Abstract

We introduce a new symbolic representation of algorithmic game semantics, and show how it can be applied for efficient verification of open (incomplete) programs. The focus is on an Algol-like programming language which contains the core ingredients of imperative and functional languages, especially on its second-order recursion-free fragment with infinite data types. We revisit the regular-language representation of game semantics of this language fragment. By using symbolic values instead of concrete ones, we generalize the standard notions of regular-language and automata representations of game semantics to that of corresponding symbolic representations. In this way programs with infinite data types, such as integers, can be expressed as finite-state symbolic-automata although the standard automata representation is infinite-state, i.e. the standard regular-language representation has infinite summations. Moreover, in this way significant reductions of the state space of game semantics models are obtained. This enables efficient verification of programs by our prototype tool based on symbolic game models, which is illustrated with several examples.

Keywords: Algorithmic Game Semantics, Symbolic Automata, Program Verification, Predicate Abstraction

1. Introduction

Game semantics [1, 2, 21] is a technique for compositional modelling of programming languages, which gives fully abstract models. This means that the generated models are both sound and complete with respect to observational equivalence of programs. In game semantics, types are interpreted by games (or arenas) between a Player, which represents the term being modelled, and an Opponent, which represents the environment in which the term is used. The two participants strictly alternate to make moves, each of which is either a question (a demand for information) or an answer (a supply of information). Computations (executions of terms) are interpreted as plays of a game, while terms are expressed as strategies, i.e. sets of plays, for a game. It has been shown
that game semantics model can be given certain kinds of concrete automata-
theoretic representations [11, 16, 18], and so it can serve as a basis for software
model checking and program analysis. Several features of game semantics make
it very promising for software model checking. The model is very precise and
compositional, i.e. generated inductively on the structure of programs, which
is the key feature for achieving scalability. Also there exists a model for any
term-in-context (program fragment) with undefined identifiers, such as calls to
library functions. However, the main limitation of the model checking technique
in general is that it can be applied only if a finite-state model is available. In
our case, this problem with infinite-state models arises when we want to handle
terms with infinite data types.

Regular-language representation of game semantics of second-order recursion
free Idealized Algol with finite data types provides algorithms for automatic ver-
ification of a range of properties, such as observational-equivalence, approxima-
tion, and safety. It has the disadvantage that in the presence of infinite integer
data types the obtained automata become infinite state, i.e. regular-languages have infinite summations, thus losing their algorithmic properties. Similarly,
large finite data types are likely to make the state-space of the obtained au-
tomata so big that it will be practically infeasible for automatic verification.
For example, let us consider how we can model the successor function of type
\(\mathbb{N} \rightarrow \mathbb{N} \). One characteristic play in the strategy for this function looks like this:

\[
\text{succ} : \mathbb{N}^{(1)} \Rightarrow \mathbb{N}^{(2)}
\]

\[
\begin{array}{c}
q & O \\
q & P \\
n & O \\
n + 1 & P \\
\end{array}
\]

The play starts by Opponent (O) asking for the value of output with the question
move \(q \), and Player (P) responds by asking for input. When Opponent provides
an input \(n \) which can be any value from \(\mathbb{N} \), Player supplies \(n + 1 \) as output.
The model of the successor function consists of all possible plays of the above
form. So, it is given by the following regular language:

\[
\sum_{n \in \mathbb{N}} (q^{(2)} \cdot q^{(1)} \cdot n^{(1)} \cdot (n + 1)^{(2)}),
\]

which has infinite summation when \(\mathbb{N} \) is an infinite data type. Note
that moves are tagged with superscripts (1) and (2) to distinguish from which
type component, input or output, they originate from.

In this paper we redefine the (standard) regular-language representation [16]
at a more abstract level so that terms with infinite data types can be represented
as finite automata, and so various program properties can be checked over them.
The idea is to transfer attention from the standard form of automata to what
we call symbolic automata. The representation of values constitutes the main
difference between these two formalisms. In symbolic automata, instead of
assigning concrete values to identifiers occurring in terms, they are left as sym-
bols. Operations involving such identifiers will also be left as symbols. Some
of the symbols will be guarded by boolean expressions, which indicate under
which conditions these symbols can be performed. Also some of the words accepted by symbolic automata will be guarded by boolean expressions, called conditions, which indicate whether a word is feasible or not. Infeasible words have inconsistent (unsatisfiable) conditions, and we will use SMT solvers, such as Yices [15], to check consistency of these conditions. For example, symbolic representation of the successor function will be given by the following word: \(q^{(2)} \cdot q^{(1)} \cdot Z^{(1)} \cdot (Z + 1)^{(2)}\), where a new symbol \(Z\) is used to encode the value of the input argument. This word is unguarded, i.e. its condition is ‘true’.

This paper represents an extended and revised version of [13]. It is structured as follows. The language we consider here is introduced in Section 2. Symbolic representation of algorithmic game semantics is defined in Section 3. Correctness of the symbolic representation and its suitability for verification of safety properties are shown in Section 4. In Section 5 we discuss some extensions of the language, such as arrays, and show how they can be represented in the symbolic model. A prototype tool, which implements this translation, as well as some examples are described in Section 6. In Section 7, we conclude and present some ideas for future work.

1.1. Related work

By representing game semantic models as symbolic automata, we obtain a predicate abstraction [19, 8] based method for verification. In [3] it was also developed a predicate abstraction from game semantics. This was enabled by extending the models produced using game semantics such that the state (store) is recorded explicitly in the model by using so-called stateful plays. The state is then abstracted by a set of predicates giving rise to pa (predicate abstraction)-plays. However, in our work we achieved predicate abstraction in a more natural way without changing the game semantic models, and also for terms with infinite data types.

Symbolic techniques, in which data is not represented explicitly but symbolically, have found a number of applications in theoretical computer science. Some interesting examples are symbolic execution and verification of programs [6], symbolic program analysis [7, 5], symbolic operational semantics of process algebras [20], parameterized verification of data independent systems [23, 24], etc.

SMT (Satisfiability Modulo Theories) [4] is concerned with checking the satisfiability of formulas with respect to some background (first-order) theories, which fix interpretations of certain predicates and functions. In recent years, many powerful SMT solvers have been developed in academia and industry. They have been successfully applied in many modern program analysis and program verifications systems. For example, SMT solvers are used by interactive theorem provers, such as Isabelle and PVS, software model checkers, such as SLAM and BLAST, static verifiers, such as Boogie and ESC/Java 2, etc.
2. The Language

Idealized Algol (IA) \cite{27} is a well studied language which combines call-by-name λ-calculus with the fundamental imperative features and locally-scoped variables. In this paper we work with its second-order recursion-free fragment (IA$_2$ for short).

The data types D are integers and booleans ($D ::= \text{int} \mid \text{bool}$). The base types B are expressions, commands, and variables ($B ::= \text{exp}D \mid \text{com} \mid \text{var}D$). We consider only first-order function types T ($T ::= B \mid B \rightarrow T$).

Terms are formed by the following grammar:

$$M ::= x \mid v \mid \text{skip} \mid \text{diverge} \mid M \text{ op } M \mid M; M \mid \text{if } M \text{ then } M \text{ else } M \mid \text{while } M \text{ do } M \mid M \mid M ::= M \mid !M \mid \text{new}_D x ::= v \text{ in } M \mid \text{mkvar}_D MM \mid \lambda x. M \mid MM$$

where v ranges over constants of type D. Expression constants are infinite integers and booleans. The standard arithmetic-logic operations op are employed.

We have the usual imperative constructs: sequential composition ($;\$)$, conditional ($\text{if}$), iteration ($\text{while}$), assignment ($::=$), de-referencing ($!$), a “do nothing” command skip, and a diverge command which causes a program to enter an unresponsive state similar to that caused by an infinite loop. Block-allocated local variables are introduced by a new construct, which initializes a variable and makes it local to a given block. They are also called “good” (storage) variables since what is read from the variable is the last value written into it. The constructor mkvar is used for creating so-called “bad” variables, where no relationship exists between what is written in the variable and what is read from it. We have the standard functional constructs for function definition and application. Well-typed terms are given by typing judgements of the form $\Gamma \vdash M : T$, where Γ is a type context consisting of a finite number of typed free identifiers, i.e. of the form $x_1 : T_1, \ldots, x_k : T_k$. Typing rules of the language are given in \cite{1, 2}.

Language constructs can be also given in a functional form: $; : \text{com} \rightarrow B \rightarrow B$, if : $\text{expbool} \rightarrow B \rightarrow B \rightarrow B$, while : $\text{expbool} \rightarrow \text{com} \rightarrow \text{com}$, $::= : \text{var}D \rightarrow \text{exp}D \rightarrow \text{com}$, $!: \text{var}D \rightarrow \text{exp}D$, $\text{mkvar}_D : (\text{exp}D \rightarrow \text{com}) \rightarrow \text{exp}D \rightarrow \text{var}D$. A term can be presented in either form as is convenient depending on context. For example, $; (M, N) \equiv M ; N$, if(M, N_1, N_2) \equiv if M then N_1 else N_2, $::= (M, N) \equiv M ::= N$, etc. We say that a term M is closed if $\Gamma \vdash M : T$ is derivable.

The operational semantics of our language is given for terms $\Gamma \vdash M : T$, such that all identifiers in Γ are variables, i.e. $\Gamma = x_1 : \text{var}D_1, \ldots, x_k : \text{var}D_k$. It is defined by a big-step reduction relation:

$$\Gamma \vdash M, s \Rightarrow V, s'$$

where s, s' represent the state before and after reduction. The state is a function assigning data values to the variables in Γ. We denote by V terms in canonical form defined by $V ::= x | v | \lambda x. M | \text{skip} | \text{mkvar}_D MN$. Reduction rules are standard \footnote{Note that the diverge command is not reducible.} (see \cite{1, 2} for details). The language is deterministic, so every term
can be reduced to at most one canonical form. Given a term \(\Gamma \vdash M : \text{com} \), where all identifiers in \(\Gamma \) are variables, we say that \(M \) terminates in state \(s \), written \(\Gamma \vdash M, s \Downarrow \text{skip}, s' \) for some state \(s' \). If \(M \) is a closed term then we abbreviate the relation \(\Gamma \vdash M, \emptyset \Downarrow \text{skip} \) with \(M \Downarrow \). We say that a term \(\Gamma \vdash M : T \) is an approximate of a term \(\Gamma \vdash N : T \), denoted by \(\Gamma \vdash M \leftrightarrow N \), if and only if for all terms-with-hole \(C[M] : \text{com} \) and \(C[N] : \text{com} \) are well-typed closed terms of type \(\text{com} \), if \(C[M] \Downarrow \) then \(C[N] \Downarrow \). If two terms approximate each other they are considered observationally-equivalent, denoted by \(\Gamma \vdash M \sim N \).

3. Symbolic Game Semantics

We start by introducing a number of syntactic categories necessary for construction of symbolic automata. Let \(\text{Sym} \) be a countable set of symbolic names, ranged over by upper case letters \(X, Y, Z \). For any finite \(W \subseteq \text{Sym} \), the function \(\text{new}(W) \) returns a minimal symbolic name which does not occur in \(W \), and sets \(W := W \cup \text{new}(W) \). A minimal symbolic name not in \(W \) is the one which occurs earliest in a fixed enumeration \(X_1, X_2, \ldots \) of all possible symbolic names.

A set of expressions \(\text{Exp} \), ranged over by \(e \), is defined as follows:

\[
\begin{align*}
 e & ::= a \mid b \\
 a & ::= n \mid X \mid \text{int} \mid a + a \mid a - a \mid a \ast a \\
 b & ::= \text{tt} \mid \text{ff} \mid X \mid \text{bool} \mid a = a \mid a \leq a \mid \neg b \mid b \land b
\end{align*}
\]

where \(a \) ranges over arithmetic expressions (\(\text{AExp} \)), and \(b \) over boolean expressions (\(\text{BExp} \)). We use superscripts to denote the data type of a symbolic name \(X \in W \). We will often omit to write them, when they are clear from the context.

Let \(\mathcal{A} \) be an alphabet of letters. We define a symbolic alphabet \(\mathcal{A}^{\text{sym}} \) induced by \(\mathcal{A} \) as follows:

\[
\mathcal{A}^{\text{sym}} = \mathcal{A} \cup \{ ?X, e \mid X \in \text{Sym}, e \in \text{Exp} \}
\]

The letters of the form \(?X \) are called input symbols. They generate new symbolic names, i.e. \(?X \) means let \(X = \text{new}(W) \) in \(X \ldots \). We use \(\alpha \) to range over \(\mathcal{A}^{\text{sym}} \). Next we define a guarded alphabet \(\mathcal{A}^{\text{gu}} \) induced by \(\mathcal{A} \) as the set of pairs of boolean conditions and symbolic letters, i.e. we have:

\[
\mathcal{A}^{\text{gu}} = \{ [b, \alpha] \mid b \in \text{BExp}, \alpha \in \mathcal{A}^{\text{sym}} \}
\]

A guarded letter \([b, \alpha] \) means that the symbolic letter \(\alpha \) occurs only if the boolean \(b \) evaluates to true, i.e. if \((b = \text{tt}) \) then \(\alpha \) else \(\emptyset \). We use \(\beta \) to range over \(\mathcal{A}^{\text{gu}} \). We will often write only \(\alpha \) for the guarded letter \([tt, \alpha] \). A word \([b_1, \alpha_1] \cdot [b_2, \alpha_2] \cdots [b_n, \alpha_n] \) over guarded alphabet \(\mathcal{A}^{\text{gu}} \) can be represented as a pair \([b, w] \), where \(b = b_1 \land b_2 \land \cdots \land b_n \) is a boolean condition and \(w = \alpha_1 \cdot \alpha_2 \cdots \alpha_n \) is a word of symbolic letters. We now show how \(\text{IA}^2 \) with infinite integers is interpreted by symbolic automata, which will be denoted by extended regular expressions. For simplicity
the translation is defined for terms in β-normal form. If a term has β-redexes, it is first reduced to β-normal form syntactically by substitution. In this setting, arenas in which games are played (types) are represented as guarded alphabets of moves, plays of a game as words over a guarded alphabet, and strategies for a game as symbolic automata (symbolic regular languages) over a guarded alphabet. The symbolic automata and regular languages, denoted by $S(R)$ and $L(R)$ respectively, are specified using extended regular expressions R. They are defined inductively over finite guarded alphabets A^{gu} using the following operations:

$$
\emptyset \in \beta \cdot R \cdot R' \cdot R^* \cdot R + R' \cdot R \cap R' \cdot R \triangleright R' \\
R \mid A^{\text{sym}} \cdot R[R'/w] \cdot R(\alpha) \cdot R' \triangleleft B^{\text{sym}} \cdot R \cdot R \bowtie R'
$$

where R, R' range over extended regular expressions, A^{gu}, B^{gu} over finite guarded alphabets, $\beta \in A^{gu}$, $\alpha \in A^{\text{sym}}$, $A^{\text{sym} \cap} \subseteq A^{\text{sym}}$ and $w \in A^{gu}$.

Constants \emptyset, ε and β denote the languages $\emptyset, \{\varepsilon\}$ and $\{\beta\}$, respectively. Concatenation $R \cdot R'$, Kleene star R^*, union $R + R'$ and intersection $R \cap R'$ are the standard operations. Restriction $R \mid A^{\text{sym}}$ replaces all symbolic letters from A^{sym} with ε in all words of R, but keeps all boolean conditions. Substitution $R[R'/w]$ is the language of R where all occurrences of the subword w have been replaced by the words of R'. Given two symbols $\alpha \in A^{\text{sym}}, \beta \in A^{gu}, \beta(\alpha)$ is a new letter obtained by tagging. If a letter is tagged more than once, we write $(\beta(\alpha_1))(\alpha_2) = \beta(\alpha_2, \alpha_1)$. We define the alphabet $A^{gu}(\alpha) = \{\beta(\alpha) | \beta \in A^{gu}\}$.

Composition of regular expressions R' defined over $A^{gu}(1) + B^{gu}(2)$ and R over $B^{gu}(2) + C^{gu}(3)$ is given as follows:

$$
R' \triangleleft B^{gu}(2) \cdot R = \{w[w[b \land b_1 \land b_2 \land b'_1 \land b'_2 \land \alpha_1 = \alpha'_1 \land \alpha_2 = \alpha'_2, s]]^{(1)} / \\
[b_1, \alpha_1]^{(2)} \cdot [b_2, \alpha_2]^{(2)} | w \in R, [b'_1, \alpha'_1]^{(2)} \cdot [b, s]^{(1)} \cdot [b'_2, \alpha'_2]^{(2)} \in R'
$$

where R' is a set of words of form $[b'_1, \alpha'_1]^{(2)} \cdot [b, s]^{(1)} \cdot [b'_2, \alpha'_2]^{(2)}$, such that $[b'_1, \alpha'_1]^{(2)} \cdot [b'_2, \alpha'_2]^{(2)} \in B^{gu}(2)$ and $[b, s]$ contains only letters from $A^{gu}(1)$. So all letters of $B^{gu}(2)$ are removed from the composition, which is defined over the alphabet $A^{gu}(1) + C^{gu}(3)$. The shuffle operation of two regular languages is defined as $L(R) \triangleright L(R') = \bigcup_{w_1 \in L(R), w_2 \in L(R')} w_1 \triangleright w_2$, where $w \triangleright w \equiv w = w$ and $a \cdot w \triangleright b \cdot w = a \cdot (w \triangleright b) \cdot w$. It is a standard result that any extended regular expression obtained from the operations above denotes a regular language [16, pp. 11–12], which can be recognised by a finite (symbolic) automaton [22].

Each type T is interpreted by a guarded alphabet of moves $A^{gu}_{[T]}$ induced by $A_{[T]}$. The alphabet $A_{[T]}$ contains two kinds of moves: questions and answers.
They are defined as follows:

\[A_{\text{int}} = \{ \ldots, -n, -n + 1, \ldots, n, n + 1, \ldots \} \]
\[A_{\text{bool}} = \{ \text{tt}, \text{ff} \} \]
\[A_{\text{exp}} = \{ q \} \cup A_{D} \]
\[A_{\text{com}} = \{ \text{run}, \text{done} \} \]
\[A_{\text{var}} = \{ \text{write}(a), \text{read}, \text{ok}, a \mid a \in A_{D} \} \]
\[A_{\text{gu}}[\exists \beta \leq i \leq k] = \sum_{1 \leq i \leq k} A_{\text{gu}}[\exists \beta] + A_{\text{gu}}[\beta] \]

Note that function types are tagged by a superscript \((\langle i \rangle)\) in order to keep record from which type, i.e. which component of the disjoint union, each move comes from. The letters in the alphabet \(A_{T}\) represent moves (observable actions) that a term of type \(T\) can perform. For example, in \(A_{\text{exp}}\) there is a question move \(q\) to ask for the value of the expression, and values from \(A_{D}\) to answer the question. For commands, in \(A_{\text{com}}\) there is a question move \(\text{run}\) to initiate a command, and an answer move \(\text{done}\) to signal successful termination of a command. For variables, we have question moves for writing to the variable, \(\text{write}(a)\), acknowledged by the answer move \(\text{ok}\), and for reading from the variable, a question move \(\text{read}\), and corresponding to it an answer from \(A_{D}\).

For any \((\beta\text{-normal})\) term, we define a regular-language which represents its game semantics, i.e. its set of complete plays. Every complete play represents the observable effects of a completed computation of the given term. It is given as a guarded word \([b, w]\), where the boolean \(b\) is also called play condition. Assumptions about a play (computation) to be feasible are recorded in the play condition. For infeasible plays, the play condition is inconsistent (unsatisfiable), thus no assignment of concrete values to symbolic names exists that makes the play condition true. So it is desirable for any play to check the consistency (satisfiability) of its play condition. If the play condition is found to be inconsistent, this play is discarded from the final model of the corresponding term.

The regular expression for \(\Gamma \vdash M : T\) is denoted \([\Gamma \vdash M : T]\), and it is defined over the guarded alphabet \(A_{\Gamma \vdash T}\) defined as:

\[A_{\Gamma \vdash T} = \big(\sum_{x : T \in \Gamma} A_{\Gamma \vdash T}(x) \big) + A_{\Gamma \vdash T} \]

where all moves corresponding to types of free identifiers are tagged with the names of those identifiers.

Free identifiers \(x : T \in \Gamma\) are represented by the so-called copy-cat regular expressions given in Table 1, which contain all possible behaviours of terms of that type. They provide the most general closure of an open program term. For example, \(x : \text{exp}D^{(x)} \vdash x : \text{exp}D\) is modelled by the word \(q \cdot q^{(x)} \cdot ?X^{(x)} \cdot X\). Its meaning is that Opponent starts the play by asking what is the value of this expression with the move \(q\), and Player responds by playing \(q^{(x)}\) (i.e. what is the value of the non-local expression \(x\)). Then Opponent provides the value of \(x\) by

\(^{2}\text{Here } + \text{ denotes a disjoint union of alphabets.}\)
Using a new symbolic name X, which will be also the value of this expression. Languages $R_{\text{fit}}^{(x,i)}$ in Table 1 contain plays representing evaluation of the i-th argument of a non-local function x. So when a first-order non-local function is called, it may evaluate any of its arguments, zero or more times, in an arbitrary order and then it returns any allowable answer from its result type.

Note that whenever an input symbol $?X$ (let $X = \text{new}(W)$ in $X \ldots$) is met in a play with finite length, we instantiate it with a new fresh symbolic name, which binds all occurrences of X that follow in the play until a new $?X$ is met which overrides the previous one. For example, $[f : \text{expand}^{(f,1)} \rightarrow \text{expint}^{(f)}] \vdash f : \text{expand}^{(1)} \rightarrow \text{expint} = q \cdot q^{(f)} \cdot (q^{(f,1)} \cdot q^{(1)} \cdot Z^{(f)} \cdot Z^{(i,1)})^* \cdot ?X^{(f)} \cdot X$ is a model for a non-local function f which may evaluate its argument zero or more times. The play corresponding to f which evaluates its argument two times after instantiating its input symbols is given as: $q \cdot q^{(f)} \cdot q^{(f,1)} \cdot q^{(1)} \cdot Z_1^{(i,1)} \cdot q^{(1)} \cdot q^{(f,1)} \cdot q^{(f,1)} \cdot q^{(1)} \cdot Z_2^{(i,1)} \cdot Z_2^{(f,1)} \cdot X^{(f)} \cdot X$, where Z_1 and Z_2 are two different symbolic names used to denote values of the argument when it is evaluated the first and the second time, respectively. Note that letters tagged with f represent the actions of calling and returning from the function, while letters tagged with $f, 1$ are the actions caused by evaluating the first argument of f.

In Table 2 terms are interpreted by regular expressions describing their sets of complete plays. An integer or boolean constant is modeled by a play where the initial question q is answered by the value of that constant. The only play for skip responds to run with done. A composite term $c(M_1, \ldots, M_k)$ consisting of a language construct ‘c’ and subterms M_1, \ldots, M_k is interpreted by composing the regular expressions for M_1, \ldots, M_k, and a regular expression for ‘c’. The representation of language constructs ‘c’ is given in Table 3. For example, the regular expression for any arithmetic-logic operation op asks for values of the arguments, and after obtaining them by symbolic names Z and Z' responds by performing the operation $(Z \text{op} Z')$. In the case of branching, if the value of the
Consider the following term:

\[\text{behaviour on the local variable } x \gamma \text{ in Table 2, a 'cell' regular expression} \]

The symbolic regular-expression interpreting this term is:

\[\text{deleted in the final model for new variable and so not visible outside of the term, all moves associated with it are read plays the most recently written value in response to read are of data type } D \]

\[
\begin{align*}
\gamma_v &= (\text{read}(x) \cdot v(x))^* \cdot (\text{write}(?Z)^{(x)} \cdot \text{ok}^{(x)} \cdot (\text{read}^{(x)} \cdot Z(x))^*)^* \\
\end{align*}
\]

Table 2: Language terms

first argument given by Z is true then its second argument is run, otherwise if Z is false then its third argument is run. In the definition for local variables given in Table 2, a 'cell' regular expression \(\gamma_v \) is used to impose the good variable behaviour on the local variable \(x \). It responds to each \(\text{write}(-) \) with \(\text{ok} \), and plays the most recently written value in response to \(\text{read} \), or if no value has been written yet then answers the \(\text{read} \) with the initial value \(v \). Since \(x \) is a local variable and so not visible outside of the term, all moves associated with it are deleted in the final model for new. Notice that all symbols used in Tables 1, 2, 3 are of data type \(D \), except the symbol \(Z \) in if and while constructs, which is of data type \(\text{bool} \).

\[
\begin{align*}
[\text{op : expD}^{(1)} \times \text{expD}^{(2)} &\rightarrow \text{expD}] = q \cdot q^{(1)} \cdot ?Z^{(1)} \cdot ?Z^{(2)} \cdot \text{(Z op Z')} \\
[; : \text{com}^{(1)} \times \text{com}^{(2)} &\rightarrow \text{com}] = \text{run} \cdot \text{run}^{(1)} \cdot \text{done}^{(1)} \cdot \text{run}^{(2)} \cdot \text{done}^{(2)} \cdot \text{done} \\
[\text{if : expbool}^{(1)} \times \text{com}^{(2)} \times \text{com}^{(3)} &\rightarrow \text{com}] = [tt, \text{run}] \cdot [tt, q^{(1)}] \cdot [tt, ?Z^{(1)}]. \\
\quad ((Z, \text{run}^{(2)}) \cdot [tt, \text{done}^{(2)}] + [\neg Z, \text{run}^{(3)}] \cdot [tt, \text{done}^{(3)}]) \cdot [tt, \text{done}] \\
[\text{while : expbool}^{(1)} \times \text{com}^{(2)} &\rightarrow \text{com}] = [tt, \text{run}] \cdot [tt, q^{(1)}] \cdot [tt, ?Z^{(1)}]. \\
\quad ((Z, \text{run}^{(2)}) \cdot [tt, \text{done}^{(2)}] \cdot [tt, q^{(1)}] \cdot [tt, ?Z^{(1)}])^* \cdot [\neg Z, \text{done}] \\
[\text{!: : varD}^{(1)} \times \text{expD}^{(2)} &\rightarrow \text{com}] = \text{run} \cdot q^{(2)} \cdot ?Z^{(2)} \cdot \text{write}(Z)^{(1)} \cdot \text{ok}^{(1)} \cdot \text{done} \\
[\text{! : varD}^{(1)} &\rightarrow \text{expD}] = q \cdot \text{read}^{(1)} \cdot ?Z^{(1)} \cdot Z
\end{align*}
\]

Table 3: Language constructs

Example 1. Consider the following term:

\[
x \text{ : expint}, c : \text{com}^c, \text{, abort : com}^{\text{abort}} \vdash \text{if } (x = 0) \text{ then } c \text{ else } \text{abort : com}
\]

The symbolic regular-expression interpreting this term is: \(^3\)

\[
\text{run} \cdot q^c \cdot ?X^z \cdot ([X = 0, \text{run}^c] \cdot \text{done}^c + [X \neq 0, \text{run}^{\text{abort}}] \cdot \text{done}^{\text{abort}}) \cdot \text{done}
\]

\(^3\)For simplicity, in the examples we omit to write brackets (,) in superscript tags of moves.
In the model we can see only observable interactions of the term with its environment consisting of non-local identifiers $x, c, \text{ and } \text{abort}$. When the term (Player) asks for the value of x with the move q^x, the environment (Opponent) provides a new symbol X as an answer. If the value of X is 0, then c is executed, else abort is run. We can compare the symbolic representation of this term with the standard regular-language representation of it, which is given by the following regular-expression:

$$\text{run} \cdot q^x \cdot (0^x \cdot \text{run}^c \cdot \text{done}^c + \sum_{n \neq 0, n \in \text{int}} n^x \cdot \text{run}^\text{abort} \cdot \text{done}^\text{abort}) \cdot \text{done}$$

As we can see it is a regular-language with infinite summations.

We define an effective alphabet of a regular expression to be the set of all letters appearing in the language denoted by that regular expression. Then by inspecting all definitions given in Tables 1,2,3, it is easy to show the following result.

Proposition 1. For any term $\Gamma \vdash M : T$, the effective alphabet of $\llbracket \Gamma \vdash M : T \rrbracket$ is a finite subset of $\mathbb{A}^{\text{nu}}_{\Gamma \vdash T}$.

Any term $\Gamma \vdash M : T$ from IA$_2$ with infinite integers is interpreted by extended regular expression without infinite summations defined over finite alphabet. So the following is immediate.

Theorem 1. For any IA$_2$ term, the set $\mathcal{L}[\llbracket \Gamma \vdash M : T \rrbracket]$ is a symbolic regular-language without infinite summations over finite alphabet. Moreover, a finite-state symbolic automata $S[\llbracket \Gamma \vdash M : T \rrbracket]$ which recognizes it is effectively constructible.

Proof. The proof is by induction on the structure of $\Gamma \vdash M : T$.

An automaton is a tuple (Q, i, δ, F) where Q is the finite set of states, $i \in Q$ is the initial state, δ is the transition function, and $F \subseteq Q$ is the set of final states. We now introduce two auxiliary operations. Let $A' = (Q', i', \delta', F')$ be an automaton, then $A = \text{rename}(A', \text{tag})$ is a new automaton which adds superscripts tag to the letters associated with all transitions that go out of the initial state or go to a final state of A', and it is defined as:

$$Q = Q'$

$$i = i'$

$$F = F'$$

$$\delta = \{ q_1 \xrightarrow{[b,m]^\text{tag}} q_2 \in \delta' \mid q_1 \neq i', q_2 \notin F' \} +$$

$$\{ i' \xrightarrow{[b,m]^\text{tag}} q \mid i' \xrightarrow{[b,m]} q \in \delta' \} + \{ q_1 \xrightarrow{[b,m]} q_2 \mid q_1 \xrightarrow{[b,m]^\text{tag}} q_2 \in \delta', q_2 \in F' \}$$

Let $A_1 = (Q_1, i_1, \delta_1, F_1)$ and $A_2 = (Q_2, i_2, \delta_2, F_2)$ be two automata, such that all transitions going out of i_2 and going to a state from F_2 are tagged with tag. Define $A = \text{compose}(A_1, A_2, \text{tag})$ as follows:

10
Consider the term \(x \) done \(f \) term: the non-local procedure

\[
\begin{align*}
\Gamma & = Q_1 + Q_2 \setminus \{i_2, F_2\} & i_1 = i_1 & F = F_1 \\
\delta & = \{q_1^{[b,m]} \mid q_1 \in \delta_1 \} + \{q_2^{[b,m]} \mid q_2 \in \delta_2 \} + \\
& \{q_1^{[b_1 \wedge b_2 \wedge m_2 = m_2, e]} \mid q_1 \in \delta_1, q_2^{[b_2, m_2]} \mid q_2 \in \delta_2, \\
m_1, m_2 \} \text{ are questions} + \{q_2^{[b_1 \wedge b_2 \wedge m_2 = m_2, e]} \mid q_1 \in \delta_1, q_2^{[b_1, m_1]} \mid q_2 \in \delta_1, \\
m_1, m_2 \} \text{ are answers}
\end{align*}
\]

Let \(A_M, A_N, \) and \(A_0 \) be automata representing \(\Gamma \vdash M, \Gamma \vdash N, \) and construct ; (see Table 3), respectively. The unique automaton representing \(\Gamma \vdash M ; N \) is defined as:

\[
A_M : N = \text{compose}(\text{compose}(A_0, \text{rename}(A_M, 1)), \text{rename}(A_N, 2))
\]

The other cases for constructs are similar.

The automaton \(A = (Q, i, \delta, F) \) for \(\Gamma \vdash \text{new}_D x := v \text{ in } M \) is constructed in two stages. First we eliminate \(x \)-tagged symbolic letters from the automaton \(A_M = (Q_M, i_M, \delta_M, F_M) \), which represents \(\Gamma, x : \text{var}_D \vdash M, \) by replacing them with \(\varepsilon \), thus obtaining \(A_x = (Q_x, i_x, \delta_x, F_x) \). We also introduce a new symbolic name \(X \) to keep track of what changes to \(x \) are made by each \(x \)-tagged move.

\[
Q_x = Q_M, \quad \delta_x = \{i_M \mid \forall x \in X, q \rightarrow q' \mid q, q' \in \delta_M \} + \\
\{q_1^{[b,M]} \mid q_1 \in \delta_M, q \rightarrow q_2, q_2 \in \delta_M, \exists q_3^{[b,ok]} \rightarrow q_2, q_2 \in \delta_M \}
\]

The final automaton is obtained by eliminating \(\varepsilon \)-letters from \(A_x \). Note that conditions associated to \(\varepsilon \)-letters are not removed.

\[
Q = Q_x, \quad i = i_x, \quad F = F_x
\]

\[
\delta = \{\delta_x \setminus \{q_1^{[b,c]} \mid q_1, q_2 \in Q_x\} \} + \\
\{q_1^{[b \wedge b_2, m_2]} \mid q_2 \rightarrow q_3, q_3 \in Q_x, (q_1^{[b,c]} \rightarrow q_2, q_2)\}
\]

We write \(q_1^{[b,c]} \rightarrow q_2 \) if \(q_2 \) is reachable from \(q_1 \) by a series of \(\varepsilon \)-transitions \([b_1, c], \ldots, [b_k, e]\), where \(b_k = b_1 \wedge \ldots b_k \).

\begin{proof}
\end{proof}

Example 2. Consider the term \(M_1: \)

\[
f : \text{com}^{f, 1} \rightarrow \text{com}^{f}, \quad \text{abort} : \text{com}^{\text{abort}}, \quad x : \text{expint}^x, \quad y : \text{expint}^y \vdash f (\text{if } (x \neq y) \text{ then } \text{abort}) : \text{com}
\]

in which \(f \) is a call-by-name non-local procedure, and \(x, y \) are non-local expressions.

The strategy for this term represented as a finite symbolic automaton is shown in Figure 1. The model illustrates only the possible behaviors of this term: the non-local procedure \(f \) may call its argument, zero or more times, then the term terminates successfully with \(\text{done} \). If \(f \) calls its argument, arbitrary values for \(x \) and \(y \) are read from the environment by using symbols \(X \) and \(Y \). If they are different \((X \neq Y)\), then the \text{abort} command is executed. The standard
regular-language representation [16] of M_1, where concrete values are employed, is given in Figure 2. It represents an infinite-state automaton, and so it is not suitable for automatic verification (model checking). Note that in this case the values for non-local expressions x and y can be any possible integer.

4. Formal Properties

In [16, pp. 28–32], it was shown the correctness of the standard regular-language representation for finitary IA2 by showing that it is isomorphic to the game semantics model [1]. As a corollary, it was obtained that the standard regular-language representation is fully abstract.

Let $[\Gamma \vdash M : T]^{CL}$ denote the set of all complete plays in the strategy for a term $\Gamma \vdash M : T$ from IA2 with infinite integers obtained as in [16], where concrete values in words and infinite summations in regular expressions are used. Suppose that there is a special free identifier abort of type $\text{com}^{\text{abort}}$. We say that a term $\Gamma \vdash M$ is safe iff $\Gamma \vdash M[\text{skip/abort}] \subseteq M[\text{diverge/abort}]$; otherwise we say that a term is unsafe. Since the standard regular-language game semantics is fully abstract, the following result can be shown (see also [9]).

Proposition 2. A term $\Gamma \vdash M$ is safe iff $[\Gamma \vdash M]$ does not contain any play with moves from $A^{\text{abort}}_{\text{com}}$, which we call unsafe plays.

For example, $[\text{abort} : \text{com}^{\text{abort}} \vdash \text{skip} ; \text{abort} : \text{com}] = \text{run} \cdot \text{run}^{\text{abort}} \cdot \text{done}^{\text{abort}} \cdot \text{done}$, so this term is unsafe.
Let $Eval$ be the set of evaluations, i.e. the set of total functions from W to $A_{[eq]} \cup A_{[bool]}$. We use ρ to range over $Eval$. So we have $\rho(X^D) \in A_{[D]}$ for any evaluation $\rho \in Eval$ and $X^D \in W$. Given a word of symbolic letters w, let $\rho(w)$ be a word where every symbolic name is replaced by the corresponding concrete value as defined by ρ. Given a guarded word $[b, w)$, define $\rho([b, w)) = \rho(b) \equiv tt$; otherwise $\rho([b, w)) = \emptyset$ if $\rho(b) \equiv ff$. The concretization of a symbolic regular-language over a guarded alphabet is defined as follows: $\gamma L(R) = \{\rho([b, w)) \mid [b, w) \in L(R), \rho \in Eval\}$. Let $[\Gamma \vdash M : T]^SR = L[\Gamma \vdash M : T]$ be the symbolic regular-language obtained as in Section 3, where symbols instead of concrete values are used.

Theorem 2. For any IA_2 term

$$\gamma [\Gamma \vdash M : T]^SR = [\Gamma \vdash M : T]^CR$$

Proof. By induction on the typing rules. Definitions of constants are the same.

Consider the case of free identifiers.

$$\gamma [x : \exp D(z) \vdash x : \exp D]^SR = \gamma \{q \cdot q(z) \cdot X^D(X) \cdot X^D\}$$

$$= \{q \cdot q(z) \cdot \rho(X^D(z)) \cdot \rho(X^D) \mid \rho : \{X^D \rightarrow A_{[D]}\}\}$$

$$= \{q \cdot q(z) \cdot v \mid v \in A_{[D]}\} = \{x : \exp D(z) \vdash x : \exp D\}^CR$$

Let us consider the branching construct.

$$\gamma [if : \exp bool(1) \times \exp com(2) \times \exp com(3) \rightarrow \exp com]^SR =$$

$$\gamma \{run \cdot q^1 \cdot Z^1 \cdot ([\emptyset, run^2) \cdot \exp{done}^2 + [\neg Z, run^3) \cdot \exp{done}^3) \cdot \exp{done}\}$$

$$= \{run \cdot q^1 \cdot \rho(Z) \cdot ([\rho(Z), run^2) \cdot \exp{done}^2 + [\neg \rho(Z), run^3) \cdot \exp{done}^3) \cdot \exp{done}\}$$

$$= \{run \cdot q^1 \cdot v \cdot ([\emptyset \text{ if } (v) \text{ then } run^2 \text{ else } \emptyset) \cdot \exp{done}^2 +$$

$$\text{if } (\neg v) \text{ then } run^3 \text{ else } \emptyset) \cdot \exp{done}^3) \cdot \exp{done} \mid v \in \{tt, ff\}\}$$

$$= \{run \cdot q^1 \cdot tt^1 \cdot run^2 \cdot \exp{done}^2 + q^1 \cdot ff^1 \cdot run^3 \cdot \exp{done}^3 \cdot \exp{done}\}$$

$$= [if : \exp bool(1) \times \exp com(2) \times \exp com(3) \rightarrow \exp com]^CR$$

The other cases as well as composition are similar to prove.

As a corollary we obtain the following result.

Theorem 3. $[\Gamma \vdash M : T]^SR$ is safe iff $[\Gamma \vdash N : T]^CR$ is safe.

By Proposition 2 and Theorem 3 it follows that a term is safe if its symbolic regular-language semantics is safe. Since symbolic automata are finite state, it follows that we can use model-checking to verify safety of IA_2 terms with infinite data types.

In order to verify safety of a term we need to check whether the symbolic automaton representing a term contains unsafe plays. We use an external SMT solver Yices\footnote{http://yices.csl.sri.com} [15] to determine consistency of the play conditions of the discovered unsafe plays. If some play condition is consistent, i.e. there exists an evaluation ρ that makes the play condition true, the corresponding unsafe play
is feasible and it is reported as a genuine counter-example. By replacing symbolic names in the play with the concrete values as defined by \(\rho \), we will obtain a concrete genuine counter-example corresponding to an unsafe computation of the term. If the condition of an unsafe play is found to be inconsistent, then the play is considered as infeasible, and so discarded from the model.

Given a finite-state symbolic model of a term \(\Gamma \vdash M : T \), we use the following search procedure (SP) to check its safety:

1. The breadth-first search (BFS) algorithm is applied to find the shortest unsafe play in the symbolic model.
2. If no unsafe play is found, the procedure terminates with answer: safe.
3. Otherwise, the mechanism for fresh symbol generation is used to instantiate all input symbols in the found unsafe play, and then its condition is tested for consistency. If the condition is found to be consistent, the procedure terminates with answer: unsafe. Otherwise, we discard the inconsistent unsafe play from the model and go to step (1).

We now show that the above procedure is correct and semi-terminating under assumption that constraints generated by any program can be checked for consistency.

Theorem 4. SP returns correct answers and it terminates for unsafe terms.

Proof. If SP terminates with answer safe (unsafe, respectively), then \(\Gamma \vdash M : T \) is safe (unsafe, respectively) by Proposition 2 and Theorem 3.

Suppose that there exists an unsafe play \(t \in [\Gamma \vdash M : T]^\text{SR} \), such that its condition is consistent and it is the shortest unsafe play. We use BFS to locate the shortest unsafe play which may be inconsistent. Since the number of words with the same length is finite in a finite-state automaton, SP will discover \(t \) after finite number of calls to BFS, that will first find all shorter unsafe inconsistent plays than \(t \).

Example 3. The term \(M_1 \) from Example 2 is \texttt{abort}-unsafe, with the following counter-example:

\[
\text{run} \cdot \text{run}^1 \cdot \text{run}^1, q^x \cdot X^x, \text{run}^1 \cdot Y^y, [X \neq Y, \text{run}^\text{abort} \cdot \text{done}^\text{abort} \cdot \text{done}^1 \]

The consistency of the play condition is established by instructing Yices to check the formula:

\[
\begin{align*}
(\text{define } X &:: \text{int}) \\
(\text{define } Y &:: \text{int}) \\
(\text{assert } (\neq X Y))
\end{align*}
\]

Note that whenever a new symbol is met in a play, we have to define it in the corresponding formula. The following satisfiable assignments to symbols are reported: \(X = 1 \) and \(Y = 2 \), yielding a concrete unsafe play:

\[
\text{run} \cdot \text{run}^1 \cdot \text{run}^1 \cdot q^x \cdot X^x, \text{run}^1 \cdot q^y \cdot Y^y, \text{run}^\text{abort} \cdot \text{done}^\text{abort} \cdot \text{done}^1 \cdot \text{done}^1
\]
Similarly, we can check that the term from Example 1 contains an unsafe play: \[\text{run} \cdot q^N \cdot X^Z \cdot [X \neq 0, \text{run}^{\text{abort}}] \cdot \text{done}^{\text{abort}} \cdot \text{done}, \] whose condition is satisfiable for the assignment \(X = 1 \).

Example 4. Consider the term \(M_2 \):

\[
N : \text{expint}^N, \text{abort} : \text{com}^{\text{abort}} \vdash \text{new}_\text{int} x := 0 \text{ in} \\
\text{while} (x < N) \text{ do } x := x + 1; \\
\text{if} (x > 0) \text{ then abort} : \text{com}
\]

The strategy for this term (suitably adapted for readability) is given in Figure 3. Observe that the term communicates with its environment using non-local identifiers \(N \) and \(\text{abort} \). So in the model will only be represented actions (moves) associated with \(N \) and \(\text{abort} \) as well as with the top-level type \(\text{com} \). Each time the term (Player) asks for a value of \(N \) with the move \(q^N \), the environment (Opponent) provides a new fresh value \(Z \) for it. The symbol \(X \) is used to keep track of the current value of the local variable \(x \). Whenever a new value for \(N \) is provided, the term has three possible options depending on the current values of symbols \(Z \) and \(X \): it can terminate successfully with \(\text{done} \); it can execute \(\text{abort} \) and terminate; or it can run the assignment \(x := x + 1 \) and ask for a new value of \(N \).

The shortest unsafe play found in the model is:

\[
[X = 0, \text{run} \cdot q^N \cdot Z^X \cdot [X \geq Z \land X > 0, \text{run}^{\text{abort}}] \cdot \text{done}^{\text{abort}} \cdot \text{done}
\]

But the play condition for it, \(X = 0 \land X \geq Z \land X > 0 \), is inconsistent. The next unsafe play is:

\[
[X_1 = 0, \text{run} \cdot q^N \cdot Z_1^X \cdot [X_1 < Z_1 \land X_2 = X_1 + 1, q^N^Z \cdot \text{run}^{\text{abort}}] \cdot \text{done}^{\text{abort}} \cdot \text{done}
\]

Now Yices reports that the condition for this play is satisfiable, yielding a possible assignment of concrete values to symbols that makes the condition true: \(X_1 = 0, Z_1 = 1, X_2 = 1, Z_2 = 0 \). So it is a genuine counter-example, such that one corresponding concrete unsafe play is:

\[
\text{run} \cdot q^N \cdot 1^N \cdot q^N \cdot 0^N \cdot \text{run}^{\text{abort}} \cdot \text{done}^{\text{abort}} \cdot \text{done}
\]
This play corresponds to a computation which runs the body of while exactly once. In this way, the value of the local variable \(x \) becomes set to 1 which makes the guard of 'if' command to evaluate to \(\text{tt} \).

Let us modify the \(M_2 \) term as follows

\[
\text{new} \int x := 0 \text{ in while}(x < N) \text{ do } x := x + 1; \text{ if } (x > k) \text{ then abort}
\]

where \(k > 0 \) is any positive integer. The model for this modified term is the same as shown in Figure 3, except that conditions associated with letters \(\text{run}^{\text{abort}} \) (resp., \(\text{done} \)) are \(X \geq Z \land X > k \) (resp., \(X \geq Z \land X \leq k \)). In this case the \((k + 1)\)-shortest unsafe plays in the model are found to be inconsistent. The first consistent unsafe play corresponds to executing the body of while \((k + 1)\)-times, which makes the value of \(x \) to become \(k + 1 \). Thus one possible concrete representation of it (as generated by Yices) is:

\[
\text{run} \cdot q^N \cdot 1^N \cdot q^N \cdot 2^N \cdots q^N \cdot (k + 1)^N \cdot q^N \cdot 0^N \cdot \text{run}^{\text{abort}} \cdot \text{done}^{\text{abort}} \cdot \text{done}
\]

\(\square \)

Remark. Note that the procedure described above may diverge for safe terms. As a simple example, we can consider a slightly modified version of the term \(M_2 \):

\[
\text{new} \int x := 0 \text{ in while}(x < N) \text{ do } x := x + 1; \text{ if } (x > x) \text{ then abort}
\]

It is a safe term, since the guard of 'if' command will always evaluate to false. However, our procedure will continually report unsafe plays, whose play conditions will be inconsistent (unsatisfiable). This shows that our procedure is semi-terminating.

Our approach also inherits the incompleteness of Yices or any other SMT solver used for calculating symbolic constraints. The satisfiability of complex formulas in Yices is decidable with respect to some background theories such as linear arithmetic, functions (arrays), recursive datatypes, quantifiers, etc. So any program that generates constraints out of these pre-specified background theories cannot be verified. A program with non-linear arithmetic is such an example.

5. Handling arrays

We now extend the language with arrays of length \(k > 0 \). They can be handled in two ways. Firstly, we can introduce arrays of fixed length as syntactic sugar by using existing term formers. An array \(x[k] \), where \(k \) is a fixed positive integer, is represented as a set of \(k \) distinct variables \(x[0], x[1], \ldots, x[k - 1] \),
such that we will use the following abbreviations:

\[
\begin{align*}
\text{new}_D x[k] &:= v \text{ in } M \\
\text{new}_D x[0] &:= v \text{ in } M \\
\end{align*}
\]

\[
\begin{align*}
\text{new}_D x[k-1] &:= v \text{ in } M \\
E &\equiv \\
\text{if } E = 0 \text{ then } x[0] \text{ else } \\
\text{if } E = k-1 \text{ then } x[k-1] \text{ else skip (abort)}
\end{align*}
\]

If we want to verify whether array out-of-bounds errors are present in the term, i.e. there is an attempt to access elements out of the bounds of an array, we execute abort instead of skip when \(E \geq k\). This approach for handling arrays is taken by the standard representation of game semantics \([16, 11]\).

Secondly, since we work with symbols we can have more efficient representation of arrays with unfixed (arbitrary) length. While in the first approach the length of an array \(k\) must be a concrete positive integer, in the second approach \(k\) can be represented by a symbol with an initial constraint \(k > 0\). We use the support that Yices provides for arrays by enabling: function definitions, function updates, and lambda expressions. For each local array \(x[k] : \text{var}_D\), we can define in Yices a function symbol \(X\) of type \(\text{int} \rightarrow D\) as:

\[
(\text{define } X :: (\rightarrow \text{int } D))
\]

The function symbol \(X\) can be initialized and updated as follows:

\[
(\text{lambda} (\text{index} :: \text{int}) \text{ val})
\]

\[
(\text{update } X (\text{index}) \text{ val})
\]

For example, a local array \(x[k] : \text{var}_{\text{int}}\) initialized to 0 is represented in Yices as:

\[
(\text{define } X :: (\rightarrow \text{int}))
\]

\[
(\text{assert } (= X (\text{lambda} (j :: \text{int}) 0)))
\]

In this approach, a symbolic representation of a non-local array is as follows.

\[
[\Gamma, x[k] \vdash x[E] : \text{var}_D] = [\Gamma \vdash E : \text{exp}_{\text{int}}(1)] \cdot A_1^{x[k]} \cdot [\Gamma, x[k] \vdash x[-] : \text{var}_D]
\]

\[
[\Gamma, x[k] \vdash x[-] : \text{var}_D] = (\text{read} \cdot q^{(1)} \cdot ?Z^{(1)} \cdot [Z < k, \text{read}^{(x[Z])}] \cdot ?Z^{(x[Z])} \cdot Z')
\]

\[
+ (\text{write}??Z' \cdot q^{(1)} \cdot ?Z^{(1)} \cdot [Z < k, \text{write}^{(x[Z])}] \cdot \text{ok}^{(x[Z])} \cdot \text{ok})
\]

We can see that a new symbolic name \(Z\) is used to represent the index of the array element that needs to be de-referenced or assigned to.

If we also want to check for array out-of-bounds errors, we extend this interpretation by including plays that perform moves associated with abort command.
Consider the term
\[Z \text{ when } Z \geq k. \] In this case, the symbolic interpretation of arrays will be as follows:
\[
[\Gamma, x[k] \vdash x[-] : \text{var} D] = (\text{read} \cdot q^{(1)} \cdot Z^{(1)} \cdot ([Z < k, \text{read}(x[Z]) \cdot Z'] + [Z \geq k, \text{run}(\text{abort}) \cdot \text{done}(\text{abort}) \cdot 0])
\]
\[+ (\text{write}(Z') \cdot q^{(1)} \cdot Z^{(1)} \cdot ([Z < k, \text{write}(Z')(x[Z]) \cdot \text{ok}(x[Z]) \cdot \text{ok} + [Z \geq k, \text{run}(\text{abort}) \cdot \text{done}(\text{abort}) \cdot \text{ok}))
\]

So when we have an array in a term, we can interpret it either by using (1) in the case that we do not want to verify array out-of-bounds errors, or by using (2) in the case that we want to check such errors.

The automaton \(A \) for \([\Gamma \vdash \text{new}_D x[k] := v \text{ in } M]\), where \(A_M \) represents \([\Gamma, x[k] \vdash M]\), is obtained as follows. We first construct \(A_z \) by eliminating \(z \)-tagged moves from \(A_M \). Similarly as with local variables, we use a new function symbol \(X \) of type \(\text{int} \rightarrow D \) to keep track of what changes to array \(x \) are made by each \(z \)-tagged move.

\[
Q_z = Q_M, \quad i_z = i_M, \quad F_z = F_M
\]
\[
\delta_z = \{ i_M \mid \exists X(z) := v \land k > 0 \land b, m \} \quad q \mid i_M \xrightarrow{[b, m]} q \in \delta_M \} + \}\]
\[
\{ q_1 \xrightarrow{[a]} q_2 \mid q_1 \xrightarrow{[b]} q_2 \in \delta_M, m \notin \{ \text{write}(a)(x[a']), \text{ok}(x[a']), \text{read}(x[a']) \}, a(z[a']) \}\}
\[
\{ q_1 \xrightarrow{[X(z') := a \land b \land c]} q_2 \mid q_1 \xrightarrow{[b_1, \text{write}(a)(x[a'])]} q \in \delta_M, \quad q \xrightarrow{[b_2, \text{ok}(x[z'])]} q_2 \in \delta_M \}\}
\[
\{ q_1 \xrightarrow{[a]} q_2 \mid q_1 \xrightarrow{[b_1, \text{read}(x[a'])]} q \in \delta_M, \quad q \xrightarrow{[b_2, \text{ok}(x[z'])]} q_2 \in \delta_M \}\}
\]

We use \(?X(z) := v \) to mean that a new function symbol \(X \) is defined and initialized to \(v \) for all its arguments, while \(?X(a') := a \) means that a new function symbol is generated which is identical to the current function symbol \(X \) except that the value at the argument \(a' \) is \(a \). The final automaton \(A \) is generated by removing \(z \)-letters from \(A_z \), similarly as it was done for the case of \(\text{new}_D \) in Theorem 1.

Example 5. Consider the term \(M_3 \):

\[y : \text{expint}^y, \text{abort} : \text{com} \vdash \text{new}_{\text{int}} x[k] := 0 \text{ in } x[y] := 3 : \text{com} \]

The symbolic model of this term is given in Figure 4, where the array \(x \) is interpreted by (2). The shortest unsafe play is:

\[[X(j) := 0 \land k > 0, \text{run}] \cdot q^y \cdot Z^y \cdot [Z \geq k, \text{run}(\text{abort}) \cdot \text{done}(\text{abort}) \cdot \text{done} \]
Its play condition is satisfiable for the evaluation: \(k = 1, Z = 1 \), yielding an unsafe computation where the value 1 is read from \(y \) and the length of the array \(x \) is 1. So this represents a computation in which an array out-of-bounds error occurs, i.e. we have a reference to the array element \(x[1] \) which does not exist.

\[\square \]

6. Implementation

We developed a prototype tool in Java, called **Symbolic GameChecker**, which automatically converts an IA\(_2\) term with integers into a symbolic automaton which represents its game semantics. The model is then used to verify safety of the term. Further examples as well as detailed reports of how they execute on **Symbolic GameChecker** are available from:

http://www.dcs.warwick.ac.uk/“aleks/symbolicgc.htm.

Along with the tool we have also implemented in Java our own library of classes for working with symbolic automata. We could not just reuse some of the existing libraries for finite-state automata, due to the specific nature of symbolic automata we use. The symbolic automata generated by the tool is checked for safety. We use the breadth-first search algorithm to find the shortest unsafe play in the model. Then an external SMT solver Yices is called to check consistency of its condition. If the condition is found to be consistent, the unsafe play is reported; otherwise we search for another unsafe play. If no unsafe play is discovered or all unsafe plays are found to be inconsistent, then the term is deemed safe. The tool also uses a simple forward reachability algorithm to remove all unreachable states of a symbolic automaton.

6.1. A procedural term

Consider the term:

\[
\begin{align*}
 f &: \text{com}^f,1 \rightarrow \text{com}^f,2 \rightarrow \text{com}^f \\
 \text{abort} &: \text{com}^{\text{abort}} \vdash \text{new} \text{int} \; x := 0 \text{ in} \\
 & \quad \text{f}(x := x + 1, \text{if} (x \geq k) \text{ then abort}) : \text{com}
\end{align*}
\]

where \(k \geq 0 \) is a meta-variable, which can be replaced by several different values.

The symbolic model for this term is given in Figure 5. The non-local procedure \(f \) may call its arguments, zero or more times, in any order, and then terminates successfully. The shortest counter-example is:

\[
[X = 0, \text{run}] \cdot \text{run}^f \cdot \text{run}^{f,2} \cdot [X > k, \text{run}^{\text{abort}}] \cdot \text{done}^{\text{abort}} \cdot \text{done}^{f,2} \cdot \text{done}^f \cdot \text{done}
\]

Its play condition \((X = 0 \land X > k)\) is inconsistent for any \(k \geq 0 \), so it is discarded. The next found counter-example is:

\[
[X_1 = 0, \text{run}] \cdot \text{run}^f \cdot \text{run}^{f,1} \cdot [X_2 = X_1 + 1, \text{done}^{f,1}] \cdot \text{run}^{f,2} \cdot [X_2 > k, \text{run}^{\text{abort}}] \cdot \text{done}^{\text{abort}} \cdot \text{done}^{f,2} \cdot \text{done}^f \cdot \text{done}
\]

19
Yices finds that the condition for this play \((X_1 = 0 \land X_2 = X_1 + 1 \land X_2 > k)\) is unsatisfiable for any \(k \geq 1\), but it is satisfiable for \(k = 0\). The next counter-example is:

\[
\begin{align*}
[X_1 = 0, \text{run}] \cdot \text{run}^f \cdot \text{run}^{f-1} \cdot [X_2 = X_1 + 1, \text{done}^{f-1}] \cdot \text{run}^{f-1}, \\
[X_3 = X_2 + 1, \text{done}^{f-1}] \cdot \text{run}^{f-2} \cdot [X_3 > k, \text{run}^{\text{abort}}] \cdot \text{done}^{\text{abort}}, \\
\text{done}^{f-2} \cdot \text{done}^f \cdot \text{done}
\end{align*}
\]

Its play condition is satisfiable for \(k = 1\) and unsatisfiable for any any \(k \geq 2\), etc. In general, we obtain a genuine counter-example that corresponds to a computation where \(f\) uses its first argument \(k + 1\) times, and afterwards its second argument.

We now show how this term will be handled with the standard representation [16, 11] that do not feature the symbolic nature. Since we can verify only terms with finite data types by this approach, we assume that the type of \(x\) is \(\text{int}_n = \{0, \ldots, n-1\}\) where \(n > k + 1\), and the increment operation applied to a maximum value of a type yields the same maximum value. The standard model of this finite term with \(k = 1\) is given in Figure 6. It explicitly illustrates that if \(f\) calls its first argument, two or more times, and afterwards its second argument then the \text{abort} is executed. We can see that the symbolic model of the procedural term with infinite data types is more compact than the standard model of the corresponding finite term. Moreover, the standard model of the finite term becomes much larger as we increase the value of \(k\).

6.2. A linear search term

Let us consider the following implementation of the linear search algorithm.

\[
x[k] : \text{varint}^k, \ y : \text{expint}^k, \ \text{abort} : \text{com}^{\text{abort}} \vdash \\
\text{new_int } i := 0 \text{ in} \\
\text{new_int } p := y \text{ in} \\
\text{while } (i < k) \text{ do } \\
\quad \text{if } (x[i] = p) \text{ then } \text{abort;} \\
\quad i := i + 1; \\
\text{: com}
\]
The program first remembers the input expression y into a local variable p. The non-local array x is then searched for an occurrence of the value stored in p. If the search succeeds, then \texttt{abort} is executed.

The symbolic model for this term is shown in Fig. 7, where for simplicity array out-of-bounds errors are not taken in the consideration. If the value read from the environment for y has occurred in x, then an unsafe behaviour of the term exists. So this term is unsafe, and the following counter-example is found:

\[
[I_1 = 0 \land k > 0, \text{run}] \quad q^y \quad Y^y \quad [P = Y \land I_1 < k, \text{read}^{[I_1]}] \quad Z^x^{[I_1]} \\
[Z = P, \text{run}^{\text{abort}}] \quad \text{done}^{\text{abort}} \quad [I_2 = I_1 + 1 \land I_2 \geq k, \text{done}]
\]

This play corresponds to a term with an array x of size $k = 1$, where the values

\[
[I_1 = 0 \land k > 0, \text{run}] \quad q^y \quad Y^y \quad [P = Y \land I_1 < k, \text{read}^{[I_1]}] \quad Z^x^{[I_1]} \\
[Z = P, \text{run}^{\text{abort}}] \quad \text{done}^{\text{abort}} \quad [I_2 = I_1 + 1 \land I_2 \geq k, \text{done}]
\]
read from $x[0]$ and y are equal.

Overall, the symbolic model for linear search term has 9 states and the total time needed to generate the model and test its safety is less than 1 sec. We can compare this approach with the tool in [11], where the standard algorithmic representation of game semantics based on CSP process algebra [28] for terms with finite data types is used. We performed experiments for the linear search term with different sizes of k and all integer types replaced by finite data types. The types of x, y, and p is int$_n$, i.e. they contain n distinct values $\{0, \ldots, n-1\}$, and the type of the index i is int$_{k+1}$, i.e. one more than the size of the array. Such term was converted into a CSP process which represents its game semantics, and then the FDR model checker 5 for CSP process algebra was used to generate its model and test its safety. Experimental results are shown in Table 4, where we list the execution time in seconds, and the size of the final model in number of states. The model and the time increase very fast as we increase the sizes of k and n. We ran FDR and SYMBOLIC GAMECHECKER on a Machine AMD Phenom II X4 940 with 4GB RAM. The obtained experimental results confirm superior efficiency of our symbolic approach, where we obtain the final results for less than 1 sec for arbitrary values of k and n.

7. Conclusion

We have shown how to reduce the verification of safety of (infinite-state) game models of IA$_2$ terms with infinite data types to the checking of the more abstract finite-state symbolic automata. Moreover, symbolic automata can help to combat the state-space explosion problem for model-checking. The main feature of symbolic automata is that data is not represented explicitly in them, but symbolically that allows a compact representation of the infinite data types.

Counter-example guided abstraction refinement procedures (ARP) [9, 10] can also be used for verification of terms with infinite integers. ARP starts by model-checking the most abstract version of the concrete program, where all infinite integer types are abstracted to the coarsest abstraction that contains only one abstract value. If no counterexample or a genuine one is found, the

<table>
<thead>
<tr>
<th>k</th>
<th>Time</th>
<th>Model</th>
<th>Time</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 1</td>
<td>11</td>
<td>< 1</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>43</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>83</td>
<td>2</td>
<td>121</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>123</td>
<td>6</td>
<td>181</td>
</tr>
</tbody>
</table>

Table 4: Verification of the linear search with finite data

5http://www.fsel.com/
procedure terminates. Otherwise, it uses a spurious counterexample to gradually refine the abstraction for the next iteration. So ARP finds solutions after performing a few iterations in order to adjust integer identifiers to suitable abstractions. In each iteration, one abstract term is model-checked. If an abstract term needs larger abstractions, then it is likely to obtain a model with very large state space, which is difficult (infeasible) to generate and check automatically.

The symbolic approach presented in this paper provides solutions in only one iteration, by checking symbolic models which are significantly smaller than the abstract models in ARP. The possibility to handle arrays with arbitrary length is another important benefit of this approach.

Another technique for verifying terms with integers is based on data independence [23, 24]. We say that a term is data independent with respect to a data type variable X if the only allowed operations between values of X that the term can perform are to input, output, assign, and test for equality such values. In [14], we obtain results which provide finite interpretations of X, such that if the safety property holds/fails for those interpretations, then it holds/fails for all interpretations which assign larger sets including integers to X. The main limitation of this approach is that it can be applied only to terms which contain data-independent integers.

As any other symbolic approach our tool inherits the incompleteness of the underlying reasoning engine used for solving symbolic constraints. In our case that is Yices, which decides the satisfiability of complex formulas in theories such as linear arithmetic, functions (arrays), recursive datatypes, quantifiers, etc. This means that we cannot analyze any program that would build constraints out of these pre-specified theories, e.g. any program with non-linear arithmetic.

Extensions to nondeterministic [12, 26], concurrent [17, 18], probabilistic [25], and terms with pointers [16] can be interesting to consider. In the case of nondeterministic programs, there exists an algorithmic game semantics model [26] which is fully abstract with respect to two complementary notions of observational equivalence of programs: may-termination and must-termination. Apart from containing convergent behaviours of programs, the model also contains divergent behaviours of programs. So its symbolic representation can be used for efficient verification of both safety and liveness properties, such as termination of nondeterministic programs with infinite data types.

Since we consider standard regular-languages to be ultimate meanings of terms, and their symbolic representations to be stepping stones to those meanings, we can regard two symbolic automata to be equal if their corresponding concretization induced by γ are the same. This allows us to study and perform transformations of symbolic automata which preserve the equality, and will also enable us to verify properties such as observational-equivalence and approximation. We leave this topic for future research.

References

