
Int J Softw Tools Technol Transfer (2007) 9:37–51
DOI 10.1007/s10009-006-0005-y

SPECIAL SECTION O N ADVANCES IN AU TO MATED V ERIFICATION O F CRITICAL S YS TEMS

Compositional software verification based on game semantics
and process algebra

Aleksandar Dimovski · Ranko Lazić
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Abstract We present an approach to software model
checking based on game semantics and the CSP process
algebra. Open program fragments (i.e. terms-in-con-
text) are compositionally modelled as CSP processes
which represent their game semantics. This translation
is performed by a prototype compiler. Observational
equivalence and regular properties are checked by
traces refinement using the FDR tool. We also present
theorems for parameterised verification of polymorphic
terms and properties. The effectiveness of the approach
is evaluated on several examples.

1 Introduction

One of the main recent breakthroughs in theoretical
computer science has been the development of game
semantics (e.g. [1]). Types are modelled by games be-
tween Player (i.e. term) and Opponent (i.e. context or
environment), and terms are modelled by strategies.
This has produced the first accurate (i.e. fully abstract
and fully complete) models for a variety of programming
languages and logical systems [2,14,15].
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e-mail: lazic@dcs.warwick.ac.uk

It has recently been shown that, for several interesting
programming language fragments, their game semantics
yield algorithms for software model checking. The focus
has been on Idealized Algol (IA) [19] with active expres-
sions. IA is similar to Core ML. It is a compact pro-
gramming language which combines the fundamental
features of imperative languages with a full higher-order
function mechanism. The imperative features include
conditional branching, iteration and local variable dec-
larations. Already at first order, the function mechanism
enables local code and variables to be passed to non-
local functions. Simple forms of classes and objects may
be encoded in IA.

For call-by-name second-order recursion-free IA with
iteration and finite data types, [11] shows that game
semantics can be represented by regular expressions, so
that observational equivalence between any two terms
can be decided by equality checks of regular languages.
For third order, it was established in [17] that obser-
vational equivalence and approximation are decidable
using visibly pushdown automata. Other verification
problems can also be solved algorithmically, such as Ho-
are triples (e.g. [3]).

Model checking [7,8,18] is a system verification tech-
nique based on semantics: the verifier checks whether
the semantics of a given system satisfies some prop-
erty. In contrast to the approaches of simulation, testing
and theorem proving, model checking offers automatic
and exhaustive verification, and it also reports counter-
examples. Due to those characteristics, model checking
is increasingly used in industry.

The initial success of model checking has been mainly
in the verification of hardware and communication pro-
tocols. Recently, model checking of software has become
an active and important area of research and application
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(e.g. [6]). Unfortunately, applying model checking to
software is complicated by several factors, ranging from
the difficulty to model programs, due to the complex-
ity of general purpose programming languages as com-
pared to hardware description languages, to difficulties
in specifying meaningful properties of software using the
usual temporal logical formalisms. Another reason is the
state explosion problem: industrial programs are large
and model checking is computationally demanding.

Many of the problems above are due to difficulties
in obtaining sound and complete semantic models of
software and expressing such models in an algorithmic
fashion suitable for automatic analysis. Game semantics
has potential to overcome these problems. Compared
with other approaches to software model checking, the
approach based on game semantics has a number of
advantages [4]:

– There is a model for any term-in-context, which en-
ables verification of program fragments which con-
tain free variable and procedure names.

– Game semantics is compositional, which facilitates
breaking down the verification of a term into verifi-
cations of its subterms.

– Terms are modelled by how they interact with their
environments, and details of their internal state dur-
ing computations are not recorded, which results in
small models with a maximum level of abstraction.

In this work, we show how game semantics of call-by-
name second-order recursion-free IA with iteration and
finite data types can be represented in the CSP process
algebra. For any term-in-context, we compositionally
define a CSP process whose terminated traces are ex-
actly all the complete plays of the strategy for the term.
Observational equivalence, and containment in a reg-
ular language, can then be decided by checking traces
refinements between CSP processes.

Compared with the representation by regular expres-
sions (or automata) [11], the CSP representation brings
several benefits:

– CSP operators preserve traces refinement (e.g. [21]),
which means that a CSP process representing a term
can be optimised and abstracted compositionally at
the syntactic level (e.g. using process algebraic laws),
and its set of terminated traces will be preserved or
enlarged.

– The ProBE and FDR tools [10] can be used to ex-
plore CSP processes visually, to check refinements
automatically, and to debug interactively when a
refinement does not hold.

– Compositional state-space reduction algorithms in
FDR [20] enable smaller models to be generated
before or during refinement checking.

– Composition of strategies, which is used in game
semantics to obtain the strategy for a term from
strategies for its subterms, is represented in CSP
by renaming, parallel composition and hiding opera-
tors, and FDR is highly optimised for verification of
such networks of processes.

We present two theorems for parameterised verifica-
tion of terms and properties which are polymorphic, i.e.
contain a data-type variable which can be instantiated
by any finite data type. They are proved by observing
that the resulting CSP processes are data independent,
and applying the results in [16]. This enables an infinite
family of verification questions to be reduced to one,
with a specific instantiation of the data-type variable.

We have implemented a prototype compiler which,
given any IA term-in-context, outputs a CSP process
representing its game semantics. The effectiveness of
our approach is evaluated on several variants of two
examples: a sorting algorithm, and an abstract data type
implementation. The experimental results show that, for
minimal model generation, this approach can outper-
form the approach which uses regular expressions [4].

Section 2 presents the fragment of IA we are address-
ing. Section 3 contains brief introductions to game seman-
tics and CSP. In Sect.4, we define the CSP representation
of game semantics for the IA fragment. Correctness of
the CSP model, and decidability of observational equiv-
alence by traces refinement, are shown in Sect. 5. Sec-
tion 6 shows how properties given as finite automata, or
in a linear temporal logic on finite traces, can be veri-
fied. In Sect. 7, two theorems for parameterised verifica-
tion of polymorphic terms and properties are given. The
compiler and two case studies are presented in Sects. 8
and 9. In Sect. 10, we point out some possibilities for
future work.

2 The programming language

Idealised Algol [19] is a functional-imperative language.
Imperative features such as assignment, sequential com-
position, branching and iteration are combined with a
function mechanism based on a typed call-by-name λ-
calculus. We consider the recursion-free second-order
fragment of this language, with finite data sets. A frag-
ment is said to be ith-order if in its type judgements, the
types of free identifiers and of the term are of order less
than i.
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The language has data types of the integers (from 0 to
n − 1, where n > 0) and the Booleans. The phrase types
consist of base types (expression, command, variable)
and first-order function types.

τ ::= intn | bool

σ ::= exp[τ ] | comm | var[τ ]
θ ::= σ | σ1 × · · · × σk → σ ′

Terms are introduced using type judgments of the form
� � M : θ . Here � is a type context consisting of a
finite number of typed free identifiers, i.e. of the form
ι1 : θ1, · · · , ιk : θk.

Without loss of generality, using β-reduction, we do
not consider λ-abstraction, and we only consider func-
tion application of free identifiers. The well-typed terms
of the language are given by the typing rules in Table 1.

Firstly, the language contains integer and Boolean
constants and operators. Next, there are the usual imper-
ative constructs: skipping, sequential composition, con-
ditional, iteration, assignment and dereferencing. We
work with IA with active expressions, so a command
may be sequentially composed with a phrase of expres-
sion or variable type, and if-then-else is available on
all base types. The new construct initialises a variable,
and makes it local to a given command. Finally, there
are typing rules for free identifiers, function application,
and function declaration.

Table 1 Typing rules

2.1 Syntactic sugar

A diverge command which stands for the simplest non-
terminating computation can be defined as

while true do skip

As in [11], arrays of length k > 0 can be introduced
by the following abbreviations:

new[τ ] ι[k] := E in C ≡
new[τ ] ι.0 := E in · · · new[τ ] ι.(k − 1) := E in C

ι[E] ≡ if E = 0 then ι.0 else · · ·
if E = k − 1 then ι.(k − 1) else oub; ι.0

where oub is a free identifier of type comm, which is
called for any out-of-bounds error.

3 Background

3.1 Game semantics

We give an informal overview of game semantics of IA
and we illustrate it with some examples. A more com-
plete introduction can be found in [3].

Game semantics models computation as a certain
kind of game, with two participants, called Player (P)
and Opponent (O). P represents the term (program),
while O represents the environment, i.e. the context in
which the term is used. A play between O and P consists
of a sequence of moves, governed by rules. For example,
O and P need to take turn and every move needs to
be justified by a preceding move. The moves are of two
kinds, questions and answers.

Every type in the language is modelled as a game –
the set of all possible plays (sequences of moves). A
term of a given type is represented as a set of all com-
plete plays in the appropriate game, more precisely as a
strategy for that game – a predetermined way for P to
respond to O’s moves.

For example, in the game for the type exp[τ ], there
is an initial move q and corresponding to it a single
response to return its value. So a complete play for a
constant v is:

O: q (opponent asks for value)
P: v (player answers to the question)

Now, consider the term ι : exp[intn] → exp[intn] �
ι(2) : exp[intn], where the identifier ι is some non-locally
defined function, and n > 2. A play for this term begins
with O asking for the value of the result expression by
playing the question move q, and P replies asking for
the returned value of the non-local function ι, move qι.
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In this situation, the function ι may need to evaluate
its argument, represented by O’s move qι1 – what is
the value of the first argument to ι. P will respond with
answer 2ι1. Here, O could repeat the question qι1 to rep-
resent the function which evaluates its argument more
than once. In the end, when O plays the move mι – the
value returned from ι, P will copy this value and answer
to the first question with m.

A sample complete play for this term, when the func-
tion ι evaluates its argument only once, is:

O: q (asks for result value)
P: qι (P asks for value returned from function ι)
O: qι1 (what is the first argument to ι)
P: 2ι1 (P answers: 2 )
O: mι (O supplies the value returned from ι)
P: m (P gives the answer to the first question)

Thus, the strategy for the above term is the regular
language

n−1∑

m=0

q · qι · (qι1 · 2ι1)∗ · mι · m

Free identifiers are interpreted by copy-cat strate-
gies. A sample complete play of the strategy for ι :
exp[intn] → exp[intn] � ι : exp[intn] → exp[intn] is:

O: q (asks for result value)
P: qι (P asks for value returned from function ι)
O: qι1 (what is the first argument to ι)
P: q1 (what is the first argument to the term)
O: k1 (O answers: k)
P: kι1 (P copies the answer)
O: mι (O answers: m)
P: m (P copies the answer)

Function application is modelled by composition of
strategies. Strategies are composed by making them inter-
act on moves for the argument, and then hiding those
moves. For example, the play of ι(2) above is obtained
from the play of ι above with k = 2 and the unique
complete play of the constant 2.

In the game for commands, there is an initial move
run to initiate a command, and a single response done
to signal termination of the command. Thus, the only
complete play of � skip : comm is run · done.

Variables are represented as objects with two meth-
ods: a ‘read method’ for dereferencing, represented by
an initial move read, with a data value as response;
and a ‘write method’ for assignment, represented by an
initial move write.c for any data value c, to which the
only possible response is ok. For example, a complete
play for x : var[intn] � x := !x + 1; !x : exp[intn], where
n > 5, is:

O: run
P: readx (what is the value of x)
O: 2x (O supplies the value 2)
P: write.3x (write 3 into x)
O: okx (the assignment is complete)
P: readx (ask for the value of x)
O: 5x (the value 5 is returned)
P: done

When P asks to read from x in a play as above, O
can return an arbitrary value, i.e. not necessarily the last
value P wrote into x. This is because, in general, the value
of x can also be modified by the context into which the
term will be placed. For example, x can be substituted
by the following term, where y and z are also of type
var[intn]:

if !y = 3 then z else y

‘Good variable’ behaviour is achieved by making a
variable local. In the game semantics of new[τ ] ι :=
E in C, any read of ι within C returns the most recently
written value, and all moves involving ι are hidden.

3.2 CSP

CSP [13] is a language for modelling interacting compo-
nents. Each component is specified through its behav-
iour which is given as a process. This section only intro-
duces the CSP notation and the ideas used in this paper.
For a fuller introduction to the language the reader is
referred to [21].

Processes in CSP are defined in terms of the events
that they can perform. The set of all possible events is
denoted 	. Events may be atomic in structure or may
consist of a number of distinct components. For example,
an event write.1 consists of two parts: a channel name
write, and a data value 1. If N is a set of values that can
be communicated down the channel write, then write.N
will be the set of events {write.n | n ∈ N}. We can define
the set of all events that can arise on a channel c, by
{|c|} = {c.w | c.w ∈ 	}.

We use the following collection of process operators:

P ::= p | STOP | SKIP | RUNA | ?x : A → Px |
μp.P | P1�P2 | P1 <| b >| P2 | P1 ‖A P2 |
P\A | P[a/b] | P1

o
9 P2

where A represents a set of events, and p a process iden-
tifier.

The process STOP performs no actions. SKIP is a
process that successfully terminates, causing the special
event � (� 	∈ 	). RUNA can always communicate any
event from A. A process ?x : A → P can perform any
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event from set A, and then behave as P. To define a pro-
cess recursively by p = P, we write μp.P. For example,
RUNA and μp.?x : A → p are equivalent. P1�P2 can
behave either as P1 or as P2. P1 <| b >| P2 behaves as P1
if b is true, and as P2 otherwise. P1 ‖A P2 runs P1 and
P2 in parallel, making them synchronise on events in
A and allowing interleaving of other events. A parallel
composition terminates successfully if and only if both
component processes do so. To hide all events in A from
a process P (i.e. make them invisible or internal events
called τ ), we write P\A. To rename an event or channel
b to a in a process P, we write P[a/b]. A sequential
composition P1; P2; P1, and if it terminates successfully,
runs P2.

Processes in CSP can be given denotational seman-
tics by their sets of traces. A trace is a finite sequence of
events. A sequence t is a trace of a process P if there is
some execution of P in which exactly that sequence of
events is performed. (Invisible events τ are not recorded
in traces.) traces(P) is the set of all traces of P.

ŝ t denotes the concatenation of traces s and t. t � A
is obtained by restricting t to events in A.

Let traces�(P) be the set of all terminated traces of
P:

traces�(P) = {t | t̂ 〈�〉 ∈ traces(P)}
P2 is a traces refinement of P1 if and only if any trace

of P2 is also a trace of P1:

P1 �T P2 ⇔ traces(P2) ⊆ traces(P1).

Processes in CSP can also be given operational seman-
tics, using labelled transition systems, which are directed
graphs whose nodes represent process states, and whose
edges are labelled by events. Any edge whose label is �
leads to a special terminated state 
.

The FDR tool [10] is a refinement checker for CSP
processes. It contains several procedures for composi-
tional state-space reduction. Namely, before generating
a transition system for a composite process, transition
systems of its component processes can be reduced,
while preserving semantics of the composite process
[20]. FDR is also optimised for checking refinements
by processes which consist of a number of component
processes composed by operators such as renaming, par-
allel composition and hiding.

4 Game semantics of IA in CSP

With each type θ , we associate a set of possible events:
an alphabet Aθ . It contains events q ∈ Qθ called ques-
tions, which are appended to a channel with name Q,
and for each question q, there is a set of events a ∈ Aq

θ

called answers, which are appended to a channel with
name A.

Aintn = {0, . . . , n − 1} Abool = {tt, ff }
Qexp[τ ] = {q} Aq

exp[τ ] = Aτ

Qcomm = {run} Arun
comm = {done}

Qvar[τ ] = {read, write.v | v ∈ Aτ }
Aread

var[τ ] = Aτ Awrite.v
var[τ ] = {ok}

Qσ1×···×σk→σ ′ = {j.q | q ∈ Qσj} ∪ Qσ ′

Aj.q
σ1×···×σk→σ ′ = {j.a | a ∈ Aq

σj}
Aq
σ1×···×σk→σ ′ = Aq

σ ′
Aθ = Q.Qθ ∪ A.

⋃
q∈Qθ

Aq
θ

Consider a term-in-context � � M : θ . Its game
semantics is a strategy over the alphabet A��θ which
is defined as follows:

Aι:θ = ι.Aθ A� =
⋃

ι:θ∈�
Aι:θ A��θ = A� ∪ Aθ

The standard approach in game semantics is to define
this strategy compositionally. As in [11], for simplicity
of giving semantics to the let construct, we generalise by
introducing environments. An environment u for a type
context � is a mapping such that, for any ι : θ ∈ �, u(ι)
is a CSP process over the alphabet Aι:θ�θ . To update u
by mapping ι to P, we write u | ι → P.

We shall define, for any term-in-context � � M : θ
and environment u for �, a CSP process which repre-
sents the game semantics of � � M : θ with respect to u.
This process is denoted [[� � M : θ ]]CSPu, and it is over
the alphabet A��θ .

The standard game semantics of� � M : θ is obtained
by using the environment u0 such that, for any ι : θ ∈ �,
u0(ι) is the copy-cat process Kι

θ , defined in Table 2.
The CSP process for an integer or Boolean constant

replies to a question by the value of the constant, and
then terminates. For an operator application E1 ∗E2, we
compose the processes for E1 and E2, and a process for
∗. As with all processes which represent strategies in this
paper, the composition is performed by the CSP opera-
tors of renaming, parallel composition and hiding. The
process for ∗ asks for values of the arguments, and after
obtaining them responds by performing the operation.
The details are in Table 3.

Table 4 shows processes for the command constructs.
For sequential composition, conditional and iteration,
processes for the components are composed with a pro-
cess for the construct itself, similarly to how the process
for E1 ∗ E2 was defined above. However, in case of the
conditional, one of the processes for M1 and M2 will not
be run, so SKIP is used to enable such empty termina-
tion. For iteration, the processes for B and C may be
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Table 2 Free identifiers

Table 3 Expression constructs

run arbitrarily many times, which is achieved by placing
them inside appropriate recursions.

The processes for assignment and dereferencing are
straightforward. In the definition for local-variable dec-
larations, a ‘cell’ process Uι,v is used for remembering
the initial or the most-recently written value into the
variable ι. It is composed with the process for the scope
of the declaration, ensuring ‘good variable’ behaviour.
Table 5 contains the details.

Table 6 contains the remaining process definitions: for
free identifier, function application and function decla-
ration terms. In each case, environments are used to
access or record processes associated with free iden-
tifiers. For function application, the processes for the
arguments may be run arbitrarily many times, so they
are enclosed in recursions.

5 Correctness and decidability

For any term from second-order IA, the set of all termi-
nated traces of its CSP interpretation is isomorphic to
its regular language interpretation [[ − ]]R, as defined in
[11]:

Table 4 Command constructs

Table 5 Variable constructs
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Table 6 Functional constructs

Theorem 1 For any term � � M : θ , we have:

traces�([[� � M : θ ]]CSPu0)
φ∼= [[� � M : θ ]]Ru′

0

where u′
0 is the environment that maps free identifiers of

the term to copy-cat regular languages as defined in [11],
and φ is defined by:

φ(Q.a) = a φ(A.a) = a
φ(ι.Q.a) = aι φ(ι.A.a) = aι

φ(〈a1, . . . , ak〉) = φ(a1) · . . . · φ(ak)

Proof Since free identifiers are interpreted by copy-cat
strategies for their types in both representations, the
theorem follows from the following implication:

∀ιi : θi ∈ � . traces�(u(ιi))
φ∼= u′(ιi) ⇒

traces�([[� � M : θ ]]CSPu)
φ∼= [[� � M : θ ]]Ru′

(1)

The claim (1) is proved by a routine induction on the
typing rules in Table 1, by showing that the definitions of
CSP processes in Section 4 correspond to the definitions
of regular expressions in [11]. ��

Two terms M and N in type context � and of type θ
are observationally equivalent, written � � M ≡θ N, if
and only if, for any term-with-hole C[−] such that both
C[M] and C[N] are closed terms of type comm, C[M]
converges (i.e. evaluates to skip) if and only if C[N]
converges. It was proved in [2] that this coincides with
equality of sets of complete plays of the strategies for M
and N, i.e. that the games model is fully abstract. (The
operational semantics of IA, and a definition of conver-
gence for terms of type comm in particular, can be found
in the same paper.)

For the IA fragment treated in this paper, it was
shown in [11] that observational equivalence coincides

with equality of regular language interpretations. By
Theorem 1, we have that observational equivalence is
captured by two traces refinements:

Corollary 1 (Observational equivalence)

� � M ≡θ N ⇔
[[� � M : θ ]]CSPu0�RUNA��θ �T [[� � N : θ ]]CSPu0 ∧
[[� � N : θ ]]CSPu0�RUNA��θ �T [[� � M : θ ]]CSPu0

Proof From [11], we have that � � M ≡θ N if and only
if [[� � M]]Ru′

0 = [[� � N]]Ru′
0. By Theorem 1, the latter

is equivalent to

traces�([[� � M]]CSPu0) = traces�([[� � N]]CSPu0)

The corollary follows by the traces semantics of the �
operator and the RUNA��θ process. ��

Refinement checking in FDR terminates for finite-
state processes, i.e. those whose transition systems are
finite. Our next result confirms that this is the case for the
processes interpreting the IA terms. As a corollary, we
have that observational equivalence is decidable using
FDR.

Theorem 2 For any term � � M : θ , the CSP process
[[� � M : θ ]]CSPu0 is finite state.

Proof Since the copy-cat processes Kι
θ are finite state,

the theorem is implied by the following claim: for any
term� � M : θ and any environment u which maps each
identifier in � to a finite-state process, [[� � M : θ ]]CSPu
is finite state.

In the fragment of CSP we are using, the only oper-
ators which can result in infinite transition systems are
the infinite choice operator ?x : A → Px with an infi-
nite set A, and recursion. The claim therefore follows
by induction on the typing rules in Table 1, and these
observations:

– Each alphabet A��θ is finite.
– Each use of the choice operator is over a finite set.
– The recursive process in the definition of Kι

σ1×···×σk→σ ′
is finite state.

– The recursive processes Uι,v with v ∈ Aτ are finite
state because Aτ is a finite set.

– The recursive processes in the definitions for itera-
tion and function application are finite state by the
inductive hypothesis. ��

Corollary 2 (Decidability) Observational equivalence
between terms of second-order recursion-free IA with
iteration and finite data types is decidable by two traces
refinements between finite-state CSP processes. ��
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Example 1 Consider the process for the term

c : comm � new[bool] x := true in c : comm

It has the same traces as

(Q1.q → A1.tt → SKIP) ‖ [{|Q1, A1|}]
((Q2.run → c.Q.run → c.A.done → A2.done → SKIP)

‖ [{|Q2, A2, x|}](Q.run → Q1.q → A1?v → Q2.
×run → Ux,v)

\{|Q2, A2, x|})\{|Q1, A1|}
Simplifying further yields

Q.run → c.Q.run → c.A.done → A.done → SKIP

which is the process for the term c : comm � c : comm.
By Corollary 1, we conclude that

c : comm � new[bool] x := true in c ≡comm c

This observational equivalence reflects the fact that a
non-locally defined command cannot modify a local var-
iable [11]. ��

6 Property verification

In addition to checking observational equivalence of two
program terms, it is desirable to be able to check proper-
ties of terms. Recall that for any term � � M : θ , the set
of terminated traces traces�([[� � M : θ ]]CSPu0) is the
set of all complete plays of the strategy for � � M : θ .
We therefore focus on properties of finite traces, and
take the view that � � M : θ satisfies such a property
if and only if all traces in traces�([[� � M : θ ]]CSPu0)

satisfy it.

6.1 Properties as finite automata

Every property of program terms such that the set of
all finite traces which satisfy it is a regular language, can
be represented in CSP. Suppose A is an automaton with
finite alphabet 	, finite set of states Q, transition rela-
tion T ⊆ Q×	×Q, initial states Q0 ⊆ Q, and accepting
states F ⊆ Q. For any q ∈ Q \ F, we define

Pq = �(q,a,q′)∈T a → Pq′

For any q ∈ F, we define

Pq = (�(q,a,q′)∈T a → Pq′
)
� SKIP

This is a valid system of recursive CSP process defini-
tions, so we can let

PA = �q∈Q0 Pq

We then have that PA has finitely many states and

t is accepted by A iff t ∈ traces�(PA)

Fig. 1 A finite automaton

Example 2 Consider the automaton A in Fig. 1, whose
alphabet is {a, b, c}. It accepts a finite trace t if and only
if b eventually occurs in it.

The CSP process PA is defined as:

PA = P1

P1 = (a → P1)� (b → P2)� (c → P1)

P2 = (a → P2)� (b → P2)� (c → P2)� SKIP

Therefore, given a program term � � M : θ and a
finite automaton A with alphabet A��θ , we can decide
whether A accepts each complete play of the strategy
for � � M : θ by checking (e.g. using FDR) the traces
refinement

PA � RUNA��θ �T [[� � M : θ ]]CSPu0 (2)

6.2 Properties in temporal logic

A standard way of writing properties of linear behav-
iours is by linear temporal logic. Given a finite set	, we
consider the following formulas, where a ranges over	.
In addition to propositional connectives, they contain
the temporal operators ‘next-time’ and ‘until’.

φ ::= true | a | ¬φ | φ1 ∨ φ2 | ©φ | φ1 U φ2

We call this logic LTL	f , because we give it semantics
over finite traces (i.e. sequences) of elements of 	. For
any trace t of length k, we write its elements as t1, …, tk,
and we write ti for its ith suffix 〈ti, . . . , tk〉.
t |� true
t |� a iff t 	= 〈〉 and t1 = a
t |� ¬φ iff t 	|� φ

t |� φ1 ∨ φ2 iff t |� φ1 or t |� φ2
t |� ©φ iff t 	= 〈〉 and t2 |� φ

t |� φ1 U φ2 iff ∃i ∈ {1, . . . , |t| + 1} . ti |� φ2 and
∀j ∈ {1, . . . , i − 1} . tj |� φ1

The Boolean constant false, and Boolean operators
such as ∧ and → can be defined as abbreviations in the
usual ways. The same is true for the temporal operators
‘eventually’ and ‘always’:

♦φ = true U φ �φ = ¬♦¬φ
A term � � M : θ satisfies a formula φ of LTLA��θ

f if
and only if

∀t ∈ traces�
([[� � M : θ ]]CSPu0

)
. t |� φ
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Example 3 Consider the following term:

b : exp[bool], c : comm � while b do c : comm

The terminated traces of its process consist of arbitrarily
many times evaluating b, obtaining tt, and running c; fol-
lowed by evaluating b and obtaining ff .

Hence, this term satisfies ♦b.A.ff , but does not satisfy
♦c.Q.run. It also satisfies �(b.A.tt → ♦c.Q.run), but
does not satisfy �(b.Q.q → ♦c.Q.run). ��

There is an algorithm which, given any formula φ of
LTL	f , constructs a finite automaton A with alphabet	,
which accepts a finite trace t if and only if t |� φ (see
Appendix 11.1). Using the procedure in Section 6.1, we
can then obtain a CSP process P	φ with finitely many
states and such that

t |� φ ⇔ t ∈ traces�(P	φ )

We therefore have a decision procedure which, given
a term� � M : θ and a formulaφ of LTLA��θ

f , checks sat-
isfaction. It reduces the question to the following traces
refinement:

PA��θ
φ �RUNA��θ �T [[� � M : θ ]]CSPu0 (3)

7 Polymorphic terms and properties

Consider the following extension of the IA fragment in
this paper:

τ ::= intn | bool | α

� � E1 : exp[α] � � E2 : exp[α]
� � E1 = E2 : exp[bool]

Here α ranges over an infinite set of data-type vari-
ables. Such a variable stands for a polymorphic data type.
The only operation on values from such a data type is
equality.

We also extend the syntax of LTL	f to allow alphabets
of the form
⋃

a∈	†

{a} ∪
⋃

a∈	‡

a.αa

where	† and	‡ are finite sets, and for any a ∈ 	‡, αa is
a data-type variable. (Note that, in the presence of data-
type variables, the alphabets A��θ are of this form.) The
formulas are the same as in Section 6.2, except that a
ranges over 	† ∪	‡.

Suppose α is a data-type variable.

– If τ is either some intn or bool, let −[τ/α] denote
substitution of τ for α in types and terms.

– Suppose 	 is an alphabet as above, and S is a finite
set. Let 	[S/α] denote the alphabet

⋃

a∈	†

{a} ∪
⋃

a∈	‡∧αa=α
{a.a′ | a′ ∈ S} ∪

⋃

a∈	‡∧αa 	=α
a.αa

If φ is an LTL	f formula, let φ[S/α] denote the for-

mula where any a ∈ 	‡ such that αa = α is replaced
by

∨
a′∈S a.a′.

In what follows, we shall for simplicity work with a
single data-type variable α. When we write −[n] as a
substitution, we mean −[intn/α] (for types and terms)
or −[{0, . . . , n−1}/α] (for alphabets and formulas). Since
α is the only data-type variable, these substitutions yield
types, terms, alphabets and formulas which contain no
data-type variables.

We shall not consider terms which contain the let con-
struct for function declaration. By β-reduction, this is no
loss of generality.

The following lemma states that, when applied to
polymorphic terms and formulas, the definitions in Sec-
tions 4 and 6 yield CSP processes which are data inde-
pendent with respect toα [16, Sect. 2.7]. It also states that
performing any substitution −[n] after obtaining such a
CSP process is equivalent to performing it before.

Lemma 1 (a) For any term � � M : θ (in the extended
syntax), [[� � M : θ ]]CSPu0 is data independent with
respect to α, and for any n > 0,

traces(([[� � M : θ ]]CSPu0)[n])
= traces([[�[n] � M[n] : θ [n]]]CSPu0[n])

(b) For any formula φ of LTL	f (extended as above), P	φ
is data independent with respect to α, and for any
n > 0,

traces
(
P	φ [n]) = traces

(
P	[n]
φ[n]

)

Proof By induction on typing rules. ��
The first theorem on parameterised verification of

polymorphic terms and properties states that, if equality
between values of type α is not used, it suffices to check
satisfaction when α is substituted by a one-element data
type:

Theorem 3 Suppose � � M : θ is a term which contains
no equalities between values from α, and φ is a formula
of LTLA��θ

f . If �[1] � M[1] : θ [1] satisfies φ[1], then for
all n > 0, �[n] � M[n] : θ [n] satisfies φ[n].
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Table 7 A measure of terms

Proof This is a corollary of Lemma 1 and [16, Theo-
rem 5.1.2]. ��

For any term, we now define a natural number w(� �
M : θ), by recursion on the typing rules: see Table 7.
Informally, this is an upper bound on the number of
values of type α in any state of the process [[� � M :
θ ]]CSPu0.

The following lemma states that w(� � M : θ) is
not less than the corresponding measure of the sym-
bolic transition system of [[� � M : θ ]]CSPu0 [16, Sec-
tion 3.3.3]: 1

Lemma 2 For any term � � M : θ ,

w(� � M : θ) ≥ W
(S[[��M:θ]]CSPu0

)

Proof By induction on the typing rules. ��

1 Informally, W(S[[��M:θ ]]CSPu0
) is the maximum number of values

of type α in any state of the process [[� � M : θ]]CSPu0.

Our second theorem applies to terms which can con-
tain equalities between values of type α, and states that
it suffices to check satisfaction when α is substituted by
a data type whose size depends on the w measure:

Theorem 4 Suppose � � M : θ is a term, and φ is a
formula of LTLA��θ

f . Let n = w(� � M : θ) + 1. If
�[n] � M[n] : θ [n] satisfies φ[n], then for all n′ > 0,
�[n′] � M[n′] : θ [n′] satisfies φ[n′].
Proof This is a corollary of Lemmas 1 and 2, and [16,
Theorem 5.4.7(III)]. ��

Some applications of the two theorems in this section
can be found in Sect. 9.2.

8 Compiler

We have implemented a compiler in Java [5], which auto-
matically converts a term-in-context (i.e. an open pro-
gram fragment) into a CSP process which represents its
game semantics. The process is defined by a script in
machine readable CSP [21].

In the input syntax, an integer constant m is implic-
itly of type intn+1. An operation between values of types
intn1 and intn2 produces a value of type intmax{n1,n2}. The
operation is performed modulo max{n1, n2}.

The scripts output by the compiler can be loaded into
the tools ProBE for interactive exploration of transition
systems, and FDR for automatic analysis and interactive
debugging [10]. One of the functions of FDR is to check
traces refinement between two finite-state processes. As
we saw above, this can be used to decide observational
equivalence between two terms (Corollary 1), contain-
ment in a regular language (2), and satisfaction of a
linear temporal logic formula (3).

FDR offers a number of hierarchical compression
algorithms [20], which can be applied during model
generation and refinement checking. The scripts which
our compiler produces normally contain instructions
to apply diamond elimination (which eliminates all τ
events from a transition system) and strong bisimulation
quotienting to subprocesses which model local variable
declaration subterms. This exploits the fact that game
semantics hides interactions between a local variable
and its scope. The interaction events become τ events,
enabling the model to be reduced.

9 Applications

We now consider applications of the approach proposed
above and discuss experimental results for two kinds of
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example: a sorting algorithm, and an abstract data type
implementation.

9.1 A sorting algorithm

In this section, we analyse the bubble-sort algorithm.
The input to the compiler is in Fig. 2, where the array
size is a meta variable k > 0. For readability, the syntax is
slightly different from the one in Sect. 2, but isomorphic.
In particular, dereferencing is implicit.

The program first copies the input array x into a local
array a, which is then sorted, and copied back into x.
The local array a is not visible from the outside of the
program, so only reads and writes of the non-local array
x are seen in the model. A transition system for k = 2
is shown in Fig. 3. The left-hand half represents reads
of all possible combinations of values from x, while the
right-hand half represents writes of the same values in
sorted order.

Table 8 contains the experimental results for minimal
model generation. The experiment consisted of running
the compiler on the bubble sort implementation, and
then letting FDR generate a transition system for the
resulting process. The latter stage involved a number
of hierarchical compressions, as outlined in Sect. 8. We
list the execution time in minutes, the size of the larg-
est generated transition system, and the size of the final
transition system. We ran FDR on a Research Machine
AMD Athlon 64(tm) Processor 3500+ with 2 GB RAM.
The results from the tool based on regular expressions
were obtained on a SunBlade 100 with 2 GB RAM [4].
The one extra state in the CSP minimal models is the spe-
cial terminated state
. The CSP approach yields better
results in time and space. This is firstly due to compo-

Fig. 2 Source code of bubble sort

sition of strategies being represented in CSP using the
renaming, parallel and hiding operators, and FDR being
highly optimised for verification of such networks of
processes. Secondly, FDR builds the models gradually,
at each stage compressing the subterm models.

Further information about minimal model generation
for k = 20 is shown in Fig. 4. FDR first produces a tran-
sition system for the subprogram which is the scope of
the declaration of the local array a. Each component
of a, which are indexed from 0 to 19, is represented by
the process Ua.i,0 (see Table 5). FDR obtains the final
model by taking the transition system for the scope of a
and composing it with transition systems for the compo-
nents of a in turn. At each step, compression algorithms
are applied. In the figure, we show numbers of states
before and after compression, after every two steps.

We now turn to verifying absence of out-of-bounds
errors, which is expressed by the formula ¬♦oub (see
Sect. 2.1). Let us modify the term in Fig. 2 by replacing
k − 1 in line 9 by k, which introduces an out-of-bounds
error.

Table 9 shows some experimental results for check-
ing the corresponding traces refinement (3). We did not
apply compressions after composing the last component
of a with the rest of the program. Instead, a composite
model is generated on-the-fly during refinement check-
ing. This enabled us to check the property for array size
31, although the minimal model generation did not suc-
ceed for this size. The times shown in Table 9 are: total
execution time, time to process the specification, time to
process the implementation, and time to check refine-
ment. They are all in minutes.

9.2 An abstract data type implementation

Figure 5 contains an implementation of a queue of max-
imum size k as a circular array. Values stored in the
queue are of type α, which is a data-type variable. There
are four free identifiers: commands empty and overflow,
expression p of type α, and command ANALYSE which
takes two arguments. After implementing the queue by
a sequence of local declarations, we export the func-
tions add and next by calling ANALYSE with arguments
add(p) and next(). Game semantics will give us a model
which contains all interleavings of calls to add(p) and
next(), corresponding to all possible behaviours of the
non-local function ANALYSE. Since the expression p
is also non-local, the value of p can be different each
time add is called. The non-local commands empty()
and overflow() handle calls to next on the empty queue,
respectively add on a full queue.

A transition system for k = 2 and with int1 substituted
for α is shown in Fig. 6. For clarity, ADD and NEXT are
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Fig. 3 A transition system for
bubble sort with k = 2

Table 8 Bubble sort minimal model generation

k CSP Regular expressions

T Max. Model T Max. Model

5 4 1,775 164 5 3,376 163
10 13 21,015 949 10 64,776 948
15 35 115,125 2,859 120 352,448 2,858
20 70 378,099 6,394 240 1,153,240 6,393
30 390 5,204,232 20,339 Failed

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

a.1 a.3 a.5 a.7 a.9 a.1 a.13 a.15 a.17 a.19

Before compression Afte compression

Fig. 4 Effects of compressions for bubble sort with k = 20

Table 9 Checking ¬♦oub for an erroneous bubble sort

k Total Spec. Impl. Ref.

29 250.5 10 240 0.5
30 317.5 12 305 0.5
31 494.2 12.5 391 0.7

written instead of ANALYSE.1 and ANALYSE.2. Also,
p moves for initialising the array and within calls of next
are not shown.

Consider the formulas ¬♦empty and ¬♦overflow,
which assert that the non-local error handlers are never
called. By β-reduction and Theorem 3, if the queue
implementation term satisfies one of these properties

Fig. 5 A queue implementation

with int1 substituted for α, then it satisfies the same
property with any intn substituted for α.

As expected, checking these properties with int1
substituted for α returns that they are not satisfied. The
counter-example traces which the FDR debugger gives
correspond to: a single NEXT call after which empty is
called, and k + 1 consecutive calls of ADD after which
overflow is called.

Tables 10 and 11 show some experimental results for
checking the two properties. For efficiency, 0 has been
substituted for p in the initialisation of the array and in
the declaration of next. As in Table 9, we list in minutes
the total execution time, the times for processing the
specification and the implementation, and the refine-
ment checking time.

Properties involving local data can be checked by
calling a non-local command error in case of violation.
For example, we can check whether, whenever a value
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Fig. 6 A transition system for
the queue implementation

Table 10 Checking ¬♦empty

k Total Spec. Impl. Ref.

100 1110 935 175 0
105 1415 1200 215 0
110 1610 1340 270 0

Table 11 Checking ¬♦overflow

k Total Spec. Impl. Ref.

100 880.5 705 175 0.5
105 1315.6 1100 215 0.6
110 1520.7 1250 270 0.7

p is enqueued and then the queue is emptied, the last
value dequeued is equal to p. We replace the call to
ANALYSE in Fig. 5 by the following, and check the for-
mula ¬♦error.

let comm validate() {
= if (isfull()) skip; else {
= new α y:=p in add(y);
new α z:=next() in
while (not is empty()) z:=next();
if (z==y) then skip; else error();}} in

ANALYSE(add(p),next(),validate())
: comm

The modified queue implementation term contains
an equality between values of type α, so Theorem 3 is
not applicable. However, Theorem 4 gives us that, if
¬♦error is satisfied with intk+5 substituted for α, then it
is satisfied with any intn substituted for α.

10 Future work

In this paper, we only considered data types of finite
integers and Booleans. We also obtained theorems for
parameterised verification of polymorphic terms and
properties, which may contain a data-type variable α.
The only operator on values of type α is equality, and α
may occur in types of free identifiers.

An interesting direction for extension is to consider
infinite integers with all the usual operators. Counter-

example guided abstraction refinement would be used
to check successively more precise approximations, until
either an error is found or the property is verified. A
framework and some initial results have recently been
obtained [9].

It is also important to address recursion, third-order
functions, concurrency [12], and other programming lan-
guage features.

11 Appendix

11.1 Finite automaton construction for LTL	f

Suppose φ is an LTL	f formula. Without loss of gener-
ality, we assume that φ contains no subformulas of the
form ¬¬ψ . Wheneverψ is a subformula of φ of the form
¬ψ ′, if we write ¬ψ , we mean ψ ′.

Let Cl(φ) be the set of all subformulas of φ and their
negations, and for any subformula of the form ψ1Uψ2,
the formulas ©(ψ1Uψ2) and ¬ © (ψ1Uψ2).

We now define a finite automaton A = (Q, T, Q0, F)
on finite words over 	. The definition is a variant of
the construction of automata on infinite words for state-
based LTL [22].

Let Q be the set of all q ⊆ Cl(φ) such that:

(i) for each ψ ∈ Cl(φ), either ψ ∈ q or ¬ψ ∈ q, but
not both;

(ii) ¬true 	∈ q;
(iii) if a, a′ ∈ q, then a = a′;
(iv) if ψ1 ∨ ψ2 ∈ q, then either ψ1 ∈ q or ψ2 ∈ q;
(v) if ¬(ψ1 ∨ ψ2) ∈ q, then ¬ψ1 ∈ q and ¬ψ2 ∈ q;

(vi) if ψ1 U ψ2 ∈ q, then either ψ2 ∈ q or ψ1,
©(ψ1 U ψ2)∈ q;

(vii) if ¬(ψ1 U ψ2) ∈ q, then ¬ψ2 ∈ q, and either
¬ψ1 ∈ q or ¬ © (ψ1 U ψ2) ∈ q.

We define (q, a, q′) ∈ T if and only if:

(I) if a′ ∈ q, then a = a′;
(II) if ¬a′ ∈ q, then a 	= a′;

(III) if ©ψ ∈ q, then ψ ∈ q′;
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Fig. 7 A finite automaton for
a U b

(IV) if ¬ © ψ ∈ q, then ¬ψ ∈ q′.

Q0 = {q ∈ Q | φ ∈ q}.
Let q ∈ F if and only if no member of q is of the form

a or ©ψ .

Proposition 1 For any finite trace t over 	, t is accepted
by A if and only if t |� φ.

Proof For the left-to-right implication, it suffices to show
that, whenever t is accepted from some q, and ψ ∈ q,
then t |� ψ . That claim is proved by induction on the
length of t.

Consider the case |t| = 0, i.e. t = 〈〉. Then q ∈ F. By
induction on the ¬-free height of ψ , i.e. the height of
the syntax tree of ψ without counting the ¬ operator, it
follows that, for any ψ ∈ q, 〈〉 |� ψ .

Now, assume |t| > 0 and the claim holds for all t′ with
|t′| = |t| − 1. Induction on the ¬-free height of ψ is used
again. We show only the most complex case, namely
¬(ψ1 U ψ2) ∈ q.

By (vii) above, we have ¬ψ2 ∈ q, and either ¬ψ1 ∈ q
or ¬©(ψ1 U ψ2) ∈ q. By the inner inductive hypothesis,
t |� ¬ψ2.

If ¬ψ1 ∈ q, the inner inductive hypothesis gives us
t |� ¬ψ1, so t |� ¬(ψ1 U ψ2).

If ¬ © (ψ1 U ψ2) ∈ q, let q′ be such that q
t1→ q′

and t2 is accepted from q′. By (IV) above, we have
¬(ψ1 U ψ2) ∈ q′. From the outer inductive hypothe-
sis, t2 |� ¬(ψ1 U ψ2). Recalling that t |� ¬ψ2, we have
t |� ¬(ψ1 U ψ2) as required.

For the right-to-left implication, given any finite trace
t over 	, let qi = {ψ ∈ Cl(φ) | ti |� ψ}, for each i ∈
{1, . . . , |t| + 1}. It is routine to show that

q1
t1→ q2

t2→ · · · q|t|+1

is an accepting run in A. ��

Example 4 Suppose 	 = {a, b} and φ = a U b. The
construction above produces the automaton shown in
Figure 7. ��
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