other
temporal operators can be derived as usual: Fφ = true Uφ (means “some Future
state, eventually”) and Gφ = ¬F¬φ (means “Globally, always”).

In the variational case, properties may hold only for some variants. To capture
this in specifications, fLTL properties are quantified over the variants of interest:

Definition 3. A feature LTL (fLTL) formula is a pair [χ]φ, where φ is an LTL
formula and χ ∈ FeatExp(F) is a feature expression. An FTS F satisfies an fLTL
formula [χ]φ, written F |= [χ]φ, iff for all configurations k ∈ K ∩ [[χ]] we have
that πk(F) |= φ. An FTS F satisfies an LTL formula φ iff F |= [true]φ.
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Example 3. Consider the FTS F in Fig. 1. Suppose that states 5© and 6© are
labeled selected, and the state 8© is labeled open. Consider an example property
φ that after each time a beverage has been selected, the machine will eventually
open the compartment to allow the customer to access his drink: G (selected =⇒
F open). The basic VendingMachine satisfies this property: π{v,s}(F) |= φ,
while the entire variational model does not: F 6|= φ. For example, if the feature f
is enabled, the state 8© is unreachable. At the same time, we have that F |= [¬f ]φ.

3 Variability Abstractions

We shall now introduce abstractions decreasing the sizes of FTSs, in particular the
number of features and the configuration space. We show how these abstractions
preserve fLTL properties allowing to speed-up the algorithms for model checking.

A Calculus of Abstractions. For fLTL model checking, variability abstrac-
tions can be defined over the set of features F and the configuration space K
and then lifted to FTSs. This greatly simplifies the definitions. We begin with
the complete Boolean lattice of propositional formulae over F: (FeatExp(F)/≡, |=
,∨,∧, true, false). Elements of FeatExp(F)/≡ are equivalence classes of proposi-
tional formulae ψ obtained by quotienting by the semantic equivalence ≡. The
pre-order relation |= is defined as the satisfaction (entailment) relation from
propositional logic. (Alternatively, we could work with the set-theoretic defi-
nition of propositional formulae and an isomorphic complete lattice of sets of
configurations.)

Join. This abstraction confounds the control-flow of all configurations of the
model, obtaining a single variant that includes all the executions occurring in
any variant. The unreachable parts of the variational model that do not occur in
any valid variant are eliminated. The information about which states belong to
which variants is lost.

Technically, the abstraction collapses the entire configuration space onto a
singleton set. Each feature expression ψ in the FTS is replaced with true if
ψ is satisfied in at least one configuration from K. The set of features in the
abstracted model is empty: αjoin(F) = ∅, and the set of valid configurations is:
αjoin(K) = {true} if K 6= ∅ and αjoin(K) = {false} otherwise.

A pair of abstraction, αjoin : FeatExp(F) → FeatExp(∅), and concretization
functions, γjoin : FeatExp(∅)→ FeatExp(F), are specified as follows:

αjoin(ψ) =
{
true if ∃k ∈ K.k |= ψ

false otherwise
γjoin(true) = true
γjoin(false) =

∨
k∈2F\K k

Theorem 1. 〈FeatExp(F)/≡,|=〉 −−−−−→←−−−−−
αjoin

γjoin

〈FeatExp(∅),|=〉 is aGalois connection2.

2 〈L,≤L〉 −−−→←−−−α
γ
〈M,≤M 〉 is a Galois connection between complete lattices L and M

iff α and γ are total functions that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for all
l ∈ L,m ∈M .
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Ignoring features. The abstraction αfignore
A ignores a single feature A ∈ F that

is not directly relevant for the current analysis. We confound the control flow
paths that only differ with regard to A, and we keep the precision with respect
to control flow paths that do not depend on A.

To apply this abstraction, we first need to convert the given feature expression
ψ into NNF (negation normal form), which contains only ¬,∧,∨ connectives
and ¬ appears only in literals. We write lA for the literals A or ¬A. We write
ψ[lA 7→ true] to denote the formula ψ where lA is replaced with true.

The abstract sets of features and valid configurations are: αfignore
A (F) = F\{A},

and αfignore
A (K) = {k[lA 7→ true] | k ∈ K}. The abstraction and concretization

functions between FeatExp(F) and FeatExp(αfignore
A (F)) are defined as:

αfignore
A (ψ) = ψ[lA 7→ true] γfignoreA (ϕ′) = (ϕ′ ∧A) ∨ (ϕ′ ∧ ¬A)

where ψ and ϕ′ are in NNF from.

Theorem 2. 〈FeatExp(F)/≡, |=〉 −−−−−−−→←−−−−−−−
αfignore
A

γfignore
A 〈FeatExp(F\{A})/≡, |=〉 is a Ga-

lois connection.

Sequential Composition. The composition of two Galois connections is also a
Galois connection [11]. Let 〈FeatExp(F)/≡, |=〉 −−−→←−−−

α1

γ1 〈FeatExp(α1(F))/≡, |=〉
and 〈FeatExp(α1(F))/≡, |=〉 −−−→←−−−

α2

γ2 〈FeatExp(α2(α1(F)))/≡, |=〉 be two Galois
connections. Then 〈FeatExp(F)/≡, |=〉 −−−−−−→←−−−−−−

α2◦α1

γ1◦γ2 〈FeatExp(α2(α1(F)))/≡, |=〉 is
defined as: α2 ◦ α1(ψ) = α2(α1(ψ)), γ1 ◦ γ2(ψ) = γ1(γ2(ψ)). We also have
α2 ◦ α1(F) = α2(α1(F)) and α2 ◦ α1(K) = α2(α1(K)).

Syntactic sugar. We can define an operation which ignores a set of features:
αfignore
{A1,...,Am} = αfignore

A1
◦ . . . ◦αfignore

Am
and γfignore{A1,...,Am} = γfignoreAm

◦ . . . ◦ γfignoreA1
.

In the following, we will simply write (α, γ) for any Galois connection
〈FeatExp(F)/≡, |=〉 −−−→←−−−α

γ
〈FeatExp(α(F))/≡, |=〉 constructed using the oper-

ators presented in this section.

Abstracting FTSs. Given Galois connections defined on the level of feature
expressions, available features, and valid configurations, we now induce a notion
of abstraction between featured transition systems (FTSs).

Definition 4. Let F = (S,Act, trans, I,AP, L,F,K, δ) be an FTS, [χ]φ be an
fLTL formula, and (α, γ) be a Galois connection.

– We define α(F) = (S,Act, trans, I,AP, L, α(F), α(K), α(δ)), where α(δ) :
trans→ FeatExp(α(F)) is defined as: α(δ)(t) = α(δ(t)).

– We define α([χ]φ) = [α(χ)]φ.
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Example 4. Consider the FTS F in Fig. 1 with the set of valid configurations K =
{{v, s}, {v, s, t, c, f}, {v, s, c}, {v, s, c, f}}. We show αjoin(F),αjoin(π[[¬f∧s]](F)),
and αfignore

{v,s,f}(F) in Fig. 2. Note that K ∩ [[¬f ∧ s]] = {{v, s}, {v, s, c}}, and hence
transitions annotated with the feature t (Tea) and f (FreeDrinks) are not present
in αjoin(π[[¬f∧s]](F)). Also note that in the case of αjoin(F) and αjoin(π[[¬f∧s]](F))
we obtain ordinary transition systems, since all transitions are labelled with the
feature expression true.
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(a) αjoin(VendingMachine).

1

start

2 3

4 5

7 8

9

pay

change

open

take

close

so
da serveSoda

cancel
re

tu
rn

(b) αjoin(π[[¬f∧s]](VendingMachine)).
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(c) The FTS for αfignore
{v,s,f}(VendingMachine).

Fig. 2: Various abstractions of the FTS, VendingMachine.

Property Preservation. We now show that abstracted FTSs have some inter-
esting preservation properties.

Lemma 1. Let χ, ψ0, ψ1, . . . ∈ FeatExp(F), and K be a set of configurations
over F. Let k ∈ K ∩ [[χ]], such that k |= ψi for all i ≥ 0 Then there exists
k′ ∈ α(K) ∩ [[α(χ)]], such that k′ |= α(ψi) for all i ≥ 0.

By using Lemma 1, we can prove by contraposition the following result.

Theorem 3 (Abstraction Soundness). Let (α, γ) be a Galois connection.
α(F) |= [α(χ)]φ =⇒ F |= [χ]φ.

It follows from Def. 3 that a family-based model checking problem can be reduced
to a number of smaller problems by partitioning the set of variants:

Proposition 1. Let the subsets K1,K2, . . . ,Kn form a partition of the set K.
Then: F |= [χ]φ iff πKi(F) |= [χ]φ for all i = 1, . . . , n.
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Corollary 1. Let K1,K2, . . . ,Kn form a partition of K, and (α1,γ1), . . . , (αn,γn)
be Galois connections. If α1(πK1(F)) |= [α1(χ)]φ ∧ . . . ∧ αn(πKn(F)) |= [αn(χ)]φ,
Then F |= [χ]φ.

The above results show that, if we are successfully able to verify an abstracted
property for an abstracted FTS, then the verification also holds for the un-
abstracted FTS. Note that verifying the abstracted FTS can be a lot (even
exponentially) faster. If a counter-example is found in the abstracted FTS, then
it may be spurious (introduced due to the abstraction) for some variants and
genuine for the others. This can be established by checking which products can
execute the found counter-example.

4 High-Level Modelling Languages

It is very difficult to use FTSs to directly model very large systems. Therefore,
it is necessary to have a high-level modelling language, which can be used
directly by engineers for modelling large systems. fPromela is designed for
describing variational models; whereas TVL for describing the sets of features and
configurations. We present fPromela and TVL and show their FTS semantics.

Syntax. fPromela is obtained from Promela [16] by adding feature variables,
F, and guarded statements. Promela is a non-deterministic modelling language
designed for describing systems composed of concurrent processes that communi-
cate asynchronously. A Promela program, P , consists of a finite set of processes
to be executed concurrently. The basic statements of processes are given by:

stm ::= skip | x := expr | c?x | c!expr | stm1 ; stm2 |
if :: g1 ⇒ stm1 · · · :: gn ⇒ stmn :: else⇒ stm fi |
do :: g1 ⇒ stm1 · · · :: gn ⇒ stmn od

where x is a variable, c is a channel, and gi are conditions over variables and
contents of channels. The “if” is a non-deterministic choice between the state-
ments stmi for which the guard gi evaluates to true for the current evaluation of
the variables. If none of the guards g1, . . . , gn are true in the current state, then
the “else” statement stm is chosen. Similarly, the “do” represents an iterative
execution of the non-deterministic choice among the statements stmi for which
the guard gi holds in the current state. Statements are preceded by a declarative
part, where variables and channels are declared.

The features used in an fPromela program have to be declared as fields of
the special type features. The new guarded statement introduced in fPromela
is of the form: “gd :: ψ1 ⇒ stm1 . . . :: ψn ⇒ stmn :: else ⇒ stm dg”, where
ψ1, . . . , ψn are feature expressions defined over F. The “gd” is a non-deterministic
statement similar to “if”, except that only features can be used as conditions
(guards). Actually, this is the only place where features may be used. (Hence,
“gd” in fPromela plays the same role as “#ifdef” in C/CPP SPLs [18].)

TVL [5] is a textual modelling language for describing the set of all valid
configurations, K, for an fPromela program along with all available features,
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F. A feature model is organized as a tree, whose nodes denote features and edges
represent parent-child relationship between nodes. The root keyword denotes
the root of the tree, and the group keyword, followed by a decomposition type
“allOf”, “someOf”, or “oneOf”, declares the children of a node. The meaning is
that if the parent feature is part of a variant, then “all”, “some”, or “exactly one”
respectively, of its non-optional children have to be part of that variant. The
optional features are preceded by the opt keyword. Various Boolean constraints
on the presence of features can be specified as well.

Example 5. Fig. 3 shows a simple fPromela program and the corresponding
TVL model. After declaring feature variables in the fPromela program in
Fig. 3a, a process foo is defined. The first gd statement specifies that i++ is
available for variants that contain the feature A, and skip for variants with
¬A. The second gd statement is similar, except that the guard is the feature B.
The TVL model in Fig. 3b specifies four valid configurations: {Main}, {Main, A},
{Main, B}, {Main, A, B}. If we use the SNIP tool to check the assertion, i≥ 0, in
this example, we will obtain that it is satisfied by all (four) valid variants. If we
include the constraint in comments in line 5 of Fig. 3b that excludes the variant:
¬A ∧ ¬B, then the assertion i> 0 will also hold for all (three) valid variants.

0 typedef features {
1 bool A; bool B; }
2 features f;
3 active proctype foo() {
4 int i := 0;
5 gd :: f.A ⇒ i++ :: else ⇒ skip dg;
6 gd :: f.B ⇒ i++ :: else ⇒ skip dg;
7 assert(i≥ 0);
8 }

(a) An fPromela program.

0 root Main {
1 group allOf {
2 opt A,
3 opt B
4 }
5 // A || B;
6 }

(b) A TVL model.

Fig. 3: A simple fPromela program and the corresponding TVL model

Semantics. We now show only the most relevant details of fPromela semantics.
For the precise account of Promela semantics the reader is referred to [16].
Each fPromela program defines a so-called featured program graph (FPG),
which formalizes the control flow of the program. The FPG represents a program
graph [2] (or “finite state automaton” in [16]) in which transitions are explicitly
linked with feature expressions. The vertices of the graph are control locations
(represented by line numbers in the program) and its transition relation defines
the control flow of the program. Each transition has condition under which it
can be executed, an effect which specifies the effect on the set of variables, and a
feature expression which indicates in which variants this transition is enabled.
Thus, transitions are annotated with condition/effect/feature expression. The “gd”
statement specifies the control flow and the feature expression part of transitions.

Let V be the set of variables, and F be the set of features in an fPromela
program. Let Cond(V ) denote the set of Boolean conditions over V , and Assgn(V )
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denote all assignments over V . Eval(V ) is the set of all evaluations of V that assign
concrete values to variables in V . A featured program graph over V and F is a tuple
(Loc, tr, Loc0, init,K, fe), where Loc is a set of control locations, Loc0 ⊆ Loc is
a set of initial locations, tr ⊆ Loc×Cond(V )×Assgn(V )×Loc is the transition
relation, init ∈ Cond(V ) is the initial condition characterising the variables in
the initial state, K is a set of configurations, and fe : trans → FeatExp(F)
annotates transitions with feature expressions. The semantics of an FPG is
an FTS obtained from “unfolding” the graph (see [2, Sect. 2] for details). The
unfolded FTS is (Loc × Eval(V ), {ε}, trans, I, Cond(V ), L,F,K, δ), where the
states are pairs of the form (l, v) for l ∈ Loc, v ∈ Eval(V ); action names are
ignored (ε is an empty (dummy) action name); I = {(l, v) | l ∈ Loc0, v |= init};
L((l, v)) = {g ∈ Cond(V ) | v |= g}; and transitions are defined as: if (l, g, a, l′) ∈
tr and v |= g, then ((l, v), ε, (l′, apply(a, v))) ∈ trans. Here, we write v |= g if
the evaluation v makes g true, and apply(a, v) is the evaluation obtained after
applying the assignment a to v. Given t ∈ trans, let t′ ∈ tr be the corresponding
transition of the FPG. Then δ(t) = true if fe(t′) is undefined; and δ(t) = fe(t′)
otherwise. Hence, the semantics of an fPromela program follows the semantics
of Promela, just adding feature expression from the FPG to the transitions.
For example, in Fig 4 are shown the FPG and FTS for the family in Fig. 3.

l5

init={i=0}

l6 l7 l8

tt/i++/A

tt/ − /¬A

tt/i++/B

tt/ − /¬B

tt/ass(i≥0)/−

(a) An FPG.

l5
i= 0

start

l6
i= 1

l6
i= 0

l7
i= 2

l7
i= 0

l7
i= 1

l8
i= 1

l8
i= 2

l8
i= 0

ε/A

ε/¬A

ε/B

ε/¬B

ε/B

ε/¬B

ε/−

ε/−

ε/−

(b) An FTS.

Fig. 4: The semantics of the fPromela program in Fig. 3. Note that “lx” refers
to the line number x from the program in Fig. 3a, and tt is short for true.

5 Variability Abstraction via Syntactic Transformation

We present the syntactic transformations of fPromela programs and TVL
models introduced by projection and variability abstractions. Let P represent an
fPromela program, for which the sets of features F and valid configurations K
are given as a TVL model T . We denote with [[P ]]T the FTS obtained for this
program, as shown in Section 4.

Let K′ ⊆ K be described by a feature expression ψ′, i.e. [[ψ′]] = K′. The pro-
jection π[[ψ′]]([[P ]]T ) is obtained by adding the constraint ψ′ in the corresponding
TVL model T , which we denote as T + ψ′. Thus, π[[ψ′]]([[P ]]T ) = [[P ]]T+ψ′ .
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Let (α, γ) be a Galois connection obtained from our calculus in Section 3.
The abstract α(P ) and α(T ) are obtained by defining a translation recursively
over the structure of α. The function α copies all non-compound basic statements
of fPromela, and recursively calls itself for all sub-statements of compound
statements other than “gd”. For example, α(skip) = skip and α(stm1;stm2) =
α(stm1);α(stm2). We discuss the rewrites for “gd” below.

For αjoin, we obtain a Promela (single variant) program αjoin(P ) where all
“gd”-s are appropriately resolved and all features are removed. Thus, αjoin(T ) is
empty. The transformation is

αjoin(gd :: ψ1 ⇒ stm1 . . . :: ψn ⇒ stmn :: else⇒ stm′ dg) =
if :: αjoin(ψ1)⇒ αjoin(stm1) . . . :: αjoin(ψn)⇒ αjoin(stmn)

:: αjoin(¬(ψ1 ∨ . . . ψn))⇒ αjoin(stm′) fi

For αfignore
A , the transformation is

αfignore
A (gd :: ψ1 ⇒ stm1 . . . :: ψn ⇒ stmn :: else⇒ stm′ dg) =

gd ::αfignore
A (ψ1)⇒αfignore

A (stm1). . . ::αfignore
A (¬(ψ1∨. . . ψn))⇒αfignore

A (stm′)dg

and the feature A is removed from T obtaining a new αfignore
A (T ), when F\{A} 6= ∅.

Otherwise, if F\{A} = ∅, then αfignore
A (P ) is a Promela program and αfignore

A (T )
is empty.

For α2 ◦ α1, we have α2 ◦ α1(gd :: ψ1 ⇒ stm1 . . . dg) = α2(α1(gd :: ψ1 ⇒
stm1 . . . dg)). Similarly, we transform the TVL model T .

Theorem 4. Let P and T be an fPromela program and the corresponding
TVL model, and (α, γ) be a Galois connection. We have: α([[P ]]T ) = [[α(P )]]α(T ).

6 Evaluation

We now evaluate our variability abstractions. First, we show how variability
abstractions can render analysis of previously infeasible model families, feasible.
Second, we turn to the main point of this paper: That instead of verifying
properties using a family-based model checker (e.g., SNIP), we can use variability
abstraction to obtain an abstracted family-of-models (with a low number of
variants) that can then be model checked using a single-system model checker
(e.g., SPIN). By soundness of abstraction, if we are able to verify properties
on the abstracted model family, we may safely conclude that they also hold
on the original (unabstracted) model family. We investigate improvements in
performance (Time) and memory consumption (Space) on the MinePump
family-model [7] that comes with the installation of SNIP. Finally, we do a case
study on the MinePump. We show how various variability abstractions may be
tailored for analysis of properties of the MinePump.

All of our abstractions are applied using our fPromela Reconfigurator
(model-family-to-model-family) transformation tool3 as described in Section 5. All
3 The fPromela Reconfigurator tool (including all benchmarks) is available from:
[ http://ahmadsalim.github.io/p3-tool ].
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unabstracted abstracted improvement
|F| |K| Time Space |α(K)| Time Space Time Space
4 16 0.98 s 67 k 1 0.03 s 18 k 33 × 3.8 ×
7 128 2.96 s 251 k 1 0.04 s 34 k 74 × 7.4 ×
9 512 6.05 s 523 k 1 0.05 s 57 k 121 × 9.2 ×
11 2,048 58.55 s 4,585 k 1 0.07 s 114 k 836 × 40.3 ×
12 4,096 — ?crash? — 1 0.09 s 171 k infeasible → feasible

Fig. 5: Verifying deadlock absence in MinePump for increasing levels of variability
(without vs. with maximal abstraction, α = αjoin, confounding all configurations).

experiments were executed on a 64-bit Mac OS X 10.10 machine, IntelrCoreTM
i7 CPU running at 2.3 GHz with 8 GB memory. The performance numbers
reported (Time) constitute the median runtime of five independent executions.

A Characterization of MinePump. The fPromela MinePump model
family contains about 200 LOC and 7 (non-mandatory) independent optional fea-
tures: Start, Stop, MethaneAlarm, MethaneQuery, Low, Normal, and High, thus
yielding 27 = 128 variants. Its FTS has 21,177 states and all variants combined
have 889,252 states. It consists of 5 communicating processes: a controller, a
pump, a watersensor, a methanesensor, and a user.

From Infeasible to Feasible Analysis via Abstraction. Combinatorically,
the number of variant models grows exponentially with the number of features, |F|,
which means that there is an inherent exponential blow-up in the analysis time for
the brute-force strategy, O(2|F|). Consequently, for families with high variability,
analysis quickly becomes infeasible. They take too long time to analyze.

Let us for a moment focus on (single-system) model checkers which may be
applied at the family level by “brute force” model checking all variants of a given
model family, one by one. As an experiment, we gradually added variability to
the family-model in Figure 3. Already for |F| = 11 (for which |K| = 211 = 2, 048
variants), analysis time to check the assertion becomes almost a minute. For
|F| = 25, analysis time ascends to almost a year. On the other hand, if we
apply the variability abstraction, αjoin (confounding all configurations), prior to
analysis, we are able to verify the same assertion by only one call to SPIN on the
abstracted model in 0.03 seconds for |F| = 11 and in 0.04 seconds for |F| = 25,
effectively eliminating the exponential blow up.

Family-Based Model Checking without a Family-Based Model Checker.
Recently, researchers have introduced family-based model-checking [6] that work
at the family level and thus do not explicitly check all variants, one by one.
(Analogous endeavors have been undertaken in, for instance, type checking [18],
and dataflow analysis [3].) Much effort has been dedicated to speeding up analyses
via improving representation; in particular, by exploiting information that may
be “shared” among multiple configurations via BDDs. In this paper, we propose
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to speed up analyses via increasing abstraction on the configuration space. In
fact, increasing abstraction and improving representation are orthogonal; i.e.,
they may cooperatively speed up analyses even further!

Figure 5 compares the effect (in terms of both Time and Space) of analyzing
the original (unabstracted) MinePump vs. analyzing it after it has been variabil-
ity abstracted using αjoin. Unabstracted means running SNIP on MinePump;
whereas abstracted means running SPIN on αjoin(MinePump). We verify the
deadlock freedom property. Improvement is the relative comparison of unab-
stracted vs. abstracted. Time is the time to model-check (in seconds) and Space
is the number of explored states plus the number of re-explored states (which is
equivalent to the number of transitions fired). In the case of SNIP, the verification
time includes the times to parse the fPromela program, to build the initial
FTS, and to run the verification procedure. In the case of SPIN, we measure
the times to generate a process analyser (pan) and to execute it. We do not
count the time for compiling pan, as it is due to a design decision in SPIN rather
than its verification algorithm. The same measurement technique was used in
the experiments in [6,7].

The rows of Figure 5 represent different versions of MinePump, with in-
creasing levels of variability. The “real” version has |K| = 128 variants. For the
|K| = 16 version, we applied a projection to keep the four features Start, Stop,
MethaneAlarm, and High (eliminating features MethaneQuery, Low, and Normal).
For the |K| = 512 version, we turned implementation alternatives (already present
in the original MinePump, as comments) into variability choices in the form
of two new independent features. Parts of the controller process exists with
and without race conditions (the former in comments); we turned that into an
optional feature, RaceCond. Similarly, the watersensor process exists in two
versions: standard and alternative (the latter in comments); we turned that into
an optional feature, Standard. For |K| = 2, 048 and |K| = 4, 096, we inflated
variability by adding independent optional features and gd statements to the
methanesensor process, preseving the overall behavior of the process (differing
only with respect to the value of an otherwise uninteresting local variable, i).

Unsurprisingly, analysis Time and Space increase exponentially with the
number of features, O(|F|). However, the Time and Space it takes to verify the
deadlock absence in the abstracted model do not increase significantly with the
number of variants, when using the maximal abstraction, αjoin. For |K| = 2, 048
variants, SNIP terminates after almost a minute (checking 4.6 million transitions)
whereas calling SPIN on the abstracted system obtains the verification results
after a mere 0.07 seconds (visiting only 113, 775 transitions). For |K| = 4, 096
variants, SNIP crashes after 88 seconds (exploring 6.3 million transitions). SPIN,
on the other hand, is capable of analysis the abstracted system in 0.09 seconds
(exploring 170, 670 transitions).
Devising Abstractions for Properties (A Case Study of MinePump).
We start by considering four universal properties, ϕ1 to ϕ4 (taken from [7], see
Figure 6), that are intended to be satisfied by all variants. By applying the
αjoin abstraction on the system, we can verify those properties efficiently by only
one call to SPIN on the abstracted family-model, αjoin(MinePump) which has
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Φ property

(ϕ0) (GF readCommand) ∧ (GF readAlarm) ∧ (GF readLevel)
Fairness: The system will infinitely often read messages of various types.

ϕ1 Absence of deadlock.

ϕ2
G (¬pumpOn ∨ stateRunning)
If the pump is switched on, then the controller state is “running”.

ϕ3

ϕ0 ⇒ (¬GF (¬pumpOn ∧¬methane ∧ highWater))
Assuming fairness (ϕ0), the pump is never indefinitely off
when the water level is high and there is no methane.

ϕ4

G ((¬pumpOn ∧ lowWater ∧ F highWater) ⇒ (¬pumpOn U highWater))
When the pump is off and the water level is low,
then the the pump will be switched off until the water level is high again.

ϕ5
¬(GF pumpOn)
The pump cannot be switched on infinitely often.

ϕ6

ϕ0 ⇒ ¬FG (pumpOn ∧ methane)
Assuming fairness (ϕ0), the system cannot be in a state
where the pump is on indefinitely in the presence of methane.

Fig. 6: Properties for the MinePump (taken from [7]).

prop- unabstracted abstracted improvement
-erty |K| Time Space |α(K)| Time Space Time Space
ϕ1 128 2.96 s 251 k 1 0.04 s 34 k 74 × 7.4 ×
ϕ2 128 4.28 s 326 k 1 0.05 s 34 k 86 × 9.6 ×
ϕ3 128 6.37 s 441 k 1 0.09 s 161 k 71 × 2.7 ×
ϕ4 128 5.98 s 420 k 1 0.05 s 57 k 120 × 7.3 ×
ϕ5 128 3.20 s 207 k 3 0.11 s 12 k 29 × 16.6 ×
ϕ6 128 4.54 s 309 k 4 0.16 s 42 k 28 × 7.3 ×

Fig. 7: Verification of above MinePump properties using tailored abstractions.

only one configuration, |αjoin(KMinePump)| = 1. The first four rows of Figure 7
organizes the results of maximally abstracting the MinePump prior to verfication
of properties, ϕ1 to ϕ4. Consistent with our expectations and previous results
(cf. Figure 5), maximal abstraction translates to massive improvements in both
Time and Space on a family-model with many variants (here, |K| = 128). In
fact, model checking is between 71 and 120 times faster.

We now consider non-universal properties which are preserved by some variants
and violated by others: ϕ5 and ϕ6 (see Figure 6). Property ϕ5 (concerning the
pump being switched on), is violated by all variants, 32 in total, for which
Start ∧ High is satisfied (since these two features are required for the pump
to be switched on in the first place). Given sufficient knowledge of the system
and the property, we can easily tailor an abstraction for analyzing the system
more effectively: First, we calculate three projections of the MinePump family-
model: πStart∧High (corresponding to the above 32 configurations), π¬Start (64
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configurations), and π¬High (64 configurations). Second, we apply αjoin on all
three projections. Third and finally, we invoke SPIN three times to verify ϕ5 on
each of them. For the first abstracted projection, αjoin(πStart∧High(MinePump)),
SPIN correctly identifies an “abstract” counter-example violating the property,
that is shared by all violating variants. For the remaining abstracted projections,
SPIN reports that ϕ5 is satisfied.

Overall, we can see that our approach is significantly faster. The second-
last row of Figure 7 shows that analysis time drops from 3.20 seconds when
verified with SNIP, to 0.11 seconds when running SPIN “brute-force” on our three
abstracted projections. The last row shows the results of a similar development
for the property, ϕ6. It takes 4.54 seconds using SNIP, but may be verified
by four “brute-force” invocations of SPIN in only 0.16 seconds. Verification
of both properties constitute an almost 30 times speed up (using considerably
less memory). Of course, much of the performance improvement is due to the
highly-optimized industry-strength SPIN tool (compared to the SNIP research
prototype). Previous work attributes a factor of two advantage for (brute force)
SPIN over SNIP [7]. However, for models with more variability (larger values of
|F|), a constant factor will be dwarfed by the inherent exponential blow up.

We can also use αfignore abstraction to speed up the family-based model
checker. For the property ϕ5, we call SNIP on αfignore

F\{Start,High}(MinePump), and
we obtain the same counter-examples as in the unabstracted case for the variants
in Start ∧ High. However, the verification time is reduced from 3.20 to 0.97 sec,
and the number of examined transitions is reduced from 207, 377 to 54, 376.

In conclusion, by exploiting high-level knowledge of a family-model and
property, we may carefully devise variability abstractions that are able to verify
non-trivial properties in only a few calls to SPIN.

7 Related Work

Abstractions for family-based model checking. Simulation-based abstrac-
tion of family-based model checking was introduced in [9]. The concrete FTS is
related with its abstract version by defining a simulation relation on the level
of states (as opposed to Galois connections here). Several abstract (and thus
smaller) models are induced by studying quotients of concrete FTSs under such a
simulation relation. Any behaviour of the concrete FTS model can be reproduced
in its abstraction, and therefore the abstraction preserves satisfiability of LTL
formulae. Only states and transitions that can be simulated are reduced by this
approach. However, this approach [9] results in small model reductions and only
marginal efficiency gains of verifications times (the evaluation reports reductions
of 8-9%). Since abstractions are applied directly on FTSs, the computation time
for calculating abstracted FTSs takes about 10% of the overall verification time.

Variability-aware abstraction procedures based on counterexample guided
abstraction refinement (CEGAR) have been proposed in [10]. Abstractions are
introduced by using existential F-abstraction functions, and simulation relation
is used to relate different abstraction levels. Three types of abstractions are
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considered: state abstractions that only merge states, feature abstractions that
only modify the variability information, and mixed abstractions that combine the
previous two types. Feature abstractions [10] are similar to ours since they also
aim to reduce variability specific information in SPLs. However, there are many
differences between them. Different levels of precision of feature abstractions
in [10] are defined by simply enriching (resp., reducing) the sets of variants for
which transitions are enabled. In contrast, our variability abstractions are capable
to change not only the feature expression labels of transitions but also the sets
of available features and valid configurations. Moreover, the user can use those
abstractions to express various verification scenarios for their families. While
the abstractions in [10] are applied on feature program graphs, we apply our
abstractions as preprocessor transformations directly on high-level programs thus
avoiding to generate any intermediate concrete model in the memory.

Family-based Static Analysis. Various lifted techniques have been proposed,
which lift existing analysis and verification techniques to work on the level of
families, rather than on the level of single programs/systems. This includes lifted
type checking [18], lifted data-flow analysis [3], lifted model checking [6,7], etc.

A formal methodology for systematic derivation of lifted data-flow analyses
for program families with #ifdef-s is proposed in [19]. The method uses the
calculational approach to abstract interpretation of Cousot [11] in order to derive
a directly operational lifted analysis. In [14], an expressive calculus of variability
abstractions is also devised for deriving abstracted lifted data-flow analyses. Such
variability abstractions enable deliberate trading of precision for speed in lifted
analysis. Hence, they tame the exponential blow-up caused by the large number
of features and variants in an program family. Here, we pursue this line of work by
adapting variability abstractions to lifted model checking as opposed to data-flow
analysis in [14]. Moreover, the abstractions in [14] are directed at reducing the
configuration space |K| since the elements of the property domain are |K|-sized
tuples, whereas the abstractions defined here aim at reducing the space of feature
expressions since the variability-sensitive information in FTSs, fLTL formulae,
and fPromela programs is encoded by using feature expressions.

8 Conclusion
We have proposed variability abstractions to derive abstract model checking for
families of related systems. The abstractions are applied before model generation
directly on fPromela programs. The evaluation confirms that interesting
properties can be efficiently verified in this way by only a few calls to SPIN.
Given a system with variability and a property, an interesting direction for
future work would be to devise algorithms for automatic generation of suitable
abstractions.
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