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Abstract
Variational systems can produce a (potentially huge) number of related systems, known as products or variants, by using fea-
tures (configuration options) to mark the variable functionality. In many of the application domains, their rigorous verification
and analysis are very important, yet the appropriate tools rarely are able to analyse variational systems. Recently, this problem
was addressed by designing specialized so-called family-based model checking algorithms, which allow simultaneous veri-
fication of all variants in a single run by exploiting the commonalities between the variants. Yet, their computational cost still
greatly depends on the number of variants (the size of configuration space), which is often huge. Moreover, their implementa-
tion and maintenance represent a costly research and development task. One of the most promising approaches to fighting the
configuration space explosion problem is variability abstractions, which simplify variability away from variational systems.
In this work, we show how to achieve efficient family-based model checking of CTL� temporal properties using variability
abstractions and off-the-shelf (single-system) tools. We use variability abstractions for deriving abstract family-based model
checking, where the variability model of a variational system is replaced with an abstract (smaller) version of it, called modal
transition system, which preserves the satisfaction of both universal and existential temporal properties, as expressible in
CTL�. Modal transition systems contain two kinds of transitions, termed may- and must-transitions, which are defined by the
conservative (over-approximating) abstractions and their dual (under-approximating) abstractions, respectively. The variabil-
ity abstractions can be combined with different partitionings of the configuration space to infer suitable divide-and-conquer
verification plans for the given variational system.We illustrate the practicality of this approach for several variational systems
using the standard version of (single-system) NuSMV model checker.

Keywords Software product line engineering · Family-based model checking · Abstract interpretation · Modal transition
systems · Featured transition systems · CTL* temporal logic

1 Introduction

Variational systems appear in many application areas and
for many reasons. Efficient methods to achieve customiza-
tion, such as software product line engineering (SPLE) [12],
use features (configuration options) to control presence and
absence of the variable functionality [1]. Family members,
called variants of a variational system, are specified in terms
of features selected for that particular variant. The reuse of
code common to multiple variants is maximized. The SPLE
method is particularly popular in the embedded and criti-
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cal system domains (e.g. cars, phones, avionics, health care)
[12,26]. In these domains, a rigorous verification and analysis
are very important. Indeed, engineers have to provide solid
proofs that all variants satisfy their desiredproperties.Among
the methods included in current practices, model checking
[3] is a well-studied technique used to establish or refute that
temporal logic properties hold for a system.

Despite numerous benefits of variability and SPLE, a
growing amount of variability leads to combinatorial com-
plexity and, consequently, to severe challenges. Obviously,
the size of the configuration space (i.e. the number of vari-
ants) is the limiting factor to the feasibility of any verification
technique. Exponentially, many variants can be derived from
few configuration options. This problem is referred to as
the configuration space explosion problem. A simple “brute-
force” application of a single-system model checker to each
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variant is infeasible for realistic variational systems, due to
the sheer number of variants. This is very ineffective also
because the same execution behaviour is checked multiple
times, whenever it is shared by several variants.

Researchers have addressed this problem by designing
new more efficient verification techniques, which are based
on using compact representations for modelling variational
systems that incorporate the commonality within the fam-
ily. We use the term variability models to denote such
compact representations of variational systems. One of the
most popular and widely accepted variability models today
is featured transition systems (FTSs) [10]. Each behaviour
in an FTS is associated with the set of variants able to
produce it. A specialized family-based model checking algo-
rithm [9,10] executed on such a model checks an execution
behaviour only once regardless of howmany variants include
it. These algorithms model check all variants simultane-
ously in a single run and report precise conclusive results
for all individual variants (whether they satisfy or violate a
given property). Unfortunately, their performance still heav-
ily depends on the size and complexity of the configuration
space of the analysed variational system. Moreover, devel-
oping and maintaining specialized family-based tools is also
an expensive task.

In order to address these challenges, we propose to use
standard, single-system model checkers with an alternative,
externalized way to combat the configuration space explo-
sion. We apply the so-called variability abstractions to a
variabilitymodel (FTS)which is too large to handle (“config-
uration space explosion”), producing a more abstract model,
which is smaller than the original one. We abstract from
certain aspects of the configuration space, so that many of
the concrete configurations (variants) become indistinguish-
able and can be collapsed into a single abstract configuration
(i.e. abstract variant). The abstract model is constructed in
such a way that if some property holds for this abstract
model, then it will also hold for the concrete variability
model. The technique proposed in this paper significantly
extends the scope of existing over-approximating variability
abstractions introduced in [17,25], which support the verifi-
cation of universal properties only (LTL and ∀CTL). More
specifically, here we construct abstract variability models
which can be used to check arbitrary formulae of CTL�,
thus including arbitrary nested (universal and existential)
path quantifiers. We use modal transition systems (MTSs)
for representing abstract variability models. MTSs are tran-
sition systems (TSs) with two kinds of transitions, must and
may, expressing behaviours that necessarily occur (must) or
possibly occur (may) in the concrete model. We use the
standard conservative (over-approximating) abstractions to
definemay-transitions, and their dual (under-approximating)
abstractions to definemust-transitions. Therefore,MTSs per-
form both over- and under-approximation, admitting both

universal and existential properties to be deduced. Since the
constructed abstract models (given as MTSs) preserve satis-
fiability of all CTL� properties, if any such property is true
for an abstract MTS, then it is also true for the concrete vari-
abilitymodel (which is given as an FTS).Moreover, we show
that any model checking problem on MTSs can be reduced
to two traditional model checking problems on standard TSs.
In particular, we show that a property holds on an MTS, if
both its may- and must-parts (which represent standard TSs)
satisfy that property. The overall verification technique relies
on partitioning the configuration space and abstracting sepa-
rately concrete FTSs corresponding to individual partitions,
until the point we obtain abstract models with no variability,
so that it is feasible to complete their model checking in the
brute-force fashion using the standard single-system model
checkers.

Themain goal of abstraction is to avoid the construction of
the full concrete model. Hence, we want to derive an abstract
model directly from some high-level description of the varia-
tional system.We show how partitionings and abstractions of
variational systems specified in a high-level modelling lan-
guage (which is an input language for the NuSMV model
checker) can be implemented as simple preprocessor trans-
formations. In this way, we do not perform anymodifications
to the model checker. Although the proposed technique is
theoretically designed and shown correct for verifying arbi-
trarily CTL� properties, our implementation is based on the
NuSMV model checker and CTL properties. This is due to
the fact that we want to compare our technique with the tra-
ditional CTL family-based model checking algorithm (used
as a baseline) [11], which is based on an extended version of
NuSMV model checker and CTL properties. Experiments
show that our technique combined with the standard version
of NuSMV achieves considerable performance gains.

We make the following contributions here:

– Conservative and their dual variability abstractions for
featured transition systems are defined.

– Modal transition systems for representing abstract vari-
ability models are introduced, and their soundness with
respect to CTL� properties is shown.

– Abstractions are implemented as syntactic transforma-
tions of variational systems specified in a high-level
modelling language in a preprocessing step, without any
modifications to the model checking tools.

– Efficient CTL family-based model checking technique
using an off-the-shelf model checker NuSMV is pro-
posed.

– Evaluation of the above technique for CTL family-based
model checkingwithNuSMV is presented, which shows
scalability gains against the traditionalCTL family-based
model checking algorithms and against brute-force enu-
meration approach.
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This work is an extended and revised version of [16]. We
revise and correct the syntax and semantics of CTL� formu-
lae in negation normal form given in [16]. We also make the
following extensions here: (1)Wemotivate the need for using
over- and under-approximating variability abstractions for
achieving efficient CTL� family-based model checking; (2)
we provide formal proofs for all main results in the work; (3)
we expand and elaborate the examples as well as the discus-
sion on how this approachworks; (4) we providemore details
on howmay- andmust-parts of high-level abstractmodels are
defined as source-to-source transformations; (5) we greatly
augment the evaluation of this approach by defining precise
research questions, including new case-study models, con-
sideringmore properties, and extending performance results.

We proceed with a motivating example for using vari-
ability abstractions for CTL� family-based model checking
in Sect. 2. The basics of CTL� family-based model checking
are explained in Sect. 3. Section 4 defines variability abstrac-
tions as well as abstract variability models and proves that
they preserve the CTL� properties. Section 5 explains how to
encode variational systems using high-level modelling lan-
guages and presents how abstractions are implemented as
source-to-source transformations of such high-level models.
The evaluation on several case studies is presented in Sect. 6.
In Sect. 7, we show how our verification procedure can be
extended in order to (1) handle μ-calculus properties and (2)
become a fully automatic procedure. Finally, we discuss the
relation to other works and conclude.

2 Motivating example

A variability model for the VendingMachine [10] varia-
tional system is shown in Fig. 1. It describes the behaviours
of a family of models of vending machines in an aggregating
form using a featured transition system [10]. The Vend-

ingMachine family has five features, and each of them is
assigned an identifying letter and a color. The features are:
VendingMachine (denoted by v, in black), the manda-
tory base feature for purchasing a drink which is enabled in
all variants of this family; Tea (t , in red), for serving tea;
Soda (s, in green), for serving soda, which is also a manda-
tory feature present in all variants; CancelPurchase (c,

Fig. 1 The variability model for VendingMachine

(a)

(b)

Fig. 2 Some variants of VendingMachine

in brown), for cancelling a purchase after a coin is entered;
and FreeDrinks ( f , in blue) for offering free drinks. Each
transition is labelled by first an action, then a slash ’/’, and
a guarding feature expression specifying for which variants
the transition is to be included (this depends on which fea-
tures have been enabled in a given variant). For example, the
transition 1© free/f−−−→ 3© is included in variants that have the
feature f enabled.

By combining various features, a number of variants of the
VendingMachine family can be derived. Figure 2a shows
a basic variant of VendingMachine that only serves soda.
Only the features v and s are enabled, so it is described by
the configuration {v, s}. The machine takes a coin, returns
change, serves a soda, opens the access compartment so that
the customer can take the soda, before closing it again. Fig-
ure 2b shows another variant of this machine (features v,
s, t , and f enabled), which serves both tea and soda, and
offers free drinks as well as paid drinks. Other variants can
be derived by enabling other combinations of features. We
can derive up to 2n variants, where n is the number of fea-
tures available in the family. In general, not all combinations
of features give rise to valid variants (configurations). For the
VendingMachine family, the features v and s are manda-
tory, so they must be enabled in all valid variants. The other
features t , c, and f are optional, thus yielding eight valid
variants in this family.

Suppose that a proposition start holds in the initial state
1©. Consider the following property

Φ1: in every state along every execution, there exists
a possible continuation that will eventually reach the
start state.

Both variants of VendingMachine in Fig. 2 satisfy this
property, since the initial state 1© is reachable from any state
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of those variants. In fact, all variants of VendingMachine

satisfy Φ1.
Model checking [3] canbeused toverify formallywhether

properties like Φ1 hold for the VendingMachine fam-
ily. One possibility is to instantiate all valid variants of
the family and verify them one by one, using a standard
single-system model checker (this is known as “brute-force”
approach). Alternatively, we can use a specialized family-
based model checking algorithms and tools [11] that operate
directly on the variability model. Although the family-
based model checkers are more efficient than the brute-force
approach, their efficiency still depends on the number of
features and variants in the family. Moreover, family-based
model checkers require a costly design and implementa-
tion.

In order to overcome the above problems of family-based
approach (scalability and development cost), we previously
proposed to use variability abstractions [17,18]. They reduce
the number of variants, producing abstract variability mod-
els which are smaller than the concrete ones. Hence, the
model checkingof thesemodels is computationallymore effi-
cient, but less precise. However, the variability abstractions
introduced in [17,18] are conservative, which means that the
resulting abstract variability models over-approximate the
concrete ones and are sound only with respect to universal
properties (that contain just the universal ∀ path quantifier.)
On the other hand, the above property Φ1 is not universal,
since it contains both universal quantifiers (for all executions,
∀) and existential quantifiers (there exists an execution, ∃).
In order to handle such properties, we have to use both con-
servative (over-approximating) variability abstractions and
their dual (under-approximating) variability abstractions. In
effect, we will obtain an abstract variability model (known as
modal transition system), which has two types of transitions:
may-transitions defined using the conservative abstractions,
andmust-transitions defined using the dual abstractions. The
propertyΦ1 is now interpreted over abstract variability mod-
els as follows:

Φ1: in every state along every may-execution (that
contains only may-transitions), there exists a possible
must-continuation (that contains onlymust-transitions)
that will eventually reach the start state.

If the property holds in such an abstract variability model,
then it will hold in the concrete variability model as well (by
our soundness result).

We consider a basic variability abstraction, called the
join abstraction (written αjoin). It merges all valid variants
into a single abstract model, such that its may-part contains
all transitions that occur in at least one variant, whereas
its must-part contains only those transitions that occur in
all variants. Note that with αjoin we obtain a single-system
model with no variability in it. We combine the simplifica-

Fig. 3 The abstract model αjoin(VendingMachine). Dashed edges
represent may-transitions, while solid edges represent must-transitions

tion of concrete models by the variability abstraction with a
divide-and-conquer strategy for more efficient verification.
The key operator for this strategy is projection (denoted π ),
which can be used to partition the configuration space of
all variants into disjoint subsets, producing several concrete
variability models that can be analysed (and abstracted) sep-
arately.

We illustrate the use of abstractions via our example
property Φ1. We apply the αjoin abstraction on the vari-
ability model of Fig. 1, which simply joins control flows
of all variants into a single model (known as modal tran-
sition system), where all (mandatory and optional) features
become true in may-transitions and only mandatory fea-
tures become true in must-transitions (the other optional
features become false). As a result of this operation, we
obtain the abstract model αjoin(VendingMachine), shown
in Fig. 3, where may-transitions are denoted by dashed
lines and must-transitions are denoted by solid lines. Note
that every must-transition is also a may-transition, and we
only show those (may and must) transitions whose pres-
ence conditions have evaluated to true after applying the
join abstraction. The may-part of αjoin(VendingMachine),
which contains only may-executions, over-approximates the
VendingMachine in the sense that it contains more execu-
tions than VendingMachine. On the other hand, the must-
part of αjoin(VendingMachine), which contains only must-
executions, under-approximates the VendingMachine in
the sense that it contains less executions than VendingMa-

chine. The variability-specific information about features
is lost in the abstract model. The may- and must-parts of
αjoin(VendingMachine) represent ordinary transition sys-
tems, and they can be verified efficiently using standard
(single-system) model checkers (such as NuSMV). It can be
shown that an abstract variability model satisfies one prop-
erty, if both itsmay- andmust-parts satisfy the same property.
Thus, by verifying that Φ1 holds for the may- and must-
parts of αjoin(VendingMachine), we have thatΦ1 holds for
αjoin(VendingMachine). Then, using the soundness result
for the join abstraction we can conclude that Φ1 holds for
the concrete VendingMachine as well (i.e. for all its valid
variants).
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3 Background

We begin by summarizing the existing background for our
work. We define modelling formalisms for describing sin-
gle systems and then proceed with modelling formalisms for
variational systems. Finally, we present the temporal logic
CTL�, which is used to specify system properties.

3.1 Single systems

We present the basic definition of a transition system (TS)
and a modal transition system (MTS) that we will use to
describe behaviours of single systems.

Definition 1 A transition system (TS) is a tuple T =
(S, Act, trans, I , AP, L), where S is a finite set of states;
Act is a finite set of actions; trans ⊆ S × Act × S is a tran-
sition relation which is total, so that for each state there is an
outgoing transition; I ⊆ S is a set of initial states; AP is a
set of atomic propositions; and L : S → 2AP is a labelling
function specifying which propositions hold in a state. We
write s1

λ−→s2 whenever (s1, λ, s2) ∈ trans.

An execution (behaviour) of a TS T is an infinite sequence

ρ = s0λ1s1λ2 . . . with s0 ∈ I such that si
λi+1−→ si+1 for all

i ≥ 0. The semantics of the TS T , denoted as [[T ]]TS, is the
set of its executions.

Remark TSs are used for modelling reactive systems whose
computations typically do not terminate. In such systems, ter-
minal states in which no progress is possible are undesirable
and often represent a design error. Therefore, we consider
TSs without terminal states (transition relation is total) and
only infinite sequences.

MTSs [35] are a generalization of transition systems that
allows describing not just a sum of all behaviours of a system
but also an over- and under-approximation of the system’s
behaviours. An MTS is a TS equipped with two transition
relations: must and may. The former (must) is used to spec-
ify the required behaviour, while the latter (may) to specify
the allowed behaviour of a system. We will use MTSs for
representing abstractions of variational systems.

Definition 2 A modal transition system (MTS) is a tuple
M = (S, Act, transmay, transmust, I , AP, L), where
transmay ⊆ S × Act × S describe may-transitions of M;
transmust ⊆ S × Act × S describe must-transitions of M,
such that transmay is total and transmust ⊆ transmay.

The intuition behind the inclusion transmust ⊆ transmay is
that transitions that are necessarily true (transmust) are also
possibly true (transmay). A may-execution in M is an exe-
cution (infinite sequence) with all its transitions in transmay,
whereas a must-execution inM is a maximal sequence with

all its transitions in transmust, which cannot be extendedwith
anyother transition from transmust.Note that since transmust

is not necessarily total, must-executions can be finite. We
use [[M]]may

MTS to denote the set of all may-executions in M,
whereas [[M]]must

MTS to denote the set of all must-executions in
M.

3.2 Variational systems

Let F = {A1, . . . , An} be a finite set of Boolean variables
representing the features available in a variational system. A
specific subset of features, k ⊆ F, known as configuration,
specifies a variant (valid product) of a variational system.
We assume that only a subset K ⊆ 2F of configurations are
valid. An alternative representation of configurations is based
upon propositional formulae. Each configuration k ∈ K can
be represented by a formula: k(A1) ∧ · · · ∧ k(An), where
k(Ai ) = Ai if Ai ∈ k, and k(Ai ) = ¬Ai if Ai /∈ k for
1 ≤ i ≤ n.Wewill use both representations interchangeably.

An FTS describes behaviour of a whole family of systems
in a superimposedmanner. Thismeans that it combinesmod-
els ofmany variants in a singlemonolithic description, where
the transitions are guarded by a presence condition that iden-
tifies the variants they belong to. The presence conditions ψ

are drawn from the set of feature expressions, FeatExp(F),
which are propositional logic formulae over F:

ψ ::=true | A ∈ F | ¬ψ | ψ1 ∧ ψ2

The presence conditionψ of a transition specifies the variants
in which the transition is enabled. We write [[ψ]] to denote
the set of variants from K that satisfy ψ , i.e. k ∈ [[ψ]] iff
k |� ψ , where |� is the standard satisfaction relation of
propositional logic. For example, given F = {A, B} with
all four possible variants being valid, we get: [[A ∨ B]] =
{A ∧ B, A ∧ ¬B,¬A ∧ B}.
Definition 3 A featured transition system (FTS) represents
a tuple F = (S, Act, trans, I , AP, L, F, K, δ), where
S, Act, trans, I , AP , and L are defined as in TS; F is the
set of available features; K is a set of valid configurations;
and δ : trans → Feat Exp(F) is a total function decorating
transitions with presence conditions (feature expressions).

The projection of an FTS F to a variant k ∈ K, denoted as
πk(F), is theTS (S, Act, trans′, I , AP, L),where trans′ =
{t ∈ trans | k |� δ(t)}. We lift the definition of
projection to sets of configurations K

′ ⊆ K, denoted as
πK′(F), by keeping the transitions admitted by at least one
of the configurations in K

′. That is, πK′(F), is the FTS
(S, Act, trans′, I , AP, L, F, K

′, δ′), where trans′ = {t ∈
trans | ∃k ∈ K

′.k |� δ(t)} and δ′ = δ|trans′ is the restric-
tion of δ to trans′. The semantics of an FTS F , denoted as
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[[F]]FTS, is the union of behaviours of the projections on all
valid variants k ∈ K, i.e. [[F]]FTS = ∪k∈K[[πk(F)]]TS.
Example 1 Consider the FTS for the VendingMachine

family presented in Fig. 1. The FTS has five features
F = {v, t, s, c, f }. The set of all valid configurations is
obtained by combining the above features. Recall that v

and s are mandatory features, so the set of valid config-
urations is: K

VM = {{v, s}, {v, s, t}, {v, s, c}, {v, s, t, c},
{v, s, f }, {v, s, t, f }, {v, s, c, f }, {v, s, t, c, f }}.

Figure2a shows a basic version of VendingMachine

that only serves soda. This variant is described by the config-
uration: {v, s}, equivalently v ∧ s ∧ ¬t ∧ ¬c ∧ ¬ f . The
model presented in the figure is obtained by the projec-
tion π{v,s}(VendingMachine). Similarly, we can obtain the
model π{v,s,t, f }(VendingMachine) shown in Fig. 2b.

Figure 3 shows an MTS, where must-transitions are
denoted by solid lines and may-transitions are denoted by
dashed lines. ��

3.3 CTL� properties

Computation tree logic� (CTL�) [3,7] is an expressive tem-
poral logic for specifying system properties, which subsumes
both CTL and LTL logics. CTL� state formulae Φ are gen-
erated by the following grammar:

Φ::=true | false | a | ¬a | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | ∀φ | ∃φ,

φ::=Φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ©φ | φ1Uφ2 | φ1Vφ2

where a ∈ AP and φ represent CTL� path formulae. The path
formula ©φ can be read as “from the next state φ”, while
φ1Uφ2 can be read as “φ1 until φ2”, and φ1Vφ2 can be read as
“φ2 while not φ1” (where φ1 may never hold). Other derived
temporal operators for path formulae can be defined as well
by means of syntactic sugar, for instance: ♦φ = trueUφ

(φ holds eventually), and �φ = ¬♦¬φ (φ always holds).
Note that the CTL� state formulae Φ are given in negation
normal form (¬ is applied only to atomic propositions). This
facilitates the definition of ∀CTL� and ∃CTL�, which are
subsets ofCTL� where the only allowed path quantifiers are∀
and ∃, respectively. Given Φ ∈ CTL�, we consider ¬Φ to be
the equivalent CTL� formula given in negation normal form.
To ensure that every CTL� formula is equivalent to a formula
in negation normal form, for each operator the corresponding
dual operator is necessary. We have that ∧ and ∨ are dual,
© is dual to itself, as well as U and V are dual. For example,
we use the duality law: ¬∀ © Φ ≡ ∃ © ¬Φ.

We formalize the semantics of CTL� over a TS T . We
write [[T ]]sTS for the set of executions that start in state s;
ρ[i] = si to denote the i th state of the execution ρ; and
ρi = siλi+1si+1 . . . for the suffix of ρ starting from its i th
state.

Definition 4 Satisfaction of a state formula Φ in a state s of
a TS T , denoted T , s |� Φ, is defined as (T is omitted when
clear from context):

(1) s |� a iff a ∈ L(s); s |� ¬a iff a /∈ L(s),
(2) s |� Φ1 ∧ Φ2 iff s |� Φ1 and s |� Φ2;

s |� Φ1 ∨ Φ2 iff s |� Φ1 or s |� Φ2

(3) s |� ∀φ iff ∀ρ ∈ [[T ]]sTS. ρ |� φ;
s |� ∃φ iff ∃ρ ∈ [[T ]]sTS. ρ |� φ

Satisfaction of a path formula φ for an execution ρ =
s0λ1s1 . . . of a TS T , denoted T , ρ |� φ, is defined as (T is
omitted when clear from context):

(4) ρ |� Φ iff ρ[0] |� Φ,
(5) ρ |� φ1 ∧ φ2 iff ρ |� φ1 and ρ |� φ2;

ρ |� φ1 ∨ φ2 iff ρ |� φ1 or ρ |� φ2;
ρ |� ©φ iff ρ1 |� φ;

ρ |� (φ1Uφ2) iff ∃i≥0.
(
ρi |� φ2∧(∀0≤ j< i . ρ j |�φ1)

)

ρ |� (φ1Vφ2) iff ∀i ≥0.
(∀0≤ j < i . ρ j �|� φ1 �⇒ ρi |�

φ2
)

A TS T satisfies a state formula Φ, written T |� Φ, iff all
its initial states satisfy the formula: ∀s0 ∈ I . s0 |� Φ.

We say that an FTSF satisfies aCTL� formulaΦ, written
F |� Φ, iff all its valid variants satisfy the formula: ∀k ∈
K. πk(F) |� Φ. Otherwise, we say that F does not satisfy
Φ, written F �|� Φ. In this case, we also want to determine
a non-empty set of violating variants K

′ ⊆ K, such that
∀k′ ∈K

′. πk′(F) �|� Φ and ∀k∈K\K
′. πk(F) |� Φ.

We now define the semantics of CTL� over an MTS M.
We define M, s |� Φ and M, ρ |� φ, which are slightly
different from Definition 4 where a TS T is considered. In
particular, the clause (3) is replaced by:

(3’) M, s |� ∀φ iff for every may-execution ρ in the state s
of M, that is, ∀ρ ∈ [[M]]may,s

MTS , it holds ρ |� φ;
M, s |� ∃φ iff there exists a must-execution ρ in the
state s ofM, that is, ∃ρ ∈ [[M]]must,s

MTS , such that ρ |� φ.

An MTSM satisfies a state formula Φ, writtenM |� Φ, iff
∀s0 ∈ I . s0 |� Φ.

Note that the duality laws no longer hold for MTSs. How-
ever, we use MTSs as abstract variability models that only
help to speed up the procedure for verifying CTL� properties
over FTSs (i.e. a family of TSs).

Example 2 Consider the FTS VendingMachine in Fig. 1.
We restate the example property Φ1 from Sect. 2 in CTL� as
follows:

Φ1 = ∀� ∃♦start
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where the proposition start holds in the initial state 1©.
The property states that in every state along every execution
there exists a possible continuation that will eventually reach
the start state. This is a CTL� formula, which is neither in
∀CTL� nor in ∃CTL�. Note that VendingMachine |� Φ1,
since Φ1 holds for all variants. Even for variants with the
feature c enabled, there is a continuation from the state 3©
back to 1©.

Consider another property

Φ2 = ∀�∀♦start

It states that in every state along every execution all possible
continuations will eventually reach the initial state. This for-
mula is in ∀CTL�. Note that VendingMachine �|� Φ2. For
example, if the feature c (Cancel) is enabled, a counter-
example where the state 1© is never reached is: 1© → 3© →
5© → 7© → 3© → . . .. The set of violating products
is [[c]] = {{v, s, c}, {v, s, t, c}, {v, s, c, f }, {v, s, t, c, f }} ⊆
K

VM. However, note that the variants from [[¬c]] do satisfy
Φ2, that is, π[[¬c]](VendingMachine) |� Φ2.

Finally, consider the ∃CTL� property

Φ3 = ∃� ∃♦start

It states that there exists an execution such that in every state
along it there exists a possible continuation that will even-
tually reach the start state. The witness is 1© → 2© →
3© → 5© → 7© → 8© → 1© . . ., which is an execution that
belongs to all valid variants. ��

CTL� extends CTL as it allows path quantifiers ∀ and ∃ to
be arbitrarily nested with temporal operators, such as © and
U. In contrast, in CTL each temporal operator must be imme-
diately preceded by a path quantifier. Hence, all properties
in Example 2 are from CTL. We now show how to handle a
CTL� property which is not in CTL.

Example 3 Let the proposition selectedTea holds only
in the state 6©, and it does not hold in all other states. We
want to check the property:

Φ4 = ∀♦�(¬selectedTea)

It states that along every execution there exists a state such
that after that state selectedTea does not hold forever.
Note that VendingMachine �|� Φ4. For example, if the
feature t (Tea) is enabled, a possible counter-example is:
1© → 3© → 6© → 7© → 1© → . . .. The set of violating
products is [[t]]. However, note that the variants from [[¬t]]
do satisfy Φ4, that is, π[[¬t]](VendingMachine) |�Φ4. ��

4 Abstraction of variational systems

Wenow introduce the variability abstractions which preserve
full CTL�, including its universal and existential proper-
ties. The abstractions simplify the configuration space of a
variational system (i.e. the corresponding FTS), by reduc-
ing the number of configurations and manipulating presence
conditions of transitions. We start working with variability
abstractions between Boolean complete lattices of feature
expressions and then induce a notion of abstract models of
FTSs. Finally, we show that the obtained abstract models
are sound with respect to CTL� properties, and illustrate
how those abstract models can be combined with a divide-
and-conquer verification strategy based on partitioning the
configuration space.

4.1 Variability abstractions

An abstraction is a mapping of elements in a concrete
domain (say concrete models) to elements of an abstract
domain (here the abstract models). Usually, we want to sim-
plify representation of the object under analysis to speed up
analysis. In program analysis and verification, domains are
usually complete lattices, which have sufficiently rich struc-
ture that facilitates ordering of elements (some elements are
more informative than others) and synthesizing newelements
using least upper bound.

Let 〈L,�L 〉 and 〈M,�M 〉 be complete lattices taking the
role of the concrete and abstract domain, respectively. A
Galois connection is a pair of total functions, α : L → M
and γ : M → L (respectively, known as the abstraction and
concretization functions) such that:

α(l) �M m ⇐⇒ l �L γ (m) for all l ∈ L,m ∈ M .

We write 〈L,�L 〉 −−→←−−
α

γ 〈M,�M 〉 to state that (α, γ ) are
a Galois connection between L and M . We will use Galois
connections to approximate a computationally expensive (or
uncomputable) analysis (model) formulated over L with a
computationally cheaper analysis (model) formulated over
M .

Variability abstractions simplify the configuration space
of an FTS, by reducing the number of configurations. This is
easy to dobymanipulating presence conditions of transitions.
Thus, we define abstraction of variability in FTSs primarily
by abstraction of presence conditions, working with Galois
connections between standard Boolean complete lattices.We
define two classes of abstractions. We use the standard con-
servative abstractions [17,18] as an instrument to eliminate
variability from the FTS in an over-approximating way, so
by adding more executions. We use the dual abstractions,
which can also eliminate variability but through under-
approximating the given FTS, so by dropping executions.
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Domains The Boolean complete lattice of feature expres-
sions (propositional formulae over F) is defined as:
(FeatExp(F)/≡, |�,∨,∧, true, false,¬). The elements of the
domain FeatExp(F)/≡ are equivalence classes of proposi-
tional formulae ψ ∈FeatExp(F) obtained by quotienting by
the semantic equivalence ≡. The ordering |� is the standard
entailment between propositional logics formulae, whereas
the least upper bound and the greatest lower bound are just
logical disjunction and conjunction, respectively. Finally, the
constant false is the least, true is the greatest element, and
negation is the complement operator.

Conservative abstractions The join abstraction, αjoin,
merges the control flowof all variants, obtaining a single vari-
ant that includes all executions that may occur in any variant.
The information about which transitions are associated with
which variants is lost. Each feature expression ψ is replaced
with true if there exists at least one configuration from K

that satisfies ψ . The new abstract set of features is empty:
αjoin(F) = ∅, and the abstract set of valid configurations
is a singleton: αjoin(K) = {true} if K �= ∅. The abstrac-
tion and concretization functions between FeatExp(F) and
FeatExp(∅), forming aGalois connection [17,18], are defined
as:

αjoin(ψ)=
{
true if ∃k ∈ K.k |� ψ

false otherwise

γ join(ψ)=
{
true if ψ is true
∨

k∈2F\K k if ψ is false

(1)

Dual abstractions. Suppose that 〈FeatExp(F)/≡, |�〉,
〈FeatExp(α(F))/≡, |�〉 are Boolean complete lattices, and

〈FeatExp(F)/≡, |�〉 −−→←−−
α

γ 〈FeatExp(α(F))/≡, |�〉 is a Galois
connection. We define [15]: α̃ = ¬◦α◦¬ and γ̃ = ¬◦γ ◦¬
so that 〈FeatExp(F)/≡, |�〉 −−→←−−

α̃

γ̃ 〈FeatExp(α(F))/≡, |�〉
is a Galois connection (or equivalently, we have that

〈FeatExp(α(F))/≡, |�〉 −−→←−−
γ̃

α̃ 〈FeatExp(F)/≡, |�〉). The

obtained Galois connections (̃α, γ̃ ) are called dual (under-
approximating) abstractions of (α, γ ).

The dual join abstraction, α̃join, merges the control flowof
all variants, obtaining a single variant that includes only those
executions that occur in all variants. Each feature expression
ψ is replaced with true if all configurations from K sat-
isfyψ . The abstraction and concretization functions between
FeatExp(F) and FeatExp(∅), forming a Galois connection,

are defined as: α̃join = ¬◦αjoin ◦¬ and γ̃ join = ¬◦γ join ◦¬,
that is:

α̃join(ψ) =
{
true if ∀k ∈ K.k |� ψ

false otherwise

γ̃ join(ψ)=
{∧

k∈2F\K(¬k) if ψ is true

false if ψ is false

(2)

4.2 Abstract MTS

Given a Galois connection (αjoin, γ join) defined on the level
of feature expressions, we now define the abstraction of an
FTS as an MTS with two transition relations: one (may) pre-
serving universal properties and the other (must) existential
properties. The may-transitions describe the behaviour that
is possible, but not need be realized in the variants of the
family, whereas the must-transitions describe behaviour that
has to be present in any variant of the family.

Definition 5 Let F = (S, Act, trans, I , AP, L, F, K, δ)

be an FTS, we define its abstraction to be the MTS
αjoin(F) = (S, Act, transmay, transmust, I , AP, L), where
transmay = {t ∈ trans | αjoin(δ(t)) = true}, and also

transmust = {t ∈ trans | α̃join(δ(t)) = true}.
Note that the abstract model αjoin(F) has no variability in
it, i.e. it contains only one abstract configuration (that is,
true ∈ αjoin(K)).

Example 4 Recall the FTS VendingMachine of Fig. 1 with
the set of valid configurations K

VM (see Example 1). Fig-
ure 3 shows αjoin(VendingMachine), where the allowed
(may) part of the behaviour includes the transitions that are
associated with the optional features c, f , t in Vending-

Machine, whereas the required (must) part includes the
transitions associated with the mandatory features v and s.
Note that αjoin(VendingMachine) is an ordinaryMTSwith
no variability. ��

From the MTSM, we define two TSsMmay andMmust

representing the may- and must-components ofM, i.e. they
only contain may- and must-transitions of M, respectively.
Thus, we have [[Mmay]]TS = [[M]]may

MTS and [[Mmust]]TS =
[[M]]must

MTS.

4.3 Preservation of CTL�

We now show that the abstraction of an FTS is sound with
respect to CTL�. First, we show two helper lemmas stat-
ing that: if any variant k ∈ K that can execute a behaviour,
then the abstract model αjoin(F) can execute the same may-
behaviour; and if the abstract model αjoin(F) can execute a
must-behaviour, then all valid variants k∈K can execute the
same behaviour.

Lemma 1 Let ψ ∈ FeatExp(F), and K be a set of valid con-
figurations over F.

(i) Let k ∈ K and k |� ψ . Then, αjoin(ψ) = true.

(ii) Let α̃join(ψ) = true. Then, for all k ∈ K, it holds k |� ψ .

Proof (i) By assumption, we have that ∃k ∈ K.k |� ψ .
Thus, by definition ofαjoin in Eq. (1), we haveαjoin(ψ) =
true.
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(ii) By assumption, we have that α̃join(ψ) = true. By def-

inition of α̃join in Eq. (2), this is the case only if for all
k ∈ K, it holds k |� ψ .

��
Lemma 2 (i) Let k ∈ K and ρ ∈ [[πk(F)]]TS. Then, ρ ∈

[[αjoin(F)]]mayMTS.
(ii) Let ρ ∈ [[αjoin(F)]]mustMTS. Then, ρ ∈ [[πk(F)]]TS for all

k ∈ K.

Proof (i) Let ρ = s0λ1s1λ2 . . . ∈ [[πk(F)]]TS for some k ∈
K. This means that for all transitions in ρ, ti = si

λi+1−→
si+1, we have that k |� δ(ti ) for all i ≥ 0. ByLemma 1(i),
we have that αjoin(δ(ti )) = true for all i ≥ 0. Hence, we
have ti ∈ transmay for i ≥ 0 , and soρ ∈ [[αjoin(F)]]may

MTS.
(ii) Let ρ = s0λ1s1λ2 . . . ∈ [[αjoin(F)]]must

MTS. This means that

for all transitions in ρ, ti = si
λi+1−→ si+1, we have that

ti ∈ transmust and so α̃join(δ(ti )) = true for all i ≥ 0.
By Lemma 1(ii), we have that for all k ∈ K, it holds
k |� δ(ti ) for all i ≥ 0. Hence, we have ρ ∈ [[πk(F)]]TS
for all k ∈ K.

��
As a result, every ∀CTL� (resp., ∃CTL�) property true for

themay- (resp., must-) component ofαjoin(F) is true forF as
well. Moreover, the MTS αjoin(F) preserves the full CTL�.

Theorem 1 (Preservation results) For any FTS F , we have:

(∀CTL�) For any Φ ∈ ∀CT L�, αjoin(F)may |� Φ �⇒
F |� Φ.

(∃CTL�) For any Φ ∈ ∃CT L�, αjoin(F)must |� Φ �⇒
F |� Φ.

(CTL�) For any Φ ∈ CT L�, αjoin(F) |� Φ �⇒ F |�
Φ.

Proof We prove the most difficult case (CTL�).

By induction on the structure of Φ. We prove for state
formulae Φ that if αjoin(F) |� Φ, then F |� Φ (i.e. for all
k ∈ K, πk(F) |� Φ). All cases except ∀ and ∃ quantifiers
are straightforward.

ForΦ = ∀φ, we proceed by contraposition. AssumeF �|�
∀φ. Then, there exists a configuration k ∈ K and an execution
ρ ∈ [[πk(F)]]TS such that ρ �|� φ. By Lemma 2(i), we have
that ρ ∈ [[αjoin(F)]]may

MTS, and so αjoin(F) �|� ∀φ.
For Φ = ∃φ. Assume αjoin(F) |� ∃φ. This means that

there exists an execution ρ ∈ [[αjoin(F)]]must
MTS such that ρ |�

φ. By Lemma 2(ii), we have that for all k ∈ K, we have
ρ ∈ [[πk(F)]]TS, and so πk(F) |� ∃φ. Since πk(F) |� ∃φ

for all k ∈ K, it follows F |� ∃φ. ��
The preservation results (soundness) from Theorem 1

mean that abstract models are designed to be conservative

for the satisfaction of CTL� properties. However, in case of
the refutation of a property, the counter-example found in the
abstract model may be spurious (introduced due to abstrac-
tion) for some variants and genuine for the others. This can be
established by checking which concrete variants can execute
the found counter-example.

Let Φ be a CTL� formula which is not in ∀CTL� nor in
∃CTL�, and let M be an MTS. We can verify M |� Φ

by checking Φ on two TSs Mmay and Mmust and then by
combining the obtained results as specified below.

Theorem 2 For any Φ ∈ CT L� and MTS M, we have:

M |� Φ =
{
true if

(
Mmay |� Φ ∧ Mmust |� Φ

)

false if
(
Mmay �|� Φ ∨ Mmust �|� Φ

)

Proof By induction on the structure of Φ. All cases except ∀
and ∃ quantifiers are straightforward.

For Φ = ∀φ. Consider the first case, when M |� Φ =
true. AssumeMmay |� ∀φ. That is, for any may-execution ρ

ofMwehaveρ |� φ. ByDefinition 4 (3’),we haveM |� Φ.
Consider the second case, when M |� Φ = false. Assume
Mmay �|� ∀φ. That is, there exists a may-execution ρ of M
such that ρ �|� φ. By Definition 4 (3’), we have M �|� Φ.
AssumeMmust �|� ∀φ. That is, there exists a must-execution
ρ of M such that ρ �|� φ. But ρ is also a may-execution, so
by Definition 4 (3’), we have M �|� Φ.

For Φ = ∃φ. Consider the first case, when M |� Φ =
true. Assume Mmust |� ∃φ. That is, there exists a must-
execution ρ of M such that ρ |� φ. By Definition 4 (3’),
we have M |� Φ. Consider the second case, when M |�
Φ = false. Assume Mmay �|� ∃φ. That is, for all may-
executionsρ ofMwehaveρ �|� φ. Since allmust-executions
are also may-executions, we have that all must-executions do
not satisfyφ. ByDefinition 4 (3’), we haveM �|� Φ. Assume
Mmust �|� ∃φ. That is, for all must-executions ρ of M we
have ρ �|� φ. By Definition 4 (3’), we have M �|� Φ. ��

Therefore, we can check whether the abstract model
αjoin(F) satisfies a formula Φ, which is not in ∀CTL� nor
in ∃CTL�, by running a model checker twice, once with
the may-component of αjoin(F) and once with the must-
component of αjoin(F). On the other hand, a formulaΦ from
∀CTL� (resp., ∃CTL�) is checked against αjoin(F) by run-
ning a model checker only once with the may-component
(resp., must-component) of αjoin(F).

Divide-and-conquer strategy The family-based model
checking problem F |� Φ can be reduced to a number of
smaller problems by partitioning the configuration space K.
Let the subsets K1, K2, . . . , Kn form a partition of the set
K. Then, F |� Φ iff πKi (F) |� Φ for all i = 1, . . . , n. By
using Theorem 1 (CTL�), we obtain the following result.
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Fig. 4 αjoin(π[[¬c]](VendingMachine))

Corollary 1 Let K1, K2, . . . , Kn form a partition of K. If
αjoin(πK1(F)) |� Φ, . . . ,αjoin(πKn (F)) |� Φ, then F |�
Φ.

Proof Assume αjoin(πK1(F)) |� Φ, . . . ,αjoin(πKn (F)) |�
Φ. By Theorem 1 (CTL�), it follows that πK1(F) |�
Φ, . . . , πKn (F) |� Φ. Since K1, K2, . . . , Kn form a par-
tition of K, we have that πk(F) |� Φ for all k ∈ K. Hence,
F |� Φ. ��
Therefore, in case of suitable partitioning of K and the
aggressive αjoin abstraction, all αjoin(πKi (F))may and
αjoin(πKi (F))must are ordinary TSs, so the family-based
model checking problem can be solved using existing single-
system model checkers with all the optimizations that these
tools may already implement.

Example 5 Consider the properties introduced in Example 2.
We can verify Φ1 = ∀� ∃♦start by checking may-
and must-components of αjoin(VendingMachine). In par-
ticular, we have αjoin(VendingMachine)may |� Φ1 and
αjoin(VendingMachine)must |� Φ1. Thus, using Theo-
rem1, (CTL�) andTheorem2,wehave thatVendingMachine

|� Φ1.
Using the TS αjoin(VendingMachine)may, we can ver-

ify Φ2 = ∀�∀♦start (Theorem 1, (∀CTL�)). In this
case, we obtain the counter-example 1© → 3© → 5© →
7© → 3© . . ., which is genuine for variants satisfying
c. Hence, variants from [[c]] violate Φ2. On the other
hand, we can establish that variants from [[¬c]] satisfy Φ2

in the following way. First, we can construct the model
αjoin(π[[¬c]](VendingMachine)), which is shown in Fig. 4.
Since αjoin(π[[¬c]](VendingMachine))may satisfies Φ2, we
can conclude by Theorem 1, (∀CTL�) that all variants from
[[¬c]] satisfy Φ2.

Using αjoin(VendingMachine)must, we can verify Φ3 =
∃� ∃♦start, by finding the witness 1© → 2© → 3© →
5© → 7© → 8© → 1© . . .. By Theorem 1, (∃CTL�), we have
that VendingMachine |� Φ3. ��
Example 6 Consider the property Φ4 from Example 3. We
can verify Φ4 = ∀♦�(¬selectedTea) using the TS
αjoin(VendingMachine)may (Theorem 1, (∀CTL�)). We
obtain the counter-example 1© → 3© → 6© → 7© →

1© . . ., which is genuine for variants satisfying t . Hence,
variants from [[t]] violate Φ4. But, we can check that
αjoin(π[[¬t]](VendingMachine))may |� Φ4, and thus by
Theorem 1, (∀CTL�) it follows that all variants from [[¬t]]
satisfy Φ4. ��

5 Implementation

Wenowdescribe an implementation of our abstraction-based
approach for CTL model checking of variational systems in
the context of state-of-the-art NuSMV model checker [6].
FTSs do not represent a convenient formalism for modelling
very large variational systems. Hence, it is much appreciated
by engineers to use some high-level modelling languages
for FTSs. We use a high-level modelling language, called
fNuSMV, which is expressively equivalent to FTSs and close
to NuSMV’s input language. First, we introduce the core
NuSMV language, and then we present its feature-aware
extension, fNuSMV. Finally, we show how to implement
projections and variability abstractions as syntactic source-
to-source transformations of high-level models specified in
fNuSMV.

5.1 NUSMV language

TheNuSMV modelling language [6] represents a high-level
syntax for describing finite state automata. ANuSMV model
consists of list ofmoduleswith parameters,which canbeused
to encapsulate and factor out recurring sub-models.Amodule
(MODULE) contains variable declarations (VAR), macrodef-
initions (DEFINE), assignments (ASSIGN), and properties
(SPEC) to be checked. The variable declarations define the
state space and the assignments define the transition relation
of the finite state automaton described by the given model.
Possible types for variables are Booleans, finite ranges of
integers, and enumerations. The assignments are of the form:

s(v) := case b1 : e1;
. . .

bn : en;
esac

(3)

where v is a variable, bi is a Boolean expression, ei is an
expression (for 1 ≤ i ≤ n), and s(v) is one of v, init(v), or
next(v). We use v to assign the current value of v, init(v)
to assign the initial value of v, and next(v) to assign the
value of v in the next state. The next state value of v is given
as a function of the variable values in the current state. The
case statement is evaluated top to bottom, so the result is
the expression from the first branch ei whose condition bi
evaluates to true. Note that all assignments in a model are
evaluated in parallel.
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Fig. 5 A basic NuSMVmodel

Consider a basic NuSMV model shown in Fig. 5, with
module name main. It consists of a single variable x which
is initialized to 0 and does not change its value. This model
defines an automaton with m states (x = 0), …, (x = m),
wherem is a meta-variable whose value depends on the num-
ber of features that will be composed with this basic model.
The initial state is (x = 0), and there is only one transi-
tion going from the initial state to itself. The CTL properties
are “Φ1 = ∀♦(x ≥ k)”, “Φ2 = ∀�(∃♦(x = k))”, and
“Φ3 = ∃�(x ≥ k)”, where k is a meta-variable that can
be replaced with various natural numbers. For this model,
all three properties hold when k = 0. In all other cases (for
k > 0), the properties are violated.

5.2 Features inNUSMV

fNuSMV is a feature-oriented extension of NuSMV, which
was introduced by Plath and Ryan [38] and subsequently
improved by Classen [8]. It was shown in [8] that fNuSMV

and FTS are expressively equivalent formalisms. The lan-
guage is based on superimposition. Features are modelled
as self-contained textual units using a new FEATURE con-
struct added to the NuSMV language. A feature describes
the changes to be made to the given basic NuSMV model.
There are two main sections in the FEATURE construct,
introduced by keywords INTRODUCE and CHANGE. In the
INTRODUCE section, we place new variables that will be
introduced in the basic model by composing the given fea-
ture with it. In the CHANGE section, we specify how the
original state variables from the basic model are changed by
usingTREAT and IMPOSE clauses (they can be guarded by a
condition). TREAT clauses can change the values of original
variables when they are read, whereas IMPOSE clauses can
override the definition of original variables.

For example, Fig. 6 shows a FEATURE construct, called
A1, which changes the basicmodel in Fig. 5. In particular, the
feature A1 defines a newBoolean variable nA1, which is non-
deterministically initialized. The basic system is changed in
such a way that when nA1 holds, then in the next state the
basic system’s variable x is incremented by 1, and in this case
(when x is incremented), nA1 is set to FALSE. Otherwise,
when nA1 does not hold, the basic system is not changed.

Fig. 6 The feature A1

Classen [8] proposes a way of composing fNuSMV fea-
tures with the basic model to create a single model in pure
NuSMV which describes all valid variants. The information
about the variability and features in the composed model is
recorded in the states. This is a slight deviation from the
encoding in FTSs, where this information is part of the tran-
sition relation. However, this encoding has the advantage of
being implementable in NuSMV without drastic changes
to the model checker and its input language. Given a basic
NuSMVmodel and a feature construct, the composed model
is obtained as follows. Each feature A becomes a Boolean
state variable f A, which is non-deterministically initialized
and whose value never changes by the transitions. Thus,
the initial states of the composed model include all pos-
sible feature combinations. Every change performed by a
feature in the composition is guarded by the corresponding
feature variable. Each declared variable or assignment from
the INTRODUCE section is just added to the basic model. If
in the CHANGE section we have a clause of the form

IF (b)THENIMPOSE s(v) := e;

thenwe replace the assignments s(v) := e′ in the basicmodel
with

s(v) := case f A& b : e;
TRUE : e′;

esac
(4)

Hence, when the feature A is enabled and the condition b is
true, s(v) is assigned the value of e, otherwise s(v) is assigned
the old value e′ from the original basicmodel. In casewe have
the clause IF (b)THENTREAT v := e, then all right-hand
side occurrences of v (i.e. when v is read) in assignments of
the basic model are replaced with the expression e when A
is enabled and b holds. When several features are composed
one after another, we assume that the features composed later
take precedence over features composed earlier.

For example, the composition of the basic model and the
feature A1 given in Figs. 5 and 6 results in the model M1

shown in Fig. 7. Note that, since the basic model is com-
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Fig. 7 The composed model M1

posed with one feature, the meta-variablem is instantiated to
1. First, a module, called features, containing all features
(in this case, the single one A1) is added to the system. To
each feature (e.g. A1) corresponds one variable in this mod-
ule (e.g. f A1). The variable f A1 is non-deterministically
initialized to TRUE or FALSE, and its value never changes
in next states. The main module contains a variable named
f of type features, so that all feature variables can be
referenced in it (e.g. f . f A1). In the next state, the variable
x is incremented by 1 when the feature A1 is enabled ( f A1

is TRUE) and nA1 holds. Otherwise (TRUE: can be read as
else:), x becomes zero. Also, nA1 is set to FALSE when A1

is enabled, nA1 holds, and x is incremented by 1. Otherwise,
nA1 is not changed. The properties Φ1, Φ2, and Φ3 with
k = 0 hold for both variants when A1 is enabled ( f A1 is
TRUE) and A1 is disabled ( f A1 is FALSE).

5.3 Syntactic transformations

Wenowshow that projections andvariability abstractions can
be implemented as simple syntactic source-to-source trans-
formations of fNuSMV models. This means that we do not
need to build and store in memory the concrete full-blown
FTS before applying an abstraction or projection to it, but
we can effectively compute the abstract or projected model
syntactically from the high-level modelling language. More
specifically, let M be an fNuSMV model with a set of fea-
tures F and a set of configurations K, and let [[M]] denote the
FTS obtained by its compilation. We can define αjoin(M)may

and αjoin(M)must as syntactic transformations, such that
αjoin([[M]])may

MTS = [[αjoin(M)may]] and αjoin([[M]])must
MTS =

[[αjoin(M)must]]. In other words, the may- (resp., must-) com-
ponent of the abstractmodel obtained by applyingαjoin on the
FTS [[M]], that is, αjoin([[M]])may

MTS (resp., αjoin([[M]])must
MTS),

coincides with the TS obtained by compiling the NuSMV

model αjoin(M)may (resp., αjoin(M)must), that is, the TS
[[αjoin(M)may]] (resp., [[αjoin(M)must]]). The same applies for
projections π[[ψ]].

We now describe the rewrites for projection and join
abstraction in detail. Let K

′ ⊆ 2F be a set of configura-
tions described by a feature expression ψ ′, i.e. [[ψ ′]] = K

′.
The projection π[[ψ ′]]([[M]]) is obtained by using the INVAR
construct of NuSMV to add the feature expression ψ ′ as an
invariant to the model M . Another solution is to add the fea-
ture expression ψ ′ to each condition bi in the assignments
[which are of the form in Eq. (3)] to the state variables.

The abstracts αjoin(M)may and αjoin(M)must are obtained
as follows. Let s(v) := rhs be an assignment in the com-
posedmodelM of the form in Eq. (4), obtained from changes
made by a feature A to a basic model. In αjoin(M)may, if
αjoin(A) = true and αjoin(¬A) = true (that is, A is an
optional feature), the above assignment becomes:

s(v) := case b : {e, e′};TRUE : e′; esac (5)

When b is true, e or e′ are non-deterministically assigned to
s(v). Otherwise, if A is amandatory feature andαjoin(¬A) =
false, we have:

s(v) := case b : e;TRUE : e′; esac

In αjoin(M)must, if ˜αjoin(A) = false and ˜αjoin(¬A) = false
(that is, A is an optional feature), the above assignment
becomes:

s(v) := case ¬b : e′;TRUE : v; esac

Otherwise, if A is a mandatory feature and ˜αjoin(A) = true,
we have:

s(v) := case b : e;TRUE : e′; esac

For example, given the composed model M1 in Fig. 7
and the optional feature A1, the models αjoin(M1)

may and
αjoin(M1)

must are shown in Figs. 8 and 9, respectively. We
can check that αjoin(M1)

may satisfies the properties Φ1 and
Φ2, whereas αjoin(M1)

must satisfies Φ2 and Φ3.

Proposition 1 Let M beacomposedNuSMV model obtained
using a basic model and features A1, . . . , An. Then, we have
αjoin([[M]])mayMTS = [[αjoin(M)may]], and αjoin([[M]])mustMTS =
[[αjoin(M)must]].
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Fig. 8 The abstract model αjoin(M1)
may

Fig. 9 The abstract model αjoin(M1)
must

Proof It follows from the construction of [[M]], αjoin([[M]]),
αjoin(M)may, and αjoin(M)must. W.l.o.g., we assume that
there is only one feature A.

Consider the case when A is an optional feature and in its
CHANGE section, we have IF (b)THENIMPOSE s(v) :=
e. Then, in [[M]] the assignment is given in Eq. (4), so in
αjoin([[M]])may

MTS, s(v) will be assigned non-deterministically
to e or e′ when b holds, and to e′ otherwise. This is exactly
what happens in [[αjoin(M)may]] as shown in Eq. (5). The
other cases are similar to show. ��

6 Evaluation

We evaluate our abstraction-based technique for verifying
CTL properties of reactive variational systems. It consists
of carefully devising projections of the configuration space,
then applying the join abstraction on eachof them, andverify-
ing the obtained abstract models using the standard version
of NuSMV. The evaluation aims to show that we can use
state-of-the-art single-system model checkers to efficiently
verify different variational systems using our technique. In
order to do that, we ask the following research questions:

Table 1 Characteristics of our SPL benchmarks

Benchmark |F| |K| LOC States

Synthetic 20 220 200 241.81

Elevator 9 29 300 228

Telephone 7 27 700 248.45

RQ1: How efficient is our abstraction-based approach
compared to the other approaches for verifying
variational systems, such as family-based model
checking and brute-force enumeration?

RQ2: Can the abstraction-based approach turn some pre-
viously infeasible verification tasks of variational
systems into feasible ones?

6.1 Experimental setup

To evaluate our approach, we consider three case studies and
a dozen of CTL properties. We use a synthetic example to
demonstrate specific characteristics of our approach, as well
as theElevator and Telephonemodels which are standard
benchmarks in the SPLE community [4,11,16,38]. Table 1
summarizes relevant characteristics for each benchmark: the
number of features (|F|), the number of valid configurations
(|K|), the number of lines of code (LOC), and the total num-
ber of reachable states in the compiled variability model.
Note that we experiment with different versions of the syn-
thetic example that have |F| ranging from 2 to 25, but we
report in Table 1 the characteristics for the maximal version
with |F| = 20 that can be handled by the family-based ver-
sion of NuSMV.1

To establish our objectives, we analyse each case study
with several properties. We compare: (1) our abstraction-
based approach with the standard version of NuSMV as
the verification tool versus (2) the plain family-based model
checking approachwith the family-based version of NuSMV

[11] versus (3) the brute-force enumeration approach which
verifies all variants one by one with the standard version of
NuSMV. The reported performance numbers constitute the
average runtime of five independent executions. For each
experiment, we measure Time which is the time to verify
in seconds. We also report Calls which is the number of
times an approach calls NuSMV while performing a verifi-
cation task. We say that a task is infeasible when it is taking
more time than the given timeout threshold, which we set
on 3 hours. The time computed for brute-force approach
is the average of the all features enabled and the all fea-
tures disabled configurations multiplied with the number of

1 An extended version of NuSMV [11] implements the family-based
algorithm for variabilitymodels obtained by composing the basicmodel
and all available features.
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Fig. 10 The composed model M2

valid configurations. The BDD model checker NuSMV is
runwith the parameter -df -dynamic, which ensures that
the BDD package reorders the variables during verification
in case the BDD size grows beyond a certain threshold.

All experiments were executed on a 64-bit Intel�CoreT M

i7-4600U CPU running at 2.10 GHz with 8 GBmemory. The
implementation, benchmarks, and all results obtained from
our experiments are available from: https://aleksdimovski.
github.io/abstract-ctl.html.

6.2 Synthetic example

As an experiment, we have tested limits of family-based
model checking with extended (family-based) NuSMV and
“brute-force” single-system model checking with standard
NuSMV (where all variants are verified one by one). We
have gradually added variability to the basic model in Fig. 5.
This was done by adding optional features which increase the
basic model’s variable x by the number corresponding to the
given feature. In effect, the state space of resultingmodelsMn

grows exponentially with the number of features, n = |F|.
Thus, for families with high variability, the verification tasks
quickly become very prohibitive.

For example, the second feature A2 introduces a new
Boolean variable nA2, which is non-deterministically ini-

tialized. The CHANGE section for A2 is:

IF (nA2)THEN IMPOSE next(x) := x+2
mod (m + 1);next(nA2) := next(x)

= x+2?FALSE : nA2

When the basicmodel in Fig. 5 is composedwith two features
A1 and A2, the resulting model M2 is shown in Fig. 10. Note
that in this case the meta-variable m is instantiated to 3.

In Table 2, we compare the performances of checking the
three CTL properties (Φ1 = ∀♦(x ≥ k), Φ2 = ∀�(∃♦(x =
k)), and Φ3 = ∃�(x ≥ k)) using three different approaches:
brute force, family based, and abstraction based, on this
synthetic model when composed with different number of
features. For |F| = 20 (for which |K| = 220 variants), the
family-based NuSMV takes around 117min to verify the
above properties, using the state space of 232 states, whereas
for |F| > 20 it has not finished the task within three hours.
The analysis time to check the above properties using “brute
force” with standard NuSMV ascends to almost 10days for
|F| = 20, and to almost 2years for |F| = 25. On the other
hand, if we apply the variability abstraction αjoin, we are able
to verify the above properties by only one call to standard
NuSMV on the abstract model in 0.99 s for Φ1, 1.07s for
Φ2, and 0.12 s for Φ3 when |F| = 20, whereas it takes 133s
for Φ1, 159s for Φ2, and 0.15s for Φ3 when |F| = 25, thus
effectively eliminating the exponential blowup (addresses
RQ1 and RQ2). The state space is around 227 for the may-
component and 220 for the must-component of the abstract
model when |F| = 20, whereas 233 for the may-component
and 225 for the must-component of the abstract model when
|F| = 25.

6.3 ELEVATOR

The Elevator, designed by Plath and Ryan [38], con-
tains about 300 LOC of NuSMV code and 9 indepen-
dent optional features that modify the basic behaviour
of the elevator. The features are: Antiprunk, Empty,
Exec, OpenIfIdle, Overload, Park, QuickClose,
Shuttle, and TTFull, thus yielding 29 = 512 variants.
The basicElevator system consists of a single lift that trav-
els between five floors. It has three modules: main, lift,
and button. The main module declares five platform but-
tons and a single lift, while the lift module declares
variables f loor , door , direction, and a further five cabin
buttons. The button module contains a pressed variable,
which is modelled non-deterministically, and a pressed but-
ton remains pressed until the lift has served the floor and its
door opened. The lift will always serve all requests in its cur-
rent direction before it stops and changes direction. When
serving a floor, the lift door opens and closes again.
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Table 2 Performance results for verifying synthetic models M|F| using brute-force versus family-based versus abstraction-based approach

|F | brute force family based abstraction based

Φ1 Φ2 Φ3 Φ1 Φ2 Φ3 Φ1 Φ2 Φ3

5 2.68 2.76 2.78 0.11 0.12 0.12 0.07 0.13 0.07

10 101.8 128.1 105.4 0.38 0.41 0.37 0.11 0.18 0.09

15 9175 9338 9080 71.8 75.6 71.6 0.25 0.36 0.10

20 Infeasible Infeasible Infeasible 7055 7312 7101 0.99 1.07 0.12

25 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible 133 159 0.15

All times are in s (seconds)

Fig. 11 Verification of
Elevator properties using
tailored abstractions. We
compare brute-force versus
family-based versus
abstraction-based approach. All
times are in sec (seconds)

First, we consider two properties from ∀CTL. The prop-
erty “Φ1 = ∀� ( f loor = 2 ∧ li f t But5.pressed ∧
direction = up ⇒ ∀[direction = up U f loor = 5]” is
that, when the elevator is on the second floor with direc-
tion up and the button five is pressed, then the elevator
will go up until the fifth floor is reached. This property
is violated by variants for which Overload (the eleva-
tor will refuse to close its doors when it is overloaded) is
satisfied. Given sufficient knowledge of the system and the
property, we can tailor an abstraction for verifying this prop-
erty more effectively. We call standard NuSMV to check
Φ1 on two models αjoin(π[[Overload]](Elevator))may and
αjoin(π[[¬Overload]](Elevator))may. For the first abstracted
projection, we obtain an “abstract” counter-example vio-
lating Φ1, whereas the second abstracted projection sat-
isfies Φ1. Similarly, we can verify that the ∀CTL prop-
erty “Φ2 = ∀� ( f loor = 2 ∧ direction = up ⇒
∀ © (direction = up))” is satisfied only by variants
with enabled Shuttle (the lift will change direction at
the first and last floor). We can successfully verify Φ2

for αjoin(π[[Shuttle]](Elevator))may and obtain a counter-
example for αjoin(π[[¬Shuttle]](Elevator))may.

Next, we consider a property from ∃CTL: “Φ3 =
(OpenIfIdle ∧ ¬QuickClose) �⇒ ∃♦(∃� (door =
open))”, which states that there exists an execution such that
from some state on the door stays open. The property is sat-
isfied for variants where the feature OpenIfIdle (when
idle, the lift opens its doors) is enabled and QuickClose
(the lift door cannot be kept open by holding the plat-
form buttons) is disabled. We can verify that Φ3 holds for
αjoin(π[[OpenIfIdle∧¬QuickClose]](Elevator))must.

The following two properties are neither in ∀CTL nor in
∃CTL. The property “Φ4 = ∀� ( f loor = 1∧idle∧door =
closed �⇒ ∃�( f loor = 1 ∧ door = closed))” is that
for any execution globally, if the elevator is on the first floor,
idle, and its door is closed, then there is a continuation where
the elevator stays on the first floor with closed door. The sat-
isfaction ofΦ4 can be established by verifying it against both
αjoin(Elevator)may and αjoin(Elevator)must using two
calls to standard NuSMV. The property “Φ5 = Park �⇒
∀� ( f loor = 1 ∧ idle �⇒ ∃[idleU f loor = 1])”
is satisfied by all variants with enabled Park (when idle,
the elevator returns to the first floor). We can successfully
verify Φ5 by analysing αjoin(π[[Park]](Elevator))may and
αjoin(π[[Park]](Elevator))must using two calls to standard
NuSMV.

The size of the family-based version of the Eleva-

tor model is 228 states. On the other hand, the sizes of
αjoin(Elevator)may and αjoin(Elevator)must are 220 and
219 states, resp. We obtain the similar sizes for individ-
ual models used in the brute-force approach. We can see
in Fig. 11 that abstractions achieve significant speed-ups
between 2.5 and 32 times (resp., 38 and 340 times) faster than
the family-based (resp., brute-force) approach (addresses
RQ1).

6.4 TELEPHONE

The Telephone variational system is initially designed by
Plath and Ryan [38] and later extended by Ben-David et.
al. [4]. It contains about 700 LOC of NuSMV code and
7 independent optional features, thus yielding 27 = 128
variants. The features are: Call Forward on Busy for
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one phone (CFB-1), Call Forward on Busy for two
phones (CFB-2), Call Forward on No Replay for
one phone (CFNR-1),Call Forward on No Replay
for all phones (AllCFNR), Terminating Call
Screening for one phone (TCS-1), Ring Back When
Free for one phone (RBWF-1), as well asCall Forward
Unconditional for one phone (CFU-1).

The basic Telephone system is a network of four syn-
chronous phones, such that two are complete phones: one
is terminating phone (it can only receive calls), and one is
originating phone (it can only make calls). The module cor-
responding to each of the phones declares two variables st
and dialled. Each phone can be found in one of the fol-
lowing states: st ∈ {idle, dialt, tr ying, busyt, ringingt ,
talking, ended, talked, ringing}. Initially, the phone is in
the state idle, and from there it may move to ringing (if
someone rings to it) or to dialt (if the phone is lifted to
dial). The phone is in the state talking if it is in conversa-
tion which it initiated, whereas it is in the state talked if the
phone is in conversation that was initiated by someone else.
Ended means that the phone has hung up the conversation.
The variable dialled determines the other phone with which
the given phone wants to establish a connection.

A desired property of the telephone system is: a phone
can be talked to. That is, if we instantiate this property for
the first phone, we have: “Φ1 = ∃♦ (ph1.st = talked)”.
However, this property is violated by variants with enabled
featureCFU-1 (all calls to the subscriber’s phone are diverted
to another phone). Therefore, we can tailor an abstraction
for verifying this ∃CTL property against two abstract mod-
els: αjoin(π[[CFU-1]](Telephone))must which violates Φ1,
and αjoin(π[[¬CFU-1]](Telephone))must which satisfies Φ1.
The next property is “Φ2 = ∀�

(¬(ph1.c f u − f orw =
0) �⇒ ∀�¬(ph1.st ∈ {ringing, talked}))”, which
states that if a given phone has a forwarding number,
then that phone will never ring. This ∀CTL property is
violated by variants for which the feature CFU-1 is dis-
abled. We call the standard NuSMV to check Φ2 on
two abstract models αjoin(π[[CFU-1]](Telephone))may and
αjoin(π[[¬CFU-1]](Telephone))may. The first abstracted pro-
jection satisfies Φ2, while the second abstracted projection
violates Φ2 and a counter-example is reported.

We consider the property “Φ3 = ∀�
(
(ph1.rbw f −

number = 2∧ ph1.st = talking∧ ph1.dialled = 2) �⇒
∀♦(ph1.rbw f − number = 0)

)
”, in order to confirm the

correctness of the feature RBWF (if we get a busy tone on
calling another phone, there will be an attempt to establish
a connection with that phone as soon as it becomes idle).
The property Φ3 states that the stored number will be reset
when a call between a phone with RBWF feature on and the
phone with the stored number is established. This property
holds for all variants, and we can successfully verify it using
our approach by checking αjoin(Telephone)may. The prop-

erty “Φ4 = ∀�
(
ph1.tcs3 �⇒ ∀�¬(ph3.dialled =

1 ∧ ph3.st ∈ {ringingt, talking}))” states that calls from
numbers on the screening list are never accepted (theBoolean
variable tcs3 is true when the phone 3 is on the screen-
ing list of the subscriber’s phone). This property is satisfied
only by variants with enabled TCS-1 feature (calls to
the subscriber’s phone from any number on its screen-
ing list will be rejected). We can successfully verify Φ4

for αjoin(π[[TCS-1]](Telephone))may and obtain a counter-
example for αjoin(π[[¬TCS-1]](Telephone))may.

The size of the family-based version of the Telephone

variability model is around 248 states, whereas the sizes
of αjoin(Telephone)may, αjoin(Telephone)must, as well as
individual variants are around 242 states. Figure 12 shows
that abstraction-based approach achieves speed-ups between
1.1 and 11 times compared to the family-based approach,
and between 15 and 390 times compared to the brute-force
approach (addresses RQ1).

6.5 Threats to validity

Regarding internal validity, all experiments were executed
five times on the samemachine with all reported results aver-
aged. The correctness of our abstraction-based approach was
shown theoretically (Theorem 1, Theorem 2, and Proposi-
tion 1). For the correctness of the implementation, we rely
on the results obtained from the family-based model check-
ing approach and brute-force enumeration.

Regarding external validity, results on other case studies
may differ and we cannot predict to what extent the obtained
results can be generalized in such cases. However, we used
benchmarks from published work and observed an improve-
ment in efficiency for various interesting properties.

7 Future extensions

We now give an overview of two possible ways to extend our
verification procedure in future. First, we may consider the
richer set of temporal properties, as expressed in themodalμ-
calculus [33]. Second, we may convert our procedure from
manual (where a verification engineer decides what is the
most suitable divide-and-conquer strategy for the given ver-
ification task) into fully automatic.

7.1 Modal�-calculus properties

The modal μ-calculus logic [33], denoted Lμ, is a power-
ful temporal logic which is more expressive than CTL�. Lμ

formulae ϕ are defined by the following grammar:

ϕ::=a | ¬a | x | ϕ1∧ϕ2 | ϕ1∨ϕ2 | �ϕ | ♦ϕ | μx .ϕ | νx .ϕ
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Fig. 12 Verification of
Telephone properties using
tailored abstractions. We
compare brute-force versus
family-based versus
abstraction-based approach. All
times are in sec (seconds)

where x ∈ Var ranges over propositional variables. Note
that Lμ formulae ϕ are given in negation normal form. The
formula �ϕ expresses that ϕ is true for every (immediate)
successor, whereas ♦ϕ expresses that there exists at least
one successor for which ϕ is true. A propositional variable
x ∈ Var is a formula whose meaning (set of states in which
it holds) depends on some environment ρ : Var → 2S that
binds variables to sets of states. The formula μx .ϕ (resp.,
νx .ϕ) is the least (resp., greatest) fixpoint operator, which
represents the smallest (resp., greatest) set x of states inwhich
ϕ holds (whereϕ depends on x). The universal and existential
fragments�Lμ and♦Lμ are subsets of Lμ in which the only
allowed next-state operators are � and ♦, respectively.

We now formalize the semantics [[ϕ]]Tρ of a Lμ formula
ϕ over a TS T and an environment ρ : Var → 2S , which
specifies the interpretation of propositional variables.

Definition 6 The function [[ϕ]]Tρ : Lμ×(Var → 2S) → 2S ,
which maps a formula ϕ to the set of states in which it holds,
is defined as:

(1) [[a]]Tρ ={s∈ S | a∈ L(s)}; [[¬a]]Tρ ={s∈ S | a /∈ L(s)}
(2) [[ϕ1∧ϕ2]]Tρ = [[ϕ1]]Tρ ∩ [[ϕ2]]Tρ ; [[ϕ1∨ϕ2]]Tρ = [[ϕ1]]Tρ ∪

[[ϕ2]]Tρ
(3) [[�ϕ]]Tρ ={s∈ S | ∀s′ ∈ S.(s, λ, s′)∈ trans⇒s′ ∈[[ϕ]]Tρ }

[[♦ϕ]]Tρ ={s∈ S | ∃s′ ∈ S.(s, λ, s′)∈ trans ∧ s′ ∈[[ϕ]]Tρ }
(4) [[μx .ϕ]]Tρ =⋂{S′ ⊆ S | [[ϕ]]T

ρ[x �→S′] ⊆ S′}
[[νx .ϕ]]Tρ =⋂{S′ ⊆ S | S′ ⊆ [[ϕ]]T

ρ[x �→S′]}

where ρ[x �→ S′] is the environment which is the same as
ρ, except that x is mapped to S′. For a closed formula ϕ, we
write T , s |� ϕ for s ∈ [[ϕ]]T⊥env

, where ⊥env maps every
x ∈ Var to ∅. We write T |� ϕ, iff all its initial states satisfy
the formula: ∀s0 ∈ I . T , s0 |� Φ.

We say that an FTS F satisfies a μ-calculus formula ϕ, writ-
ten F |� ϕ, iff all its valid variants satisfy the formula:
∀k∈K. πk(F) |� ϕ.

The semantics of Lμ over an MTSM is slightly different
from the above Definition 6 where a TS T is considered. In
particular, the clause (3) is replaced by:

(3’) [[�ϕ]]Mρ ={s∈S |∀s′.(s, λ, s′)∈ transmay⇒s′ ∈[[ϕ]]Mρ }
[[♦ϕ]]Mρ ={s∈ S |∃s′.(s, λ, s′)∈ transmust∧ s′ ∈[[ϕ]]Mρ }

We then show that the MTS αjoin(F) preserves the modal
μ-calculus.

Theorem 3 (Preservation results) For any FTS F:

(�Lμ) For any ϕ ∈ �Lμ, αjoin(F)may |� ϕ �⇒ F |� ϕ.
(♦Lμ) For any ϕ ∈ ♦Lμ, αjoin(F)must |� ϕ �⇒ F |� ϕ.
(Lμ) For any ϕ ∈ Lμ, αjoin(F) |� ϕ �⇒ F |� ϕ.

Proof We prove the most general case (Lμ).
By induction on the structure of ϕ. All cases except� and

♦ next-operators are straightforward.
Forϕ = �ϕ′,weproceedby contraposition.AssumeF �|�

�ϕ′. Then, there exists a configuration k ∈ K and a transition
(s0, λ, s1) ∈ trans of πk(F) (where s0 ∈ I of πk(F)), such
that s1 �|� ϕ′. By Lemma 2(i), we have that (s0, λ, s1) ∈
transmay of αjoin(F), and so α(F) �|� �ϕ′.

For ϕ = ♦ϕ′. Assume αjoin(F) |� ♦ϕ′. This means
that there exists a must-transition (s0, λ, s1) ∈ transmust of
αjoin(F) (where s0 ∈ I of αjoin(F)), such that s1 |� ϕ′. By
Lemma 2(ii), we have for all k ∈ K, (s0, λ, s1) ∈ trans of
πk(F), and so πk(F) |� ♦ϕ′. It follows F |� ♦ϕ′. ��
The preservation result means that abstract models αjoin(F)

can be used to show validity of modal μ-calculus properties
of concrete variational systems.

Similarly as for CTL, in future we can implement a verifi-
cation procedure for modal μ-calculus. The implementation
can be based on the general-purposemCRL2 model checker,
for which it has already been shown how to perform family-
based model checking of modal μ-calculus properties [41].

7.2 An automatic verification procedure

We assume that a user of our approach has a good knowl-
edge of the given variability model and property, so that he
can manually devise suitable projections (partitionings) of
the configuration space and variability abstractions before
verification. We now give an overview of an algorithm,
which aims to automate our verification approach so that
the appropriate partitionings of the configuration space are
constructed automatically. The algorithm is based on an
abstraction and refinement framework for CTL� properties,
which iteratively refines abstract variability models until
either a genuine counter-example is found or the property
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satisfaction is shown for all variants. In the heart of this algo-
rithm are 3-valued model checking games [39,40], which
represent themost suitable framework for defining the refine-
ment. In particular, we use Shoham–Grumberg algorithm for
solving such games, which is able to verify a CTL� prop-
erty Φ on an MTS M, that is, to check M |� Φ?. Since
the 3-valued semantics of CTL� over MTSs is considered,
there are three possible outcomes of the above check: (1)
M satisfies Φ; (2) M does not satisfy Φ; and (3) an indef-
inite (don’t know) result. In the case of an indefinite (don’t
know) result, the games framework [39,40] provides a way
to find the failure reason for it which can be used for defin-
ing a refinement criterion. It splits abstract configurations
so that the new, refined abstract configurations represent
smaller subsets of concrete configurations. The sketch of
the automatic abstraction-refinement procedure for checking
F |� Φ, where K is the set of configurations, is as follows:

1. Check by the algorithm for solving 3-valued model
checking games whether αjoin(F) |� Φ?

2. If the result is true, Φ is satisfied by all variants in K.
3. If the result is false, Φ is violated by all variants in K.
4. Otherwise, an indefinite result is returned. Let the may-

transition s1
λ−→s2 in αjoin(F) be the reason for failure

(as identified by the game-based model checking algo-
rithm), and let ψ be the feature expression guarding this
transition in F . We split the configuration set K into two
subsets K∩[[ψ]] and K∩[[¬ψ]]. We go back to Step (1),
to check π[[ψ]](F) |� Φ with the set of configurations
K ∩ [[ψ]], and to check π[[¬ψ]](F) |� Φ with the set of
configurations K ∩ [[¬ψ]].

In future, we can develop more precisely and implement
such an automatic abstraction-refinement procedure for ver-
ifying CTL� properties of variational systems. In this way,
wewill establish a brand new connection between games and
SPL communities.

8 Related work

Many family-based analysis and verification techniques that
work on the level of variational systems and programs have
been proposed in recent years (see [43] for survey). Some
successful examples range from family-based syntax and
type checking [27,31,32], to family-based static analysis
[5,19–22,37] and family-based verification by simulation
[29,30,44]. Family-based model checking has also been an
active research field, where different approaches have been
developed for verifying variational systems.

One of the earliest attempts for modelling variability and
variational systems is by using modal transition systems
(MTSs) [34,42], where optional ‘may’-transitions are used

to model variability. In contrast, here we use MTSs with
an entirely different goal of abstracting variational systems,
which is closer to the original idea of introducing MTSs
by Larsen and Thomsen [35] (abstraction in system mod-
elling and verification). Beek et al. [42] have implemented
a model checking tool, called VMC, for verifying variabil-
ity models expressed as MTSs and properties expressed as
v-ACTL formulae. They use MTSs as a compact represen-
tation of a family of Labelled TSs, and use variability-aware
action-based CTL logic to reason over MTSs. The preser-
vation result in [42] shows that if a property holds over an
MTS, then the same property holds for all variants derived
from that MTS. In contrast, here we use MTSs to represent
abstract models of a family of systems, and our preserva-
tion result (Theorem 1) states that if a property holds over an
abstract model, then it holds over all variants derived from
the concrete family. Subsequently, various variabilitymodels
have been developed. Ultimately, the popular feature transi-
tion systems (FTSs) have been introduced by Classen et al.
[10], which are today widely accepted as models essentially
sufficient for most purposes of family-based model checking
of variational systems.

Firstly, Classen et al. [9] have presented specifically
designed (explicit) family-based model checking algorithms
for verifying FTSs against LTL properties, which are imple-
mented in the SNIP model checker. Then, (symbolic) family-
based model checking algorithms [8,11] have been proposed
to enable verification of FTSs against CTL properties, which
are implemented as an extension of the BDD model checker
NuSMV. It uses symbolic encoding for FTSs as well as
symbolic algorithms for their verification. One of the most
prominent methods to make all these approaches based on
FTSsmore scalable to larger systems is to apply abstractions.
In this work, we show how to construct abstract models of
FTSs that preserve CTL� properties. For implementation, we
use the standard version of the BDDmodel checkerNuSMV,
where abstract models are symbolically encoded and its sym-
bolic algorithms are used for model checking.

Simulation-based abstractions on FTSs introduced in
[13,14] are defined by using existential F-abstraction func-
tions, and simulation relation is used to relate different
abstraction levels. Different levels of precision of so-called
feature abstractions in [14] are defined by simply enriching
(resp., reducing) the sets of variants for which transitions
are enabled. These abstractions are applied either on con-
crete FTSs [13], or on an intermediate concrete semantic
model (called featured program graph) [14]. Therefore, they
report smaller efficiency gains. For example, the approach
[13] results in marginal efficiency reductions of verifica-
tion times of 8–9 % compared to the unabstracted approach.
On the other hand, our variability abstractions defined as
Galois connections are capable to change not only the feature
expression labels of transitions but also the sets of available
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features and valid configurations. Moreover, we can also use
projection, which partitions the configuration space, in order
to build various more sophisticated verification strategies.
We apply our abstractions as preprocessor transformations
directly on high-level modelling languages, thus avoiding to
generate and store any concrete model in thememory. There-
fore, we report significant performance speed-ups compared
to the unabstracted approach.

All the previous abstractions applied on FTSs [13,14,
17,18,24] are conservative, and thus, they construct over-
approximated abstractmodels that preserve satisfiability only
of LTL and universal ∀CTL properties. To our knowledge, in
this work, for the first time, we propose abstractions on FTSs
that preserve all CTL� (and μ-calculus), thus significantly
extending the previous works on abstractions of FTSs.

The abstraction and refinement procedure for automatic
verification of LTL properties of variational systems has
been developed in [25]. If a spurious counter-example (intro-
duced due to the abstraction) is found in the abstract model,
the procedure [25] uses Craig interpolation to extract rele-
vant information from it in order to define the refinement of
abstract models. As we noted in Sect. 7, in the context of
CTL� properties, the 3-valued model checking games pro-
posed by Shoham and Grumberg [39,40] represent the most
suitable framework to define the refinement [23].

Verifying variability models against properties specified
in modal μ-calculus has been also an interesting topic of
research. Some examples are model checking algorithms for
variability models specified in PL-CCS and Delta-CCS. PL-
CCS [28] is an extension of Milner’s process algebra CCS,
which is enrichedwith a variant operator as ameans to imple-
ment variability. Delta-CCS [36] is another delta-oriented
extension of CCS, in which variability is achieved by decom-
posing the product line into a core process and a set of delta
modules that encapsulate change directives based on term
rewriting semantics. Beek et. al. [41] have also presented
an approach for family-based model checking of modal μ-
calculus properties using the general-purposemCRL2model
checker. In this work, we show that the resulting abstract
models also preserve the full μ-calculus properties, thus
enabling our approach to be used for their verification as
well.

Another approach to efficiently verify variational sys-
tems is by using variability encoding [2,30], which trans-
forms features into non-deterministically initializedvariables
(replaces compile time with runtime variability). Then, the
generated family simulator is verified using the standard
single-system model checkers. However, in case of viola-
tion, the (single-system) model checker stops after a single
counter-example and a violating variant are found. There-
fore, this answer is incomplete (limited) since there might be
other satisfying variants and also there might be other vio-
lating variants with different counter-examples. In contrast,

family-based model checking and our approach provide pre-
cise conclusive results for all variants in the family.

9 Conclusion

We have proposed conservative (over-approximating) and
their dual (under-approximating) variability abstractions to
derive abstract family-based model checking that preserves
the full CTL�. The projections and abstractions used in our
divide-and-conquer verification procedure are implemented
as source-to-source transformations of high-level fNuSMV

variabilitymodels. The evaluation confirms that various CTL
properties can be efficiently verified in this way.

In this work, we focus on the state-based approach for
analysing variational systems. This means that we abstract
from actions, and only use atomic propositions of the states
to formulate system properties. A combined action- and
state-based approach is possible, but leads to more involved
definitions and concepts. Moreover,NuSMV model checker
used in the implementation is also based exclusively on the
state-based approach.
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